Indian Point plant likely to survive ruling

By Associated Press


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Concerns for a primitive and endangered sturgeon and other denizens of the Hudson River have raised the prospect that the Indian Point nuclear plant, the biggest power producer in the New York metropolitan area, could be shut down.

But closing the plant would slash 18 to 38 percent of the energy available to a power-hungry region and deprive the plant's owner, Entergy Nuclear, of hundreds of millions of dollars in profits. That leads many experts to believe there are real-world solutions well short of a shutdown.

"I would think that in the end, there has to be some kind of a compromise because I don't see how you replace that kind of power," said environmental lawyer Charles S. Warren, a former regional administrator with the U.S. Environmental Protection Agency. "Recycling and windmills don't get you there."

At issue is the water Indian Point pulls in from the Hudson River_ as much as 2.5 billion gallons a day — to make steam and cool the two reactors, making it the largest industrial user of water in New York. Screens keep out most full-grown fish, but baby fish, fish eggs and other life forms are sucked in, tossed around, warmed up and sent back out, often dead or worse for wear. Some of the fish that hit the screens are also killed or injured.

The state Department of Environmental Conservation refused last month to grant a water quality permit that Entergy must have to renew its federal licenses and continue operating into the 2030s. The DEC found that the current "once-through" water system kills nearly a billion organisms a year, including the shortnose sturgeon, which is endangered in New York.

The DEC said it is illegal to kill any shortnose sturgeon, one of 140 species of fish in the Hudson River, including striped bass, American shad, the protected Atlantic sturgeon and river herring.

A 2008 study — disputed by Entergy — blamed power plants, in part, for a decline in 10 of 13 "signature" Hudson River fish species since the 1970s.

The DEC also found Indian Point in violation of the federal Clean Water Act, with leaks of radioactive tritium, strontium-90, nickel and cesium polluting the river.

The agency said Indian Point can operate legally only if it converts to a more environmentally friendly water-recycling system known as closed-cycle. That process was a condition of the plant's original licenses in the 1970s but has been stalled with various appeals and settlements.

Entergy contends building the necessary cooling towers would cost more than $1 billion, with a 10-month plant shutdown.

A full shutdown of Indian Point is exactly what many environmentalists and some politicians in the area have hoped for, especially since the 2001 terrorist attacks, when one of the hijacked jets flew over the plant on its way to the World Trade Center.

Critics contend that the plant's proximity to New York City — 35 miles from midtown Manhattan — makes it a tempting target that the densely populated suburbs around Indian Point could never be properly evacuated in an emergency and that recent problems with warning sirens and radioactive leaks betray carelessness.

Alex Matthiessen, president of the environmental group Riverkeeper, called for Indian Point's "early retirement" and said the DEC's ruling "put us closer to realizing a future without Indian Point."

After failing to get the plant closed over the evacuation issue in 2003, plant critics focused on re-licensing, which is well under way and involves studies by the Nuclear Regulatory Commission and public hearings. The NRC is in the midst of its own environmental study.

The NRC has never denied a license renewal for a U.S. nuclear power plant, but spokesman Neil Sheehan said the commission cannot issue new licenses without the state water permit.

Entergy Nuclear is appealing within the DEC and can go to court if it loses. If that delays federal re-licensing, the NRC could allow Indian Point to continue operating in the interim, Sheehan said.

If Indian Point doesn't get the new licenses and replacement power plants don't get built, New York might be in a bind. Indian Point produces about 2,000 megawatts of power, which is about 18 percent of what New York City and Westchester use at peak demand times. The percentage rises as high as 38 percent at other times.

"Without Indian Point, on the hottest August afternoon, you just hope you have enough backup power," said William Miller, professor of nuclear science at the University of Missouri in Columbia. "If there isn't enough, you start rolling brownouts and blackouts."

David Lochbaum, director of the nuclear safety project for the Union of Concerned Scientists, an environmental research and citizen action group, said there's already a bottleneck in transmitting power into New York, and "If Indian Point's not up, the bottleneck gets worse. Without that nearby source, more power produced elsewhere has to come in."

Riverkeeper's Matthiessen said the industry is trying to "scare the public into believing Indian Point power is indispensable: the lights would go off, subways would stop running and our hospitals would stop operating. None of that is true."

If the power grid would do better with Indian Point open, so would Entergy. A study for New York state legislators found that in 2009, Indian Point earned a pretax profit of $436 million.

"Plants like that are cash cows," said former NRC member Forrest Remick.

Closed-cycle cooling is neither new nor uncommon, but under various owners, Indian Point has successfully resisted it for 30 years. More than a third of the nation's 104 nuclear plants already use the technology, and it's required for all new large power plants — not just nuclear — in New York. On May 4, California regulators ordered coastal power plants to begin phasing out the "once-through" cooling process. In March, New Jersey ordered Exelon Corp. to retrofit its Oyster Creek nuclear plant with closed-cycle cooling. And in Ohio, activists are pushing for a cooling tower at a Lake Erie power plant, even as owner FirstEnergy Corp. installs gate-like devices to cut down on the fish kill.

Lochbaum said New York is on solid ground with its objections to Indian Point.

"It's not black and white, where one side is wrong and one is right," he said. "We'll see how the courts weigh those factors."

Courts might find it hard to ignore a 2009 Supreme Court ruling that the federal government can weigh costs against benefits in deciding whether to order power plants to undertake environmental upgrades that would protect fish.

New Yorkers should keep the bigger picture in mind, Lochbaum said.

"It would behoove us to remember that regardless of what happens now, at some point Indian Point isn't going to be there. Demand is only going to go up and we should plan for that."

Related News

Nelson, B.C. Gets Charged Up on a New EV Fast-Charging Station

Nelson DC Fast-Charging EV Station delivers 50-kilowatt DCFC service at the community complex, expanding EV infrastructure in British Columbia with FortisBC, faster than Level 2 chargers, supporting clean transportation, range confidence, and highway corridor travel.

 

Key Points

A 50 kW public DC fast charger in Nelson, BC, run by FortisBC, providing rapid EV charging at the community complex.

✅ 50 kW DCFC cuts charge time to about 30 minutes

✅ $9 per half hour session; convenient downtown location

✅ Funded by NRCan, BC government, and FortisBC

 

FortisBC and the City of Nelson celebrated the opening of Nelson's first publicly available direct current fast-charging (DCFC) electric vehicle (EV) station on Friday.

"Adopting EV's is one of many ways for individuals to reduce carbon emissions," said Mayor John Dooley, City of Nelson. "We hope that the added convenience of this fast-charging station helps grow EV adoption among our community, and we appreciate the support from FortisBC, the province and the federal government."

The new station, located at the Nelson and District Community Complex, provides a convenient and faster charge option right in the heart of the commercial district and makes Nelson more accessible for both local and out-of-town EV drivers. The 50-kilowatt station is expected to bring a compact EV from zero to 80 per cent charged in about a half an hour, as compared to the four Level-2 charging stations located in downtown Nelson that require from three to four hours. The cost for a half hour charge at the new DC fast-charging station is $9 per half hour.

This fast-charging station was made possible through a partnership between FortisBC, the City of Nelson, Nelson Hydro, the Province of British Columbia and Natural Resources Canada. As part of the partnership, the City of Nelson is providing the location and FortisBC will own and manage the station.

This is the latest of 12 fast-charging stations FortisBC has built over the last year with support from municipalities and all levels of government, and adds to the five FortisBC-owned Kootenay stations that were opened as part of the accelerate Kootenays initiative in 2018.

All 12 stations were 50 per cent funded by Natural Resources Canada, 25 per cent by BC Ministry of Energy, Mines and Petroleum Resources and the remaining 25 per cent by FortisBC. The funding is provided by Natural Resources Canada's Electric Vehicle and Alternative Fuel Infrastructure Deployment Initiative, which aims to establish a coast-to-coast network of fast-chargers along the national highway system, natural gas refueling stations along key freight corridors and hydrogen refueling stations in major metropolitan areas. It is part of the Government of Canada's more than $180-billion Investing in Canada infrastructure plan. The Government of British Columbia is also contributing $300,000 towards the fast-chargers through its Clean Energy Vehicle Public Fast Charging Program.

This station brings the total DCFC chargers FortisBC owns and operates to 17 stations across 14 communities in the southern interior. FortisBC continues to look for opportunities to expand this network as part of its 30BY30 goal of reducing emissions from its customers by 30 per cent by 2030. For more information about the FortisBC electric vehicle fast-charging network, visit: fortisbc.com/electricvehicle.

"Electric vehicles play a key role in building a cleaner future. We are pleased to work with partners like FortisBC and the City of Nelson to give Canadians greener options to drive where they need to go, " said The Honourable Seamus O'Regan, Canada's Minister of Natural Resources.

"Nelson's first public fast-charging EV station increases EV infrastructure in the city, making it easier than ever to make the switch to cleaner transportation. Along with a range of rebates and financial incentives available to EV drivers, it is now more convenient and affordable to go electric and this station is a welcome addition to our EV charging infrastructure," said Michelle Mungall, BC's Minister of Jobs, Economic Development and Competitiveness, and MLA for Nelson Creston.

"Building the necessary DC fast-charging infrastructure, such as the Lillooet fast-charging site in British Columbia, close to highways and local amenities where drivers need them most is a critical step in growing electric vehicle adoption. Collaborations like this are proving to be an effective way to achieve this, and I'd like to thank all the program partners for their commitment in opening this important station, " said Mark Warren, Director of Business Innovation, FortisBC.

 

Related News

View more

Global electric power demand surges above pre-pandemic levels

Global Power Sector CO2 Surge 2021 shows electricity demand outpacing renewable energy, with coal and fossil fuels rebounding, undermining green recovery goals and climate change targets flagged by the IEA and IPCC.

 

Key Points

Record rise in power sector CO2 in 2021 as demand outpaced renewables and coal rebounded, undermining a green recovery.

✅ Electricity demand rose 5% above pre-pandemic levels

✅ Fossil fuels supplied 61% of power; coal led the rebound

✅ Wind and solar grew 15% but lagged demand

 

Carbon dioxide emissions from the global electric power sector surged past pre-pandemic levels to record highs in the first half of 2021, according to new research by London-based environmental think tank Ember.

Electricity demand and emissions are now 5% higher than where they were before the Covid-19 outbreak, which prompted worldwide lockdowns that led to a temporary drop in global greenhouse gas emissions. Electricity demand also surpassed the growth of renewable energy, and surging electricity demand is putting power systems under strain, the analysis found.

The findings signal a failure of countries to achieve a so-called “green recovery” that would entail shifting away from fossil fuels toward renewable energy, though European responses to Covid-19 have accelerated the electricity system transition by about a decade, to avoid the worst consequences of climate change.

The report found that 61% of the world’s electricity still came from fossil fuels in 2020. Five G-20 countries had more than 75% of their electricity supplied from fossil fuels last year, with Saudi Arabia at 100%, South Africa at 89%, Indonesia at 83%, Mexico at 75% and Australia at 75%.

Coal generation did fall a record 4% in 2020, but overall coal supplied 43% of the additional energy demand between 2019 and 2020, with soaring electricity and coal use underscoring persistent demand pressures. Asia currently generates 77% of the world’s coal electricity and China alone generates 53%, up from 44% in 2015.

The world’s transition out of coal power, which contributes to roughly 30% of the world’s greenhouse gas emissions, is happening far too slowly to avoid the worst impacts of climate change, the study warned. And the International Energy Agency forecasts coal generation will rebound in 2021 as electricity demand picks up again, even as renewables are poised to eclipse coal by 2025 according to other analyses.

“Progress is nowhere near fast enough. Despite coal’s record drop during the pandemic, it still fell short of what is needed,” Ember lead analyst Dave Jones said in a statement.

Jones said coal power usage must collapse by 80% by the end of the decade to avoid dangerous levels of global warming above 1.5 degrees Celsius (2.7 degrees Fahrenheit).

“We need to build enough clean electricity to simultaneously replace coal and electrify the global economy,” Jones said. “World leaders have yet to wake up to the enormity of the challenge.”

The findings come ahead of a major U.N. climate conference in Glasgow, Scotland, in November, where negotiators will push for more ambitious climate action and emissions reduction pledges from nations.

Without immediate, rapid and large-scale reductions to global emissions, scientists of the Intergovernmental Panel on Climate Change warn that the average global temperature will likely cross the 1.5 degrees Celsius threshold within 20 years.

The study also highlighted some upsides. Wind and solar generation, for instance, rose by 15% in 2020, and low-emissions sources are set to cover almost all the growth in global electricity demand in the next three years, producing nearly a tenth of the world’s electricity last year and doubling production since 2015.

Some countries now get about 10% of their electricity from wind and solar, including India, China, Japan, Brazil. The U.S. and Europe have experienced the biggest growth in wind and solar, and in the EU, wind and solar generated more electricity than gas last year, with Germany at 33% and the U.K. leads the G20 for wind power at 29%.

 

Related News

View more

Parsing Ontario's electricity cost allocation

Ontario Global Adjustment and ICI balance hydro rates, renewable cost shift, and peak demand. Class A and Class B customers face demand response decisions amid pandemic occupancy uncertainty and volatile GA charges through 2022.

 

Key Points

A pricing model where GA costs and ICI peak allocation shape Class A/B bills, driven by renewables cost shifts.

✅ Renewable cost shift trims GA; larger Class A savings expected.

✅ Class A peak strategy returns; occupancy uncertainty persists.

✅ Class B faces volatile GA; limited levers beyond efficiency.

 

Ontario’s large commercial electricity customers can approach the looming annual decision about their billing structure for the 12 months beginning July 1 with the assurance of long-term relief on a portion of their costs, amid changes coming for electricity consumers that could affect planning. That’s to be weighed against uncertainties around energy demand and whether a locked-in cost allocation formula that looked favourable in pre-pandemic times will remain so until June 30, 2022.

“The biggest unknown is we just don’t know when the people are coming back,” Jon Douglas, director of sustainability with Menkes Property Management Services, reflected during a webinar sponsored by the Building Owners and Managers Association (BOMA) of Greater Toronto last week. “The occupancy in our office buildings this fall, and going into the new year, could really impact the outcome of the decision.”

After a year of operational upheaval and more modifications to provincial electricity pricing policies, BOMA Toronto’s regularly scheduled workshop ahead of the June 15 deadline for eligible customers to opt into the Industrial Conservation Initiative (ICI) program had a lot of ground to cover. Notably, beginning in January, all commercial customers have seen a reduction in the global adjustment (GA) component of their monthly hydro bills after the Ontario government shifted costs associated with contracted non-hydroelectric renewable supply to reduce the burden on industrial ratepayers from electricity rates to the general provincial account — a move that trims approximately $258 million per month from the total GA charged to industrial and commercial customers. However, they won’t garner the full benefit of that until 2022 since they’re currently repaying about $333 million in GA costs that were deferred in April, May and June of 2020.

Renewable cost shift pares the global adjustment
For now, Ontario government officials estimate the renewable cost shift equates to a 12 per cent discount relative to 2020 prices, even as typical bills may rise about 2% as fixed pricing ends in some cases. Once last year’s GA deferral is repaid at the end of 2021, they project the average Class A customer participating in the ICI program should realize a 16 per cent saving on the total hydro bill, while Class B customers paying the GA on a volumetric per kilowatt-hour (kWh) basis will see a slightly more moderate 15 per cent decrease.

“This is the biggest change to electricity pricing that’s happened since the introduction of ICI,” Tim Christie, director of electricity policy, economics and system planning for Ontario’s Ministry of Energy, Northern Development and Mines, told online workshop attendees. “The government is funding the out-of-market costs of renewables. It does tail off into the 2030s as those contracts (for wind, solar and biomass generation) expire, but over the next eight-ish years, it’s pretty steady at around just over $3 billion per year.”

Extrapolating from 2020 costs, he pegged average electricity costs at roughly 9.1 cents/kWh for Class A commercial customers and 13.2 cents/kWh for Class B, a point of concern for Ontario manufacturers facing high rates as well. However, energy management specialists suggest actual 2021 numbers haven’t proved that out.

“In commercial buildings, we’re averaging 10 to 12 cents for Class A in 2021, and we’re seeing more than that for about 14, 15 cents for Class B,” reported Scott Rouse, managing partner with the consulting firm, Energy@Work.

GA costs for Class B customers dropped nearly 30 per cent in the first four months of 2021 compared to the last four months of 2020, when they averaged 11.8 cents/kWh. Thus far, though, there have been significant month-to-month fluctuations, with a low of 5.04 cents/kWh in February and a high of 10.9 cents/kWh in April contributing to the four-month average of 8.3 cents/kWh.

“In 2020, system-wide GA very often averaged more than $1 billion per month,” Rouse said. “This February it dropped to $500 million, which was really quite surprising. So it is a very volatile cost.”

Although welcome, the renewable cost shift does alter the payback on energy-saving investments, particularly for demand response mechanisms like energy storage. When combined with pandemic-related uncertainty and a series of policy and program reversals alongside calls to clean up Ontario’s hydro policy in recent years, the industry’s appetite for some more capital-intensive technologies appears to be flagging.

“Volatility puts a pause on some of the innovation,” said Terry Flynn, general manager with BentallGreenOak and chair of BOMA Toronto’s energy committee. “It could be a leading edge, but it might be a bleeding edge that won’t bear any fruit because the way the commodity costs are structured will change.”

“There’s kind of a wait-and-see approach on some of these bigger investments,” Douglas concurred.

Industrial Conservation Initiative underpins commercial class divide
Turning to the ICI, Class A customers — defined as those with average monthly energy demand of at least 1 megawatt (MW) — encountered some unexpected changes to the program rules during 2020. Meanwhile, Class B customers — encompassing the vast share of commercial properties smaller than about 350,000 square feet — confront the persistent reality of electricity cost allocation that offloads the burden from larger players onto them.

Through the ICI, participating Class A customers pay a share of the global adjustment that’s prorated to their energy use during the five hours of the period from May 1 to April 30 when the highest overall system demand is recorded. This gives Class A customers the opportunity to lock in a favourable factor for calculating their share of monthly system-wide global adjustment costs if they can successful project and curtail energy loads during those five hours of peak demand. On the flipside, Class B customers pay the remainder of those system-wide costs, on a straightforward per-kWh basis, once Class A payments have been reconciled.

“Class B has sometimes been regarded as the forgotten middle child of the customer classes in Ontario where all the shifted costs in the system kind of pile up,” acknowledged Mark Olsheski, vice president, energy and environment, with Sussex Strategy Group. “Likewise, there can be big unpredictable and uncontrollable swings in the global adjustment rate from month to month and, outside of pure energy efficiency, there really is precious little opportunity or empowerment for a Class B customer to take actions to lower their bills.”

Nevertheless, COVID-19 presents a few extra hiccups for Class A customers this year. Conventionally, late May is when they receive notification of the cost allocation factor that would be used to determine their GA for the upcoming July 1 to June 30 period. This year, though, all current ICI participants will retain the factor they secured by responding to the five hours of peak demand during the 12 months from May 1, 2019 to April 30, 2020 after the Ontario government placed a temporary halt on the peak demand response aspect of the program last summer. Regardless, eligible ICI participants must formally opt into the program by June 15 or they will be billed as Class B customers.

Peak chasing resumes for summer 2021
Since peak demand hours conventionally occur from June to September, Class A customers will once again be studying forecasts intently and preparing to respond via Peak Perks as the heat wave season sets in. That should help alleviate some of the system stresses that arose last summer — prompting policy-makers to reject lobbying for a continued pause on peak demand response.

“The policy rationale was to allow consumers to focus on their operations when recovering from COVID as opposed to reducing peaks. The other issue was that we did not expect the peaks to be high last summer given COVID shutdowns,” Christie recounted. “But due to some hot weather, more people at home and also the lack of ICI response, we saw peaks we haven’t seen in many, many years come up last summer. So the peak hiatus has ended and this summer we’ll be back to responding to ICI as per normal.”

Among Class A customers, owners/managers of office and retail facilities generally have the most to lose from a billing formula tied to the energy demand of more densely occupied buildings in the summer of 2019. However, they could be much more competitively positioned for 2022-23 if their buildings remain below full occupancy and energy demand stays lower than usual this summer.

“Where we can improve is the IESO (Independent Electricity System Operator) and the LDCs (local distribution companies) need to help customers get their real-time data, especially in light of the phantom demand issue, interpret their bills and their Class A versus B scenarios much more easily and comprehensively,” urged Lee Hodgkinson, vice president, technical services, sustainability and ESG, with Dream Unlimited. “ I look for APIs (application programming interface) and direct data flow from the LDCs to the building owners so that we can access that data really easily.”

Given Class A’s historic advantages, few eligible ICI participants are expected to migrate out to Class B. From a sustainability perspective, there’s perhaps more cause to question how the ICI’s 1-MW threshold encourages strategies to move in the other direction.

“You could jack up demand in some buildings and get them into Class A basically by firing up the chillers on the weekend and then pouring cooling outside to get rid of it,” Douglas noted. “That has nothing to do with climate change strategy or sustainability, but it’s a cost- saving strategy, and, sometimes, when you look at the math, it’s hundreds of thousands of dollars you can save.”

Brian Hewson, vice president, consumer protection and industry performance with the Ontario Energy Board (OEB), confirmed the OEB is currently scrutinizing the discrepancy that leaves Class B as the only consumer group with no flexibility to curtail energy load during higher-priced periods, and will be providing advice to the Ministry of Energy. In the interim, that status does, at least, simplify tactics.

“Just reduce your kWh and it doesn’t matter what time of day because you’re paying that fixed rate for 24 hours a day. So if you can curb your demand at night, you get a big bang for your dollar,” Rouse advised.

“We do talk about rates a lot, but if you’re not using it, you’re not paying for it,” Flynn agreed. “A lot of our focus is still on really to try to reduce the number of kilowatts that we use. That seems to be the best thing to do.”

 

Related News

View more

Utility giant Electricite de France acquired 50pc stake in Irish offshore wind farm

Codling Bank Offshore Wind Project will deliver a 1.1 GW offshore wind farm off the Wicklow coast, as EDF Renewables and Fred Olsen Renewables invest billions to support Ireland's CAP 2030 and cut carbon emissions.

 

Key Points

A 1.1 GW offshore wind farm off Co Wicklow, led by EDF and Fred Olsen, advancing Ireland's CAP 2030 targets.

✅ Up to 1.1 GW capacity; hundreds of turbines off Co Wicklow

✅ EDF Renewables partners with Fred Olsen Renewables

✅ Investment well over €2bn, supporting 70% electricity by 2030

 

It’s been previously estimated that the entire Codling Bank project, which will eventually see hundreds of wind turbines, such as a huge offshore wind turbine now coming to market, erected about 13km off the Co Wicklow coast, could be worth as much as €100m. The site is set to generate up to 1.1 gigawatts of electricity when it’s eventually operational.

It’s likely to cost well over €2bn to develop, and with new pipelines abroad where Long Island offshore turbine proposals are advancing, scale economies are increasingly relevant.

The other half of the project is owned by Norway’s Fred Olsen Renewables, with tens of millions of euro already reportedly spent on surveys and other works associated with the scheme. Initial development work started in 2003.

Mr Barrett will now continue to focus on his non-Irish renewable projects, at a time when World Bank wind power support is accelerating in developing countries, said Hazel Shore, the company that sold the stake. It added that Johnny Ronan and Conor Ronan, the developer’s brother, will retain an equity interest in the Codling project.

“The Hazel Shore shareholders remain committed to continuing their renewable and forestry businesses,” noted the firm, whose directors include Paddy Teahon, a former secretary of the Department of the Taoiseach and chairman of the National Offshore Wind Association of Ireland.

The French group’s EDF Renewables subsidiary will now partner with the Norwegian firm to develop and build the Codling Bank project, in a sector widely projected to become a $1 trillion business over the coming decades.

EDF pointed out that the acquisition of the Codling Bank stake comes after the government committed to reducing carbon emissions. A Climate Action Plan launched last year will see renewable projects generating 70pc of Ireland’s electricity by 2030, with more than a third of Irish electricity to be green within four years according to recent analysis. Offshore wind is expected to deliver at least 3.5GW of power in support of the objective.

Bruno Bensasson, EDF Group senior executive vice-president of renewable energies and the CEO of EDF Renewables said the French group is “committed to contributing to the Irish government’s renewables goals”.

“This important project clearly strengthens our strong ambition to be a leading global player in the offshore wind industry,” he added. “This is consistent with the CAP 2030 strategy that aims to double EDF’s renewable energy generation by 2030 and increase it to 50GW net.”

Matthieu Hue, the CEO of EDF Renewables UK and Ireland said the firm already has an office in Dublin and is looking for further renewable projects, as New York's biggest offshore wind farm moves ahead, underscoring momentum.

Last November, the ESB teamed up with EDF in Scotland, reflecting how UK offshore wind is powering up, with the Irish utility buying a 50pc stake in the Neart na Gaoithe offshore wind project. The massive wind farm is expected to generate up to 450MW of electricity and will cost about €2.1bn to develop.

EDF said work on that project is “well under way”.

 

Related News

View more

Chester County Landfill Converts Methane to Renewable Gas

SECCRA Waga Energy RNG Partnership captures landfill methane with WAGABOX, upgrades biogas to pipeline-quality RNG, enables grid injection, and lowers greenhouse gas emissions, delivering sustainable energy to Chester County homes and businesses.

 

Key Points

A joint project converting landfill methane to RNG with WAGABOX, cutting emissions and supplying local heat.

✅ WAGABOX captures and purifies landfill gas to RNG

✅ Grid injection supplies energy for 4,000+ homes

✅ Cuts methane and greenhouse gas emissions significantly

 

In a significant environmental initiative, the Southeastern Chester County Refuse Authority (SECCRA) has partnered with French energy company Waga Energy to convert methane emissions from its landfill into renewable natural gas (RNG). This collaboration aims to reduce greenhouse gas emissions and provide sustainable energy to the local community, echoing energy efficiency projects in Quebec seen elsewhere.

Understanding the Issue

Landfills are a substantial source of methane emissions, accounting for over 14% of human-induced methane emissions, according to the U.S. Environmental Protection Agency. Methane is a potent greenhouse gas, and issues like SF6 in power equipment further boost warming, trapping more heat in the atmosphere than carbon dioxide, making its reduction crucial in the fight against climate change.

The SECCRA-Waga Energy Partnership

SECCRA, serving approximately 105,000 residents in Chester County, processes between 450 to 500 tons of waste daily. To mitigate methane emissions from its landfill, SECCRA has partnered with Waga Energy to install a WAGABOX unit—a technology designed to capture and convert landfill methane into RNG, while related efforts like electrified LNG in B.C. illustrate sector-wide decarbonization.

How the WAGABOX Technology Works

The WAGABOX system utilizes a proprietary process to extract methane from landfill gas, purify it, and inject it into the natural gas grid. This process not only reduces harmful emissions, as emerging carbon dioxide electricity generation concepts also aim to do, but also produces a renewable energy source that can be used to heat homes and power businesses.

Environmental and Community Benefits

By converting methane into RNG, the project significantly lowers greenhouse gas emissions, supported by DOE funding for carbon capture initiatives, contributing to climate change mitigation. Additionally, the RNG produced is expected to supply energy to heat over 4,000 homes, providing a sustainable energy source for the local community.

Broader Implications

This initiative aligns with international clean energy cooperation to reduce methane emissions from landfills. Similar projects have been implemented worldwide, demonstrating the effectiveness of converting landfill methane into renewable energy. For instance, Waga Energy has successfully deployed WAGABOX units at various landfills, showcasing the scalability and impact of this technology.

The collaboration between SECCRA and Waga Energy represents a proactive step toward environmental sustainability and energy innovation. By transforming landfill methane into renewable natural gas, the project not only addresses a significant source of greenhouse gas emissions as new EPA power plant rules on carbon capture advance parallel strategies, but also provides a clean energy alternative for the Chester County community.

 

Related News

View more

Warren Buffett-linked company to build $200M wind power farm in Alberta

Rattlesnake Ridge Wind Project delivers 117.6 MW in southeast Alberta for BHE Canada, a Berkshire Hathaway Energy subsidiary, using 28 turbines near Medicine Hat under a long-term PPA, supplying renewable power to 79,000 homes.

 

Key Points

A 117.6 MW Alberta wind farm by BHE Canada supplying 79,000 homes via 28 turbines and a long-term PPA.

✅ 28 turbines near Medicine Hat, 117.6 MW capacity

✅ Long-term PPA with a major Canadian corporate buyer

✅ Developed with RES; no subsidies; competitive pricing

 

A company linked to U.S. investor Warren Buffett says it will break ground on a $200-million, 117.6-megawatt wind farm in southeastern Alberta next year.

In a release, Calgary-based BHE Canada, a subsidiary of Buffett's Berkshire Hathaway Energy, says its Rattlesnake Ridge Wind project will be located southwest of Medicine Hat and will produce enough energy to supply the equivalent of 79,000 homes.

"We felt that it was time to make an investment here in Alberta," said Bill Christensen, vice-president of corporate development for BHE Canada, in an interview with the Calgary Eyeopener.

"The structure of the markets here in Alberta, including frameworks for selling renewable energy, make it so that we can invest, and do it at a profit that works for us, and at a price that works for the off-taker," Christensen explained.

Berkshire Hathaway Energy also owns AltaLink, the regulated transmission company that supplies electricity to more than 85 per cent of the Alberta population.

BHE Canada says an unnamed large Canadian corporate partner has signed a long-term power purchase agreement, similar to RBC's solar purchase arrangements, for the majority of the energy output generated by the 28 turbines at Rattlesnake Ridge.

"If you look at just the raw power price that power is going for in Alberta right now, it's averaged around $55 a megawatt hour, or 5.5 cents a kilowatt hour. And we're selling the wind power to this customer at substantially less than that, reflecting wind power's competitiveness in the market, and there's been no subsidies," Christensen said.

 

Positive energy outlook

Christensen said he sees a good future for Alberta's renewable energy industry, not just in wind but also in solar power growth, particularly in the southeast of the province.

But he says BHE Canada is interested in making investments in traditional energy in Alberta, too, as the province is a powerhouse for both green energy and fossil fuels overall.

"It's not a choice of one or the other. I think there is still opportunity to make investments in oil and gas," he said.

"We're really excited about having this project and hope to be able to make other investments here in Alberta to help support the economy here, amid a broader renewable energy surge across the province."

The project is being developed by U.K.-based Renewable Energy Systems, part of a trend where more energy sources make better projects for developers, which is building two other Alberta wind projects totalling 134.6 MW this year and has 750 MW of renewable energy installed or currently under construction in Canada.

BHE Canada and RES are also looking for power purchase partners for the proposed Forty Mile Wind Farm in southeastern Alberta. They say that with generation capacity of 398.5 MW, it could end up being the largest wind power project in Canada.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified