Spain suspends solar plant subsidies

By Reuters


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Spain's energy watchdog suspended subsidies to 143 solar plants for failing to show they were up and running before a generous state support for the fledgling industry was slashed in 2008.

That added to 808 plants that have been provisionally suspended as part of a review of more than 9,000 plants under way since last year in one of the world's major solar producers, the National Energy Commission CNE said in a statement.

The CNE said the 143 newly suspended plants generated 90 megawatts between them, which compares to about 4,000 MW currently in service in Spain.

Spain suddenly became the world's biggest solar power market in 2008 as investors rushed to cash in on subsidies before the government capped them on September 30 that year.

Aid may now be paid to just 500 megawatts a year of new photovoltaic PV plants — which directly convert sunlight into electricity — down from about 2,400 MW built in 2008.

Spain obtains about 2 percent of its electricity from solar plants, which are mostly PV but also include concentrated solar power plants which focus the sun's rays to heat water and drive a conventional turbine.

Solar receives preferential "feed-in tariffs" designed to make it gradually competitive with power generated by burning gas or coal.

The CNE recalled 840 plants already reviewed had waived a premium of 475 euros US $677.50 per megawatt-hour, payable above market rates, and accepted one of 326 euros/MWh.

Spain's benchmark wholesale power market price was 51.24 euros/MWh.

Spanish engineering company Abengoa is building what is set to be the world's biggest solar plant, a 250 MW CSP complex in Arizona.

Related News

Iceland Cryptocurrency mining uses so much energy, electricity may run out

Iceland Bitcoin Mining Energy Shortage highlights surging cryptocurrency and blockchain data center electricity demand, as hydroelectric and geothermal power strain to cool servers, stabilize grid, and meet rapid mining farm growth amid Arctic-friendly conditions.

 

Key Points

Crypto mining data centers in Iceland are outpacing renewable power, straining the grid and exceeding residential electricity demand.

✅ Hydroelectric and geothermal capacity nearing allocation limits

✅ Cooling-friendly climate draws energy-hungry mining farms

✅ Grid planning and regulation lag rapid data center growth

 

The value of bitcoin may have stumbled in recent months, but in Iceland it has known only one direction so far: upward. The stunning success of cryptocurrencies around the globe has had a more unexpected repercussion on the island of 340,000 people: It could soon result in an energy shortage in the middle of the Atlantic Ocean.

As Iceland has become one of the world's prime locations for energy-hungry cryptocurrency servers — something analysts describe as a 21st-century gold-rush equivalent — the industry’s electricity demands have skyrocketed, too. For the first time, they now exceed Icelanders’ own private energy consumption, and energy producers fear that they won’t be able to keep up with rising demand if Iceland continues to attract new companies bidding on the success of cryptocurrencies, a concern echoed by policy moves like Russia's proposed mining ban amid electricity deficits.

Companies have flooded Iceland with requests to open new data centers to “mine” cryptocurrencies in recent months, even as concerns mount that the country may have to slow down investments amid an increasingly stretched electricity generation capacity, a dynamic seen in BC Hydro's suspension of new crypto connections in Canada.

“There was a lot of talk about data centers in Iceland about five years ago, but it was a slow start,” Johann Snorri Sigurbergsson, a spokesman for Icelandic energy producer HS Orka, told The Washington Post. “But six months ago, interest suddenly began to spike. And over the last three months, we have received about one call per day from foreign companies interested in setting up projects here.”

“If all these projects are realized, we won’t have enough energy for it,” Sigurbergsson said.

Every cryptocurrency in the world relies on a “blockchain” platform, which is needed to trade with digital currencies. Tracking and verifying a transaction on such a platform is like solving a puzzle because networks are often decentralized, and there is no single authority in charge of monitoring payments. As a result, a transaction involves an immense number of mathematical calculations, which in turn occupy vast computer server capacity. And that requires a lot of electricity, as analyses of bitcoin's energy use indicate worldwide.

The bitcoin rush may have come as a surprise to locals in sleepy Icelandic towns that are suddenly bustling with cryptocurrency technicians, but there’s a simple explanation. “The economics of bitcoin mining mean that most miners need access to reliable and very cheap power on the order of 2 or 3 cents per kilowatt hour. As a result, a lot are located near sources of hydro power, where it’s cheap,” Sam Hartnett, an associate at the nonprofit energy research and consulting group Rocky Mountain Institute, told the Washington Post.

Top financial regulators briefed a Senate panel on Feb. 6 about their work with cryptocurrencies like Bitcoin, and the risks to potential investors. (Reuters)

Located in the middle of the Atlantic Ocean and famous for its hot springs and mighty rivers, Iceland produces about 80 percent of its energy in hydroelectric power stations, compared with about 6 percent in the United States, and innovations such as underwater kites illustrate novel ways to harness marine energy. That and the cold climate make it a perfect location for new data-mining centers filled with servers in danger of overheating.

Those conditions have attracted scores of foreign companies to the remote location, including Germany's Genesis Mining, which moved to Iceland about three years ago. More have followed suit since then or are in the process of moving. 

While some analysts are already sensing a possible new revenue source for the country that is so far mostly known abroad as a tourist haven and low-budget airline hub, others are more concerned by a phenomenon that has so far mostly alarmed analysts because of its possible financial unsustainability, alongside issues such as clean energy's dirty secret that complicate the picture. Some predictions have concluded that cryptocurrency computer operations may account for “all of the world’s energy by 2020” or may already account for the equivalent of Denmark's energy needs. Those predictions are probably too alarmist, though. 

Most analysts agree that the real energy-consumption figure is likely smaller, and several experts recently told the Washington Post that bitcoin — currently the world's biggest cryptocurrency — used no more than 0.14 percent of the world’s generated electricity, as of last December. Even though global consumption may not be as significant as some have claimed, it still presents a worrisome drain for a tiny country such as Iceland, where consumption suddenly began to spike with almost no warning — and continues to grow fast.

Some networks are considering or have already pushed through changes to their protocols, designed to reduce energy use. But implementing such changes for the leading currency, bitcoin, won't be as easy because it is inherently decentralized. The companies that provide the vast amounts of computing power needed for these transactions earn a small share, comparable to a processing fee or a reward.

They are the source of the Icelandic bitcoin miners’ income — a revenue source that many Icelanders are still not quite sure what to make of, especially if the lights start flickering.

 

Related News

View more

The Need for Electricity During the COVID-19 Pandemic

US utilities COVID-19 resilience shows electric utilities maintaining demand stability, reaffirming earnings guidance, and accessing the bond market for low-cost financing, as Dominion, NextEra, and Con Edison manage recession risks.

 

Key Points

It is the sector's capacity to sustain demand, financing access, and guidance despite pandemic recession pressures.

✅ Bond market access locks in low-cost, long-term debt

✅ Stable residential load offsets industrial weakness

✅ Guidance largely reaffirmed by major utilities

 

Dominion Energy (D) expects "incremental residential load" gains, consistent with COVID-19 electricity demand patterns, as a result of COVID-19 fallout. Southern Company CEO Tom Fanning says his company is "nowhere near" a need to review earnings guidance because of a potential recession, in a region where efficiency and demand response can help level electricity demand for years.

Sempra Energy (SRE) has reaffirmed earnings per share guidance for 2020 and 2021, as well timing for the sale of assets in Chile and Peru, and peers such as Duke Energy's renewables plan have reaffirmed capital investments to deliver cleaner energy and economic growth. And Xcel Energy (XEL) says it still "hasn’t seen material impact on its business."

Several electric utilities have demonstrated ability to tap the bond market, in line with utility sector trends in recent years, to lock in low-cost financing, as America moves toward broader electrification, despite ongoing turmoil. Their ranks include Dominion Energy, renewable energy leader NextEra Energy (NEE) and Consolidated Edison (ED), which last week sold $1 billion of 30-year bonds at a coupon rate of just 3.95 percent.

It’s still early days for US COVID-19 fallout. And most electric companies have yet to issue guidance. That’s understandable, since so much is still unknown about the virus and the damage it will ultimately do to human health and the global economy. But so far, the US power industry is showing typical resilience in tough times, as it coordinates closely with federal partners to maintain reliability.

Will it last? We won’t know for certain until there’s a lot more data. NextEra is usually first to report its Q1 earnings reports and detailed guidance. But that’s not expected until April 23. And companies may delay financials further, should the virus and efforts to control it impede collection and analysis of data, and as they address electricity shut-off risks affecting customers.

 

Related News

View more

Company Becomes UK's Second-Largest Electricity Operator

Second-Largest UK Grid Operator advancing electricity networks modernization, smart grid deployment, renewable integration, and resilient distribution, leveraging acquisitions, data analytics, and infrastructure upgrades to boost reliability, efficiency, and service quality across regions and energy sector.

 

Key Points

A growing electricity networks operator advancing smart grids, renewable integration, and reliability.

✅ Expanded via acquisitions and regional growth

✅ Investing in smart grid, data analytics, automation

✅ Enhancing reliability, resilience, renewable integration

 

In a significant shift within the UK’s energy sector, a major company has recently ascended to become the second-largest electricity networks operator in the country. This milestone marks a pivotal moment in the industry, reflecting ongoing changes and competitive dynamics in the energy landscape, such as the shift toward an independent system operator in Great Britain. The company's ascent underscores its growing influence and its role in shaping the future of energy distribution across the UK.

The company, whose identity is a result of strategic acquisitions and operational expansions, now holds a substantial position within the electricity networks sector. This new ranking is the result of a series of investments and strategic moves aimed at strengthening its network capabilities and, amid efforts to fast-track grid connections across the UK, expanding its geographical reach. By achieving this status, the company is set to play a crucial role in managing and maintaining the electricity infrastructure that serves millions of households and businesses across the UK.

The rise to the second-largest position follows a period of significant growth and transformation for the company. Recent acquisitions have enabled it to enhance its network infrastructure, integrate advanced technologies, adopting a more digital grid approach, and improve service delivery. These developments come at a time when the UK is undergoing a significant transition in its energy sector, driven by the need for modernization, sustainability, and resilience in response to evolving energy demands.

One of the key factors contributing to the company's new status is its focus on upgrading and expanding its electricity networks. Investments in modernizing infrastructure, such as the commissioning of a 2GW substation to boost capacity, incorporating smart grid technologies, and enhancing operational efficiencies have been central to its strategy. By leveraging cutting-edge technology and data analytics, the company is able to optimize network performance, reduce outages, and improve overall reliability.

The company’s expansion into new regions has also played a crucial role in its growth. By extending its network coverage, including assets like the London electricity tunnel that enhance supply routes, the company has been able to provide electricity to a larger customer base, increasing its market share and influence in the sector. This expansion not only enhances its position as a major player in the industry but also supports the broader goal of ensuring reliable and efficient electricity distribution across the UK.

The shift to becoming the second-largest operator also reflects broader trends in the UK energy sector. The industry is experiencing a period of consolidation and transformation, driven by regulatory changes, technological advancements, and the push towards decarbonization, with similar momentum seen in British Columbia's clean energy shift that underscores global trends. The company’s ascent is indicative of these broader dynamics, as firms adapt to new challenges and opportunities in a rapidly evolving market.

In addition to operational and strategic advancements, the company’s rise is aligned with the UK’s broader energy goals. The government has set ambitious targets for reducing carbon emissions and increasing the use of renewable energy sources. As a major electricity networks operator, the company is positioned to support these goals by integrating renewable energy into the grid, including projects like the Scotland-to-England subsea link that carry remote generation, enhancing energy efficiency, and contributing to the transition towards a low-carbon energy system.

The company’s new status also brings with it a range of responsibilities and opportunities. As one of the largest operators in the sector, it will have a significant role in shaping the future of electricity distribution in the UK. This includes addressing challenges such as grid reliability, energy security, and the integration of emerging technologies. The company’s ability to manage these responsibilities effectively will be crucial in ensuring that it continues to deliver value to customers and stakeholders.

The transition to becoming the second-largest operator is not without its challenges. The company will need to navigate a complex regulatory environment, manage stakeholder expectations, and address any operational issues that may arise from its expanded network. Additionally, the competitive nature of the energy sector means that the company will need to continuously innovate and adapt to maintain its position and drive further growth.

In summary, the company’s achievement of becoming the second-largest electricity networks operator in the UK represents a significant milestone in the energy sector. Through strategic acquisitions, infrastructure investments, and operational enhancements, the company has strengthened its position and expanded its reach. This development highlights the evolving landscape of the UK energy sector and underscores the importance of modernization and innovation in meeting the country’s energy needs. As the company moves forward, it will play a key role in shaping the future of electricity distribution and supporting the UK’s energy transition goals.

 

Related News

View more

Bitcoin consumes 'More electricity than Argentina' - Cambridge

Bitcoin energy consumption is driven by mining electricity demand, with TWh-scale power use, carbon footprint concerns, and Cambridge estimates. Rising prices incentivize more hardware; efficiency gains and renewables adoption shape sustainability outcomes.

 

Key Points

Bitcoin energy consumption is mining's electricity use, driven by price, device efficiency, and energy mix.

✅ Cambridge tool estimates ~121 TWh annual usage

✅ Rising BTC price incentivizes more mining hardware

✅ Efficiency, renewables, and costs shape footprint

 

"Mining" for the cryptocurrency is power-hungry, with power curtailments reported during heat waves, involving heavy computer calculations to verify transactions.

Cambridge researchers say it consumes around 121.36 terawatt-hours (TWh) a year - and is unlikely to fall unless the value of the currency slumps, even as Americans use less electricity overall.

Critics say electric-car firm Tesla's decision to invest heavily in Bitcoin undermines its environmental image.

The currency's value hit a record $48,000 (£34,820) this week. following Tesla's announcement that it had bought about $1.5bn bitcoin and planned to accept it as payment in future.

But the rising price offers even more incentive to Bitcoin miners to run more and more machines.

And as the price increases, so does the energy consumption, according to Michel Rauchs, researcher at The Cambridge Centre for Alternative Finance, who co-created the online tool that generates these estimates.

“It is really by design that Bitcoin consumes that much electricity,” Mr Rauchs told BBC’s Tech Tent podcast. “This is not something that will change in the future unless the Bitcoin price is going to significantly go down."

The online tool has ranked Bitcoin’s electricity consumption above Argentina (121 TWh), the Netherlands (108.8 TWh) and the United Arab Emirates (113.20 TWh) - and it is gradually creeping up on Norway (122.20 TWh).

The energy it uses could power all kettles used in the UK, where low-carbon generation stalled in 2019, for 27 years, it said.

However, it also suggests the amount of electricity consumed every year by always-on but inactive home devices in the US alone could power the entire Bitcoin network for a year, and in Canada, B.C. power imports have helped meet demand.

Mining Bitcoin
In order to "mine" Bitcoin, computers - often specialised ones - are connected to the cryptocurrency network.

They have the job of verifying transactions made by people who send or receive Bitcoin.

This process involves solving puzzles, which, while not integral to verifying movements of the currency, provide a hurdle to ensure no-one fraudulently edits the global record of all transactions.

As a reward, miners occasionally receive small amounts of Bitcoin in what is often likened to a lottery.

To increase profits, people often connect large numbers of miners to the network - even entire warehouses full of them, as seen with a Medicine Hat bitcoin operation backed by an electricity deal.

That uses lots of electricity because the computers are more or less constantly working to complete the puzzles, prompting some utilities to consider pauses on new crypto loads in certain regions.

The University of Cambridge tool models the economic lifetime of the world's Bitcoin miners and assumes that all the Bitcoin mining machines worldwide are working with various efficiencies.

Using an average electricity price per kilowatt hour ($0.05) and the energy demands of the Bitcoin network, it is then possible to estimate how much electricity is being consumed at any one time, though in places like China's power sector data can be opaque.
 

 

Related News

View more

Restoring power to Florida will take 'weeks, not days' in some areas

Florida Hurricane Irma Power Outages strain the grid as utilities plan rebuilds; FPL and Duke Energy deploy crews to restore transmission lines, substations, and service amid flooding, storm surge, and widespread disruptions statewide.

 

Key Points

Large-scale post-storm power losses in Florida requiring grid rebuilds, thousands of crews, and phased restoration.

✅ Utilities prioritize plants, transmission, substations, then critical facilities

✅ 50,000-60,000 workers mobilized; bucket trucks wait for safe winds

✅ Remote rerouting and hardening aid faster restoration amid flooding

 

Parts of Florida could be without electricity for more than a week, as damage from Hurricane Irma will require a complete rebuild of portions of the electricity grid, utility executives said on Monday.

Irma has knocked out power to 6.5 million Florida electricity customers, or nearly two-thirds of the state, since making landfall this weekend. In major areas such as Miami-Dade, 74 percent of the county was without power, according to Florida's division of emergency management.

Getting that power back online may require the help of 50,000 to 60,000 workers from all over the United States and Canadian power crews as well, according to Southern Company CEO and Chairman Thomas Fanning. He is also co-chair of the Electricity Subsector Coordinating Council, which coordinates the utility industry and government response to disasters and cyberthreats.

While it is not uncommon for severe storms to down power lines and damage utility poles, Irma's heavy winds and rain batted some of the state's infrastructure to the ground, Fanning said.

"'Restore' may not capture the full sense of where we are. For the very hard impacted areas, I think you're in a 'rebuild' area," he told CNBC's "Squawk Box."

"That's a big deal. People need to understand this is going to take perhaps weeks, not days, in some areas," Fanning said.

Parts of northern Florida, including Jacksonville, experienced heavy flooding, which will temporarily prevent crews from accessing some areas.

Duke Energy, which serves 1.8 million customers in parts of central and northwestern Florida, is trying to restore service to 1.2 million residences and businesses.

Florida Power & Light Company, which provides power to an estimated 4.9 million accounts across the state, had about 3.5 million customers without electricity as of Monday afternoon, said Rob Gould, vice president and chief communications officer at FPL.

The initial damage assessments suggest power can be restored to parts of the state's east coast in just days, but some of the west coast will require rebuilding that could stretch out for weeks, Gould told CNBC's "Power Lunch."

"This is not a typical restoration that you're going to see. We actually for the first time in our company history have our entire 27,000-square-mile, 35-county territory under assault by Irma," he said.

FPL said it would first repair any damage to power plants, transmission lines and substations as part of its massive response to Irma, then prioritize critical facilities such as hospitals and water treatment plants. The electricity company would then turn its attention to areas that are home to supermarkets, gas stations and other community services.

Florida utilities invested billions into their systems after devastating hurricane seasons in 2004 and 2005 in order to make them more resilient and easier to restore after a storm. Irma, which ranked among the most powerful storms in the Atlantic, has nevertheless tested those systems.

The upgrades have allowed FPL to automatically reroute power and address about 1.5 million outages, Gould said. The company strategically placed 19,500 restoration workers before the storm hit, but it cannot use bucket trucks to fix power lines until winds die down, he said.

Some parts of Florida's distribution system — the lines that deliver electricity from power plants to businesses and residences — run underground. However, the state's long coastline and the associated danger of storm surge and seawater incursion make it impractical to run lines beneath the surface in some areas.

Duke Energy has equipped 28 percent of its system with smart grid technology to reroute power remotely, according to Harry Sideris, Duke's state president for Florida. He said the company would continue to build out that capability in the future.

Duke deployed more than 9,000 linesmen and support crew members to Irma-struck areas, but cannot yet say how long some customers will be without power.

Separately, Gulf Power crews reported restoring service to more than 32,000 customers.

"At this time we do not know the exact restoration times. However, we're looking at a week or longer from the first look at the widespread damage that we had," Sideris told CNBC's "Closing Bell."

FPL said on Monday it was doing final checks before bringing back nuclear reactors that were powered down as Hurricane Irma hit Florida.

"We are in the process now of doing final checks on a few of them; we will be bringing those up," FPL President and CEO Eric Silagy told reporters.

 

 

Related News

View more

Ontario Breaks Ground on First Small Modular Nuclear Reactor

Ontario SMR BWRX-300 leads Canada in next-gen nuclear energy at Darlington, with GE Vernova and Hitachi, delivering clean, reliable power via modular design, passive safety, scalability, and lower costs for grid integration.

 

Key Points

Ontario SMR BWRX-300 is a 300 MW modular boiling water reactor at Darlington with passive safety and clean power.

✅ 300 MW BWR supplies power for about 300,000 homes

✅ Passive safety enables safe shutdown without external power

✅ Modular design reduces costs and speeds grid integration

 

Ontario has initiated the construction of Canada's first small modular nuclear reactor (SMR), supported by OPG's SMR commitment to deployment, marking a significant milestone in the province's energy strategy. This development positions Ontario at the forefront of next-generation nuclear technology within the G7 nations.

The project, known as the Darlington New Nuclear Project, is being led by Ontario Power Generation (OPG) in collaboration with GE Vernova and Hitachi Nuclear Energy, and through its OPG-TVA partnership on new nuclear technology development. The chosen design is the BWRX-300, a 300-megawatt boiling water reactor that is approximately one-tenth the size and complexity of traditional nuclear reactors. The first unit is expected to be operational by 2029, with plans for additional units to follow.

Each BWRX-300 reactor is projected to supply electricity to about 300,000 homes, contributing to Ontario's efforts, which include the decision to refurbish Pickering B for additional baseload capacity, to meet the anticipated 75% increase in electricity demand by 2050. The compact design of the SMR allows for easier integration into existing infrastructure, reducing the need for extensive new transmission lines.

The economic impact of the project is substantial. The construction of four such reactors is expected to create up to 18,000 jobs and contribute approximately $38.5 billion CAD to the Canadian economy, reflecting the economic benefits of nuclear projects over 65 years. The modular nature of SMRs also allows for scalability, with each additional unit potentially reducing costs through economies of scale.

Safety is a paramount consideration in the design of the BWRX-300. The reactor employs passive safety features, meaning it can safely shut down without the need for external power or operator intervention. This design enhances the reactor's resilience to potential emergencies, aligning with stringent regulatory standards.

Ontario's commitment to nuclear energy is further demonstrated by its plans for four SMRs at the Darlington site. This initiative reflects a broader strategy to diversify the province's energy mix, incorporating clean and reliable power sources to complement renewable energy efforts.

While the development of SMRs in Ontario is a significant step forward, it also aligns with the Canadian nuclear initiative positioning Canada as a leader in the global nuclear energy landscape. The successful implementation of the BWRX-300 could serve as a model for other nations exploring advanced nuclear technologies.

Ontario's groundbreaking work on small modular nuclear reactors represents a forward-thinking approach to energy generation. By embracing innovative technologies, the province is not only addressing future energy demands but also, through the Pickering NGS life extension, contributing to the global transition towards sustainable and secure energy solutions.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.