Stirring GE's Ecomagination

By CNET News.com


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
It certainly can, according to Ecomagination, a high-profile initiative inside GE to make environmentally conscious products that still result in healthy profits.

To the public, the Ecomagination advertising and marketing campaign seems to have put a different face on GE - a conglomerate that makes everything from lightbulbs to TV shows.

But while GE's happy to tout its green credentials, its vice president of Ecomagination, Lorraine Bolsinger, is wary of "greenwashing."

Putting an eco-friendly spin on products to improve a corporate image without the goods to back it up will ultimately set the company - and its financial goals - back, according to Bolsinger, who says she welcomes feedback from environmental activists.

GE Chief Executive Jeffrey Immelt tapped Bolsinger two years ago to lead GE's efforts to capitalize on global environmental problems, from climate change to fresh-water shortages. That responsibility also includes reducing greenhouse gas emissions at GE, which is a member of the U.S. Climate Action Partnership, a collection of industrial businesses lobbying for climate change regulations.

During a tour of GE's labs recently in Niskayuna, N.Y., Bolsinger spoke to CNET News.com about the birth of the Ecomagination "growth strategy," clean technologies on the drawing board, and the tension of going green in Corporate America.

Question: GE was one of the first U.S.-based companies to make a bet and say there was money to be made in cleaner technologies. What was behind the initial push?

Bolsinger: When you look at our company, it's pretty easy to understand why we would have been in the space so early on. You might say we are really smart, we're really progressive, and I'd like to think that. It's also because of the very nature of things that we make. Everything that we make, just about, uses electricity or produces electricity or some kind of energy, some kind of motive power.

Question: You're big in energy.

Bolsinger: We're big in energy, and we invest in energy, so it sort of touches everything that we do. We looked at some trends. (CEO) Jeff Immelt does something called a growth playbook every year with each of his businesses. Think of it as a strategic plan for the next three to five years and beyond.

What he heard over and over were three themes for businesses. One, we are going to see enormous (gross domestic product) growth around the world. Two, we will see a scarcity of resources - scarcity of water, scarcity of (energy) resources, and higher prices that go along with that. And the security of supply is at best questionable and, of course, we see that. And the third theme is that we're going to be living in a world where regulations are going to become more and more stringent, not just in the United States but around the world.

At some point in time, customers are going to say, "I don't want anything but an environmentally friendly product." It won't be acceptable to have something that is cheap but dirty.

So we are at a point in time when we have a group of (energy) technologies in our portfolio, and we have to respond to this. We can either wait to see what happens, or we can get out in front of it. Obviously, Immelt decided to get out in front of it, and so we launched Ecomagination.

Ecomagination is for us, above everything else, a growth strategy. It is a business strategy based on the idea that by investing in technologies to help customers solve these big megatrends that we're seeing, to help them grow sustainably in this world - where there is more regulation, more scarcity, higher energy costs - that we can grow sustainably as well. So what's good for business is good for the environment, and what's good for the environment can be good for business.

Question: Reducing your company's own greenhouse gas emissions is also part of the initiative. Why is that?

Bolsinger: That's a very important piece of this because you don't have a lot of credibility if you're out there, telling everyone else, "You ought to do it, but it's not for us." Is a very important backbone of what we do.

Question: You said you're set to top the $20 billion mark in Ecomagination revenue. Yet it's not a separate division, and you're such a diversified company. How do you count it? Is a cleaner gas turbine part of Ecomagination?

Bolsinger: Yes. In order for something to be an Ecomagination-certified product, it has to have two characteristics - not one or the other, but both. It has to be significantly and measurably better in operating performance as well as environmental performance.

If we got this great green technology, but it's totally unaffordable, we say no, that's not ready to be an ecoproduct. It has to be better, in terms of operating performance for the customer - to give them some economic return - as well as the environmental piece of it. And we use a third party to help in the certification process.

Question: Why do you work with a third party to certify what you're doing?

Bolsinger: We want our claims to be authentic and certifiable. Otherwise, you're a greenwasher. We like tough standards, and I think that one of the marks of whether a process is good or not is whether everything squeaks through. And frankly, not everything does.

I'm glad that not everything makes it through because I think we have to be stringent about this. I find that the environmental-activist community is very unforgiving - that's probably a good thing. I'm sure you know about all the news reports about greenwashing and nonverifiable claims about (carbon) offsets and carbon neutrality. I think we have to be ever-vigilant to never cross that line because it's a long way back.

Question: So if half of your product portfolio is already greener, will it all be, at some point?

Bolsinger: You know, someday, I think we'll stop counting. Don't ask when that is. Maybe when I leave this job, that'll be the day, but we continue to count because we want to be on the record, we want to make sure that we are making progress.

But I do believe that at some point in time, customers are going to say, "I don't want anything but an environmentally friendly product." It won't be acceptable to have something that is cheap but dirty. Do I think that eventually everything is going to be an ecoproduct? I do, at least from the equipment perspective.

Question: How far off is that day?

Bolsinger: I'd say certainly 10 years from now, probably sooner - probably closer to 5.

Question: We're here at your research labs. How do see technology addressing climate change?

Bolsinger: I'd say that when you look at where the world needs to be - let's say we really have to have 80 percent lower (greenhouse gas) emissions by the middle of the century, right? That's the "walking around" numbers that the scientists say.

Eighty percent is huge. So I say in the next 5 to 10 years, we're going to focus on component efficiencies. Making everything more efficient by an order of magnitude, so you might say the GE (aircraft) engine is 15 percent more efficient--that's a good one. The Evolution locomotive with 40 percent lower nitrogen oxide emissions. More efficient lighting. (The list goes on.)

All those component things are doable. I think that the next generation of technologies - say, in the next 10 to 20 years - will revolve more around systems, looking at bigger broader systems play. Because now you need to get 20, 30, 40 percent improvements. We're going to be looking at total air traffic management. Not just making the engine in the airplane a little more efficient--the whole system has to get more efficient.

And further out, it's really transformational technologies. Truly breakthroughs that we don't have on the radar screen today. Or making those breakthroughs more cost-competitive. The next-generation solar, battery technology, biofuels.

We have to work on those today if you are going to be see them 20 years from now - it takes that long to get the infrastructure in place. We're doing the research today on how to make it cost-competitive, deployable, all those things. We've got to be working on those things today if we expect it to be in any way mainstream by midcentury.

Question: How about the nonenergy parts of GE? What does Ecomagination mean to them?

Bolsinger: We have more folks wanting to create certified products than we could have imagined. It's easy to imagine the technologies that I've already talked about. The energy business already has an enormous (amount of) renewable technologies - everything from biogas turbines to gas turbines to wind and solar, integrated coal gasification. You can understand those.

The surprises for me have been the financial-services business coming to us, creating a green credit card. There's no end to this thing. I didn't think we thought about ecohomes. It just serves as a muse for how our business groups can work together - our water (purification) and energy business, for example.

Question: Has there been any skepticism at all? There are people who don't believe in global warming and climate change. Has that been a barrier at all?

Bolsinger: No, it hasn't. First of all, we took off the table the debate about climate change a long time ago.

There are fewer and fewer people who are skeptics on climate change. People who say, "I don't believe it" or "I don't see it," they kind of are outliers at this point. I think it's much more mainstream. We're past the point of debating the science.

For us, we said we're just going to take reality as it is. So whether you want to debate climate change until the cows come home doesn't matter. The world is moving in that direction. There is scarcity of resources, there is regulation coming, so let's deal with the world we have. We can keep debating. What's the point of that? The world's has moved on, and we need to keep pace with that.

I think the skepticism piece was never a big deal for me because (Ecomagination) was never based on "we're doing this for philanthropy" or "we're doing this to make the world safe." We're glad to be doing that as a result of making money. It's a different lens that informs your decisions about where to spend money and what resources you're going to invest.

Question: Has there been resistance internally? This is a big change. Has it caused conflicts?

Bolsinger: Not conflicts. I know everybody wants to tell that story that everybody was skeptical. I think the biggest concern in the very beginning was that we didn't overstate things. We didn't turn into this big green machine.

We've been around for more than 120 years. We have legacy issues. Of course we do. I think you always have to be very careful that you don't step out and try to be holier than thou. You have to do what you're good at.

So I wouldn't call it skepticism. I would call it healthy concern that we get it right. I have an eco-advisory boardÂ…. We bring in outsiders to tell us how we are doing because I think it's important.

So I wouldn't say skeptics. I'd say there is tension in the businesses - the kind of tension that you want. Tension means that there is movement. If there's no tension, then it's business as usual - you just call it Ecomagination, and you're not doing anything different.

I like the tension. The tension comes when we introduce the GE Money (business) to the energy financial-services (business), and we say, "You ought to buy their offsets." And we get these two businesses to work together.

Does it cause tension? Yeah, but look at the result.

I'd say if the only other place that we have concern - and we always have concern - is whether customers embrace it. We have to be careful that the customers don't feel that we are so far out in front of them that they can't keep up.

Related News

Study: US Power Grid Has More Blackouts Than ENTIRE Developed World

US Power Grid Blackouts highlight aging infrastructure, rising outages, and declining reliability per DOE and NERC data, with weather-driven failures, cyberattack risk, and underinvestment stressing utilities, transmission lines, and modernization efforts.

 

Key Points

US power grid blackouts are outages caused by aging grid assets, severe weather, and cyber threats reducing reliability.

✅ DOE and NERC data show rising outage frequency and duration.

✅ Weather now drives 68-73% of major failures since 2008.

✅ Modernization, hardening, and cybersecurity investments are critical.

 

The United States power grid has more blackouts than any other country in the developed world, according to new data and U.S. blackout warnings that spotlight the country’s aging and unreliable electric system.

The data by the Department of Energy (DOE) and the North American Electric Reliability Corporation (NERC) shows that Americans face more power grid failures lasting at least an hour than residents of other developed nations.

And it’s getting worse.

Going back three decades, the US grid loses power 285 percent more often than it did in 1984, when record keeping began, International Business Times reported. The power outages cost businesses in the United States as much as $150 billion per year, according to the Department of Energy.

Customers in Japan lose power for an average of 4 minutes per year, as compared to customers in the US upper Midwest (92 minutes) and upper Northwest (214), University of Minnesota Professor Massoud Amin told the Times. Amin is director of the Technological Leadership Institute at the school.

#google#

The grid is becoming less dependable each year, he said.

“Each one of these blackouts costs tens of hundreds of millions, up to billions, of dollars in economic losses per event,” Amin said. “… We used to have two to five major weather events per year [that knocked out power], from the ‘50s to the ‘80s. Between 2008 and 2012, major outages caused by weather, reflecting extreme weather trends, increased to 70 to 130 outages per year. Weather used to account for about 17 to 21 percent of all root causes. Now, in the last five years, it’s accounting for 68 to 73 percent of all major outages.”

As previously reported by Off The Grid News, the power grid received a “D+” grade on its power grid report card from the American Society of Civil Engineers (ASCE) in 2013. The power grid grade card rating means the energy infrastructure is in “poor to fair condition and mostly below standard, with many elements approaching the end of their service life.” It further means a “large portion of the system exhibits significant deterioration” with a “strong risk of failure.”

“America relies on an aging electrical grid and pipeline distribution systems, some of which originated in the 1880s,” the 2013 ASCE report read. “Investment in power transmission has increased since 2005, but ongoing permitting issues, weather events, and limited maintenance have contributed to an increasing number of failures and power interruptions.”

As The Times noted, the US power grid as it exists today was built shortly after World War II, with the design dating back to Thomas Edison. While Edison was a genius, he and his contemporaries could not have envisioned all the strains the modern world would place upon the grid and the multitude of tech gadgets many Americans treat as an extension of their body. While the drain on the grid has advanced substantially, the infrastructure itself has not.

There are approximately 5 million miles of electrical transmission lines throughout the United States, and thousands of power generating plants dot the landscape. The electrical grid is managed by a group of 3,300 different utilities and serve about 150 million customers, The Times said. The entire power grid system is currently valued at $876 billion.

Many believe the grid is vulnerable to an attack on substations and other threats.

Former Department of Homeland Security Secretary Janet Napolitano once said that a power grid cyber attack is a matter of “when” not “if,” as Russians hacked utilities incidents have shown.

 

Related News

View more

Summerland solar power project will provide electricity

Summerland Solar+Storage Project brings renewable energy to a municipal utility with photovoltaic panels and battery storage, generating 1,200 megawatts from 3,200 panels on Cartwright Mountain to boost grid resilience and local clean power.

 

Key Points

A municipal solar PV and battery system enabling Summerland Power to self-generate electricity on Cartwright Mountain.

✅ 3,200 panels, 20-year batteries, 35-year panel lifespan

✅ Estimated $7M cost, $6M in grants, utility reserve funding

✅ Site near grid lines; 2-year timeline with 18-month lead

 

A proposed solar energy project, to be constructed on municipally-owned property on Cartwright Mountain, will allow Summerland Power to produce some of its own electricity, similar to how Summerside's wind power supplies a large share locally.

On Monday evening, municipal staff described the Solar+Storage project, aligning with insights from renewable power developers that combining resources yields better projects.

The project will include around 3,200 solar panels and storage batteries, giving Summerland Power the ability to generate 1,200 megawatts of electrical power.

This is the amount of energy used by 100 homes over the course of a year.

The solar panels have an estimated life expectancy of 35 years, while the batteries have a life expectancy of 20 years.

“It’s a really big step for a small utility like ours,” said Tami Rothery, sustainability/alternative energy coordinator for Summerland. “We’re looking forward to moving towards a bright, sunny energy future.”

She said the price of solar panels has been dropping, with lower-cost solar contracts reported in Alberta, and the quality and efficiency of the panels has increased in recent years.

The total cost of the project is around $7 million, with $6 million to come from grant funding and the remainder to come from the municipality’s electrical utility reserve fund, while policy changes such as Nova Scotia's solar charge delay illustrate evolving market conditions.

The site, a former public works yard and storage area, was selected from 108 parcels of land considered by the municipality.

She said the site, vacant since the 1970s, is close to main electrical lines and will not be highly visible once the panels are in place, much like unobtrusive rooftop solar arrays in urban settings.

Access to the site is restricted, resulting in natural security to the solar installation.

Jeremy Storvold, general manager of Summerland’s electrical utility, said the site is 2.5 kilometres from the Prairie Valley electrical substation and close to the existing public works yard.

However, some in the audience on Monday questioned the location of the proposed solar installation, suggesting the site would be better suited for affordable housing in the community.

The timeline for the project calls for roughly two years before the work will be completed, since there is an 18-month lead time in order to receive good quality solar panels, reflecting the surge in Alberta's solar growth that is straining supply chains.

 

Related News

View more

California Gets $500M to Upgrade Power Grid

California Grid Modernization Funding will upgrade transmission and distribution, boost grid resilience, enable renewable energy integration, expand energy storage, and deploy smart grid controls statewide with over $500 million in federal infrastructure investment.

 

Key Points

Federal support to harden California's grid, integrate renewables, add storage, and deploy smart upgrades for reliability.

✅ Strengthens transmission and distribution for wildfire and heat resilience

✅ Integrates solar and wind with storage and advanced grid controls

✅ Deploys smart meters, DER management, and modern cybersecurity

 

California has recently been awarded over $500 million in federal funds to significantly improve and modernize its power grid. This substantial investment marks a pivotal step in addressing the state’s ongoing energy challenges, enhancing grid resilience, and supporting its ambitious climate goals. The funding, announced by federal and state officials, is set to bolster California’s efforts to upgrade its electrical infrastructure, integrate renewable energy sources, and ensure a more reliable and sustainable energy system for its residents.

California's power grid has faced numerous challenges in recent years, including extreme weather events, high energy demand, and an increasing reliance on renewable energy sources. The state's electrical infrastructure has struggled to keep pace with these demands, leading to concerns about reliability, efficiency, and the capacity to handle new energy technologies. The recent federal funding is a critical component of a broader strategy to address these issues and prepare the grid for future demands.

The $500 million in federal funds is part of a larger initiative to support energy infrastructure projects across the United States, including a Washington state grant that strengthens regional infrastructure. The investment aims to modernize aging grid systems, improve energy efficiency, and enhance the integration of renewable energy sources. For California, this funding represents a significant opportunity to address several key areas of concern in its power grid.

One of the primary objectives of the funding is to enhance the resilience of the power grid. California has experienced a series of extreme weather events, including wildfires and heatwaves, driven in part by climate change impacts across the U.S., which have put considerable strain on the electrical infrastructure. The new investment will support projects designed to strengthen the grid’s ability to withstand and recover from these events. This includes upgrading infrastructure to make it more robust and less susceptible to damage from natural disasters.

Another key focus of the funding is the integration of renewable energy sources. California is a leader in the adoption of solar and wind energy, and the state has set ambitious goals for increasing its use of clean energy. However, integrating these variable energy sources into the grid presents technical challenges, including ensuring a stable and reliable power supply. The federal funds will be used to develop and deploy advanced technologies that can better manage and store renewable energy, such as battery storage systems, improving the overall efficiency and effectiveness of the grid.

In addition to resilience and renewable integration, the funding will also support efforts to modernize grid infrastructure. This includes upgrading transmission and distribution systems, implementing smarter electricity infrastructure and smart grid technologies, and enhancing grid management and control systems. These improvements are essential for creating a more flexible and responsive power grid that can meet the evolving needs of California’s energy landscape.

The investment in grid modernization also aligns with California’s broader climate goals. The state has set targets to reduce greenhouse gas emissions and increase the use of clean energy sources as it navigates keeping the lights on during its energy transition. By improving the power grid and supporting the integration of renewable energy, California is making progress toward achieving these goals while also creating jobs and stimulating economic growth.

The allocation of federal funds comes at a crucial time for California. The state has faced significant challenges in recent years, including power outages, energy reliability issues, and increasing energy costs that make repairing California's grid especially complex today. The new funding is expected to address many of these concerns by supporting critical infrastructure improvements and ensuring that the state’s power grid can meet current and future demands.

Federal and state officials have expressed strong support for the funding and its potential impact. The investment is seen as a major step forward in creating a more resilient and sustainable energy system for California. It is also expected to serve as a model for other states facing similar challenges in modernizing their power grids and integrating renewable energy sources.

The federal funding is part of a broader push to address infrastructure needs across the country. The Biden administration has prioritized investment in energy infrastructure, including a $34 million DOE initiative supporting grid improvements, as part of its broader agenda to combat climate change and build a more sustainable economy. The funding for California’s power grid is a reflection of this commitment and an example of how federal resources can support state and local efforts to improve infrastructure and address pressing energy challenges.

In summary, California’s receipt of over $500 million in federal funds represents a significant investment in the state’s power grid. The funding will support efforts to enhance grid resilience, integrate renewable energy sources, and modernize infrastructure. As California continues to face challenges related to extreme weather, energy reliability, and climate goals, this investment will play a crucial role in building a more reliable, efficient, and sustainable energy system. The initiative also highlights the importance of federal support in addressing infrastructure needs and advancing environmental and economic goals.

 

Related News

View more

Alberta set to retire coal power by 2023, ahead of 2030 provincial deadline

Alberta coal phaseout accelerates as utilities convert to natural gas, cutting emissions under TIER regulations and deploying hydrogen-ready, carbon capture capable plants, alongside new solar projects in a competitive, deregulated electricity market.

 

Key Points

A provincewide shift from coal to natural gas and renewables, cutting power emissions years ahead of the 2030 target.

✅ Capital Power, TransAlta converting coal units to gas

✅ TIER pricing drives efficiency, carbon capture readiness

✅ Hydrogen-ready turbines, solar projects boost renewables

 

Alberta is set to meet its goal to eliminate coal-fired electricity production years earlier than its 2030 target, amid a broader shift to cleaner energy in the province, thanks to recently announced utility conversion projects.

Capital Power Corp.’s plan to spend nearly $1 billion to switch two coal-fired power units west of Edmonton to natural gas, and stop using coal entirely by 2023, was welcomed by both the province and the Pembina Institute environmental think-tank.

In 2014, 55 per cent of Alberta’s electricity was produced from 18 coal-fired generators. The Alberta government announced in 2015 it would eliminate emissions from coal-fired electricity generation by 2030.

Dale Nally, associate minister of Natural Gas and Electricity, said Friday that decisions by Capital Power and other utilities to abandon coal will be good for the environment and demonstrates investor confidence in Alberta’s deregulated electricity market, where the power price cap has come under scrutiny.

He credited the government’s Technology Innovation and Emissions Reduction (TIER) regulations, which put a price on industrial greenhouse gas emissions, as a key factor in motivating the conversions.

“Capital Power’s transition to gas is a great example of how private industry is responding effectively to TIER, as it transitions these facilities to become carbon capture and hydrogen ready, which will drive future emissions reductions,” Nally said in an email.

Capital Power said direct carbon dioxide emissions at its Genesee power facility near Edmonton will be about 3.4 million tonnes per year lower than 2019 emission levels when the project is complete.

It says the natural gas combined cycle units it’s installing will be the most efficient in Canada, adding they will be capable of running on 30 per cent hydrogen initially, with the option to run on 95 per cent hydrogen in future with minor investments.

In November, Calgary-based TransAlta Corp. said it will end operations at its Highvale thermal coal mine west of Edmonton by the end of 2021 as it switches to natural gas at all of its operated coal-fired plants in Canada four years earlier than previously planned.

The Highvale surface coal mine is the largest in Canada, and has been in operation on the south shore of Wabamun Lake in Parkland County since 1970.

The moves by the two utilities and rival Atco Ltd., which announced three years ago it would convert to gas at all of its plants by this year, mean significant emissions reduction and better health for Albertans, said Binnu Jeyakumar, director of clean energy for Pembina.

“Alberta’s early coal phaseout is also a great lesson in good policy-making done in collaboration with industry and civil society,” she said.

“As we continue with this transformation of our electricity sector, it is paramount that efforts to support impacted workers and communities are undertaken.”

She added the growing cost-competitiveness of renewable energy, such as wind power, makes coal plant retirements possible, applauding Capital Power’s plans to increase its investments in solar power.

In Ontario, clean power policy remains a focus as the province evaluates its energy mix.

The company announced it would go ahead with its 75-megawatt Enchant Solar power project in southern Alberta, investing between $90 million and $100 million, and that it has signed a 25-year power purchase agreement with a Canadian company for its 40.5-MW Strathmore Solar project now under construction east of Calgary.
 

 

Related News

View more

Clean-energy generation powers economy, environment

Atlin Hydro and Transmission Project delivers First Nation-led clean energy via hydropower to the Yukon grid, replacing diesel, cutting emissions, and creating jobs, with a 69-kV line from Atlin, B.C., supplying about 35 GWh annually.

 

Key Points

A First Nation-led 8.5 MW hydropower and 69-kV line supplying clean energy to the Yukon, reducing diesel use.

✅ 8.5 MW capacity; ~35 GWh annually to Yukon grid

✅ 69-kV, 92 km line links Atlin to Jakes Corner

✅ Creates 176 construction jobs; cuts diesel and emissions

 

A First Nation-led clean-power generation project for British Columbia’s Northwest will provide a significant economic boost and good jobs for people in the area, as well as ongoing revenue from clean energy sold to the Yukon.

“This clean-energy project has the potential to be a win-win: creating opportunities for people, revenue for the community and cleaner air for everyone across the Northwest,” said Premier John Horgan. “That’s why our government is proud to be working in partnership with the Taku River Tlingit First Nation and other levels of government to make this promising project a reality. Together, we can build a stronger, cleaner future by producing more clean hydropower to replace fossil fuels – just as they have done here in Atlin.”

The Province is contributing $20 million toward a hydroelectric generation and transmission project being developed by the Taku River Tlingit First Nation (TRTFN) to replace diesel electricity generation in the Yukon, which is also supported by the Government of Yukon and the Government of Canada, and comes as BC Hydro demand fell during COVID-19 across the province.

“Renewable-energy projects are helping remote communities reduce the use of diesel for electricity generation, which reduces air pollution, improves environmental outcomes and creates local jobs,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “This project will advance reconciliation with TRTFN, foster economic development in Atlin and support intergovernmental efforts to reduce greenhouse gas emissions.”

TRTFN is based in Atlin with territory in B.C., the Yukon, and Alaska. TRTFN is an active participant in clean-energy development and, since 2009, has successfully replaced diesel-generated electricity in Atlin with a 2.1-megawatt (MW) hydro facility amid oversight issues such as BC Hydro misled regulator elsewhere in the province today.

TRTFN owns the Tlingit Homeland Energy Limited Partnership (THELP), which promotes economic development through clean energy. THELP plans to expand its hydro portfolio by constructing the Atlin Hydro and Transmission Project and selling electricity to the Yukon via a new transmission line, in a landscape shaped by T&D rates decisions in jurisdictions like Ontario for cost recovery.

The Government of Yukon is requiring its Yukon Energy Corporation (YEC) to generate 97% of its electricity from renewable resources by 2030. This project provides an opportunity for the Yukon government to reduce reliance on diesel generators and to meet future load growth, at a time when Manitoba Hydro's debt pressures highlight utility cost challenges.

The new transmission line between Atlin and the Yukon grid will include a fibre-optic data cable to support facility operations, with surplus capacity that can be used to bring high-speed internet connectivity to Atlin residents for the first time.

“Opportunities like this hydroelectricity project led by the Taku River Tlingit First Nation is a great example of identifying and then supporting First Nations-led clean-energy opportunities that will support resilient communities and provide clean economic opportunities in the region for years to come. We all have a responsibility to invest in projects that benefit our shared climate goals while advancing economic reconciliation.” said George Heyman, Minister of Environment and Climate Change Strategy.

“Thank you to the Government of British Columbia for investing in this important project, which will further strengthen the connection between the Yukon and Atlin. This ambitious initiative will expand renewable energy capacity in the North in partnership with the Taku River Tlingit First Nation while reducing the Yukon’s emissions and ensuring energy remains affordable for Yukoners.“ said Sandy Silver, Premier of Yukon.

“The Atlin Hydro Project represents an important step toward meeting the Yukon’s growing electricity needs and the renewable energy targets in the Our Clean Future strategy. Our government is proud to contribute to the development of this project and we thank the Government of British Columbia and all partners for their contributions and commitment to renewable energy initiatives. This project demonstrates what can be accomplished when communities, First Nations and federal, provincial and territorial governments come together to plan for a greener economy and future.” said John Streicker, Minister Responsible for the Yukon Development Corporation. 

“Atlin has enjoyed clean and renewable energy since 2009 because of our hydroelectric project. Over its lifespan, Atlin’s hydro opportunity will prevent more than one million tonnes of greenhouse gases from being created to power the southern Yukon. We are looking forward to the continuation of this project. Our collective dream is to meet our environmental and economic goals for the region and our local community within the next 10 years. We are so grateful to all our partners involved for their financial support, as we continue onward in creating an energy efficient and sustainable North.” said Charmaine Thom, Taku River Tlingit First Nation spokesperson.

Quick Facts:

  • The 8.5-MW project is expected to provide an average of 35 gigawatt hours of energy annually to the Yukon. To accomplish this, TRTFN plans to leverage the existing water storage capability of Surprise Lake, add new infrastructure, and send power 92 km north to Jakes Corner, Yukon, along a new 69-kilovolt transmission line.
  • The project is expected to cost $253 - 308.5 million, the higher number reflecting recently estimated impacts of inflation and supply chain cost escalation, alongside sector accounting concerns such as deferred BC Hydro costs noted in recent reports.
  • The project is expected to have a positive impact on local and provincial economic development in the form of, even as governance debates like Manitoba Hydro board changes draw attention elsewhere:
  • 176 full-time positions during construction;
  • six to eight full-time positions in operations and maintenance over 40 years; and
  • increased business for B.C. contractors.
  • Territorial and federal funders have committed $151.1 million to support the project, most recently the $32.2 million committed in the 2022 federal bdget.

 

Related News

View more

Hydro One extends ban on electricity disconnections until further notice

Hydro One Disconnection Ban Extension keeps Ontario electricity customers connected during COVID-19, extending the moratorium on power shutoffs and expanding financial relief programs amid ongoing pandemic restrictions and persistent hot weather across the province.

 

Key Points

An open-ended Ontario utility moratorium preventing residential power shutoffs and offering bill relief during COVID-19.

✅ No residential disconnections until further notice

✅ Extended bill assistance and flexible payment options

✅ Response to COVID-19 restrictions and extreme heat

 

Ontario's primary electricity provider says it's extending a ban on disconnecting homes from the power grid until further notice.

Hydro One first issued the ban towards the beginning of the province's COVID-19 outbreak, saying self-isolating customers needed to be able to rely on electricity while they were kept at home during the pandemic.

A spokesman for the utility says the ban was initially set to expire at the end of July, but has now been extended in a manner similar to winter disconnection bans without a fixed end-date.

Hydro One says the move is necessary given the ongoing restrictions posed by the pandemic, and notes it has supported provincial COVID-19 efforts in recent months, as well as persistent hot weather across much of the province.

It says it's also planning to extend a financial relief program to help customers struggling to pay their hydro bills, reflecting demand for more choice and flexibility among ratepayers.

The province also extended off-peak electricity rates to provide relief for families, small businesses and farms during this period.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified