Nuclear power to explode in India

By Wired Science


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
To curb greenhouse gas emissions, India is poised to dramatically increase its reliance on nuclear energy - but there'll be no overall benefit to the planet if China's coal binge continues.

A new report by the International Atomic Energy Agency forecasts India will increase nuclear production eight-fold by 2030 to account for 26 percent of its power grid.

However, China plans to use nuclear power for only 4 percent of electricity generation by 2030. Globally, the IAEA estimates there'll be drop an overall drop in nuclear energy from around 15 percent in 2006, down to 13 percent in 2030.

"The world should be encouraging China to get out of coal into non-greenhouse gas emitting energy production," said Alan McDonald, a nuclear-energy analyst with the IAEA.

Coal is a dirty, carbon-dioxide spewing energy source, but like gasoline, it is cheap, scalable and reliable. The Pew Center for Climate Change estimates that coal contributes 20 percent of the total greenhouse gases emitted on earth.

Among the green alternatives to coal, nuclear is the only technology with proven capacity. Worldwide, nuclear power generates 370 gigawatts of energy; estimates of global wind capacity are around 74 GW and solar-power capacity at only 1.7 GW.

"The other true alternative energies like solar and wind are just not ready to step up and become a major part of the global-energy system in the next 10 to 20 years," said Jeremy Carl, a research fellow in Stanford's Program on Energy and Sustainable Development. "If climate becomes a serious enough consideration, we might end up building a lot of nuclear plants."

India plans to increase nuclear-energy production by more than 9 percent a year through 2050. Seven new nuclear reactors are already under construction and more are planned, despite political hurdles that threaten to derail a U.S.-India nuclear fuel pact.

While China draws fire for dirty energy production, half of United States power is generated by coal. Atomic energy is only responsible for 16 percent of total electricity generation.

Concern over climate change, however, is changing public opinion in the United States.

Bisconti Research, which tracks opinion for the industry-backed Nuclear Energy Institute, found that 63 percent of Americans think nuclear should be in the U.S. energy mix, up from 49 percent in 1983.

The main factor holding nuclear power back in North America remains up-front costs.

"Nuclear power plants are relatively expensive to build and cheap to operate," said McDonald. "They are great if you can wait for a return on your investment."

Thirty new nuclear plants are on the drawing board in the United States, but no new nuclear sites have been built in decades. Stanford's Carl pointed out the elephant in the room when it comes to nuclear energy: risk.

"All it would take is one dirty bomb event or one Chernobyl to freeze nuclear plant production," he said.

Related News

National Steel Car appealing decision in legal challenge of Ontario electricity fee it calls an unconstitutional tax

Ontario Global Adjustment Appeal spotlights Ontario's electricity fee, regulatory charge vs tax debate, FIT contracts, green energy policy, and constitutional challenge as National Steel Car contests soaring power costs before the Ontario Superior Court.

 

Key Points

Court challenge over Ontario's global adjustment fee, disputing its status as a regulatory charge instead of a tax.

✅ Challenges classification of global adjustment as tax vs regulatory charge.

✅ Focuses on FIT contracts, renewable energy payments, power cost impacts.

✅ Appeals Ontario ruling; implications for ratepayers and policy.

 

A manufacturer of steel rail cars is pursuing an appeal after its lawsuit challenging the constitutionality of a major Ontario electricity fee was struck down earlier this year.

Lawyers for Hamilton, Ont.-based National Steel Car Ltd. filed a notice of appeal in July after Ontario Superior Court Justice Wendy Matheson ruled in June that an electricity fee known as the global adjustment charge was a regulatory charge, and not an unconstitutional tax used to finance policy goals, as National Steel Car alleges.

The company, the decision noted, began its legal crusade last year after seeing its electricity bills had “increased dramatically” since the Ontario government passed green energy legislation nearly a decade ago, and amid concerns that high electricity rates are hurting Ontario manufacturers.

Under that legislation, the judge wrote, “private suppliers of renewable energy were paid to ’feed in’ energy into Ontario’s electricity grid.” The contracts for these so-called “feed-in tariff” contracts, or FIT contracts, were the “primary focus” of the lawsuit.

“The applicant seeks a declaration that part of the amount it has paid for electricity is an unconstitutional tax rather than a valid regulatory charge,” the judge added. “More specifically, it challenges part of the Global Adjustment, which is a component of electricity pricing and incorporates obligations under FIT contracts.”

Chiefly representing the difference between Ontario’s market price for power and the guaranteed price owed to generators, global adjustment now makes up the bulk of the commodity cost of electricity in the province. The fee has risen over the past decade, amid calls to reject steep Nova Scotia rate hikes as well — costing electricity customers $37 billion in global adjustment from 2006 to 2014, according to the province’s auditor general — because of investments in the electricity grid and green-energy contracts, among other reasons.

National Steel Car argued the global adjustment is a tax, and an unconstitutional one at that because it violated a section of the Constitution Act requiring taxes to be authorized by the legislature. The company also said the imposition of the global adjustment broke an Ontario law requiring a referendum to be held for new taxes.

The province, Justice Matheson wrote, had argued “that it is plain and obvious that these applications will fail.” In a decision released in June, the judge granted motions to strike out National Steel Car’s applications.

“The Global Adjustment,” she added, “is not a tax because its purpose, in pith and substance, is not to tax, and it is a regulatory charge and therefore, again, not a tax.”

Now, National Steel Car is arguing that the judge erred in several ways, including in fact, “by finding that the FIT contracts must be paid, when they can be cancelled.”

There has been a change in government at Queen’s Park since National Steel Car first filed its lawsuit last year, and that change has put green energy contracts under fire. The Progressive Conservative government of new Premier Doug Ford has already made a number of decisions on the electricity file, such as moving to cancel and wind down more than 750 renewable energy contracts, as well as repealing the province’s Green Energy Act.

The Tories also struck a commission of inquiry into the province’s finances that warned the global adjustment “may be struck down as unconstitutional,” a warning delivered amid cases where Nova Scotia's regulator approved a 14% rate hike in a high-profile decision.

“There is a risk that a court may find the global adjustment is not a valid regulatory charge if shifting costs over a longer period of time inadvertently results in future ratepayers cross-subsidizing today’s ratepayers,” the commission’s report said.

A spokesperson for Ontario’s Ministry of Energy, Northern Development and Mines said in an email that it would be “inappropriate to comment about the specifics of any case before the courts or currently under arbitration.”

National Steel Car is also prepared to fight its case all the way up to the Supreme Court of Canada, according to its lawyer.

“What is clear from our proceeding with the appeal is National Steel Car has every intention of seeing that lawsuit through to its conclusion if this government isn’t interested or prepared to reasonably settle it,” Jerome Morse said.

 

Related News

View more

Australia's energy transition stalled by stubbornly high demand

Australia Renewable Energy Transition: solar capacity growth, net-zero goals, rising electricity demand, coal reliance, EV adoption, grid decarbonization, heat waves, air conditioning loads, and policy incentives shaping clean power, efficiency, and emissions reduction.

 

Key Points

Australia targets net-zero by 2050 by scaling renewables, curbing demand, and phasing down coal and gas.

✅ Solar capacity up 200% since 2018, yet coal remains dominant.

✅ Transport leads energy use; EV uptake lags global average.

✅ Heat waves boost AC load, stressing grids and emissions goals.

 

A more than 200% increase in installed solar power generation capacity since 2018 helped Australia rank sixth globally in terms of solar capacity last year and emerge as one of the world's fastest-growing major renewable energy producers, aligning with forecasts that renewables to surpass coal in global power generation by 2025.

However, to realise its goal of becoming a net-zero carbon emitter by 2050, Australia must reverse the trajectory of its energy use, which remains on a rising path, even as Asia set to use half of electricity underscores regional demand growth, in contrast with several peers that have curbed energy use in recent years.

Australia's total electricity consumption has grown nearly 8% over the past decade, amid a global power demand surge that has exceeded pre-pandemic levels, compared with contractions over the same period of more than 7% in France, Germany and Japan, and a 14% drop in the United Kingdom, data from Ember shows.

Sustained growth in Australia's electricity demand has in turn meant that power producers must continue to heavily rely on coal for electricity generation on top of recent additions in supply of renewable energy sources, with low-emissions generation growth expected to cover most new demand.

Australia has sharply boosted clean energy capacity in recent years, but remains heavily reliant on coal & natural gas for electricity generation
To accomplish emissions reduction targets on time, Australia's energy use must decline while clean energy supplies climb further, as that would give power producers the scope to shut high-polluting fossil-powered energy generation systems ahead of the 2050 deadline.

DEMAND DRIVERS
Reducing overall electricity and energy use is a major challenge in all countries, where China's electricity appetite highlights shifting consumption patterns, but will be especially tough in Australia which is a relative laggard in terms of the electrification of transport systems and is prone to sustained heat waves that trigger heavy use of air conditioners.

The transport sector uses more energy than any other part of the Australian economy, including industry, and accounted for roughly 40% of total final energy use as of 2020, according to the International Energy Agency (IEA.)

Transport energy demand has also expanded more quickly than other sectors, growing by over 5% from 2010 to 2020 compared to industry's 1.3% growth over the same period.

Transport is Australia's main energy use sector, and oil products are the main source of energy type
To reduce energy use, and cut the country's fuel import bill which topped AUD $65 billion in 2022 alone, according to the Australian Bureau of Statistics, the Australian government is keen to electrify car fleets and is offering large incentives for electric vehicle purchases.

Even so, electric vehicles accounted for only 5.1% of total Australian car sales in 2022, according to the International Energy Agency (IEA).

That compares to 13% in New Zealand, 21% in the European Union, and a global average of 14%.

More incentives for EV purchases are expected, but any rapid adoption of EVs would only serve to increase overall electricity demand, and with surging electricity demand already straining power systems worldwide, place further pressure on power producers to increase electricity supplies.

Heating and cooling for homes and businesses is another major energy demand driver in Australia, and accounts for roughly 40% of total electricity use in the country.

Australia is exposed to harsh weather conditions, especially heat waves which are expected to increase in frequency, intensity and duration over the coming decades due to climate change, according to the New South Wales government.

To cope, Australians are expected to resort to increased use of air conditioners during the hottest times of the year, and with reduced power reserves flagged by the market operator, adding yet more strain to electricity systems.

 

Related News

View more

IAEA reactor simulators get more use during Covid-19 lockdown

IAEA Nuclear Reactor Simulators enable virtual nuclear power plant training on IPWR/PWR systems, load-following operations, baseload dynamics, and turbine coupling, supporting advanced reactor education, flexible grid integration, and low-carbon electricity skills development during remote learning.

 

Key Points

IAEA Nuclear Reactor Simulators are tools for training on reactor operations, safety, and flexible power management.

✅ Simulates IPWR/PWR systems with real-time parameter visualization.

✅ Practices load-following, baseload, and grid flexibility scenarios.

✅ Supports remote training on safety, controls, and turbine coupling.

 

Students and professionals in the nuclear field are making use of learning opportunities during lockdown made necessary by the Covid-19 pandemic, drawing on IAEA low-carbon electricity lessons for the future.

Requests to use the International Atomic Energy Agency’s (IAEA’s) basic principle nuclear reactor simulators have risen sharply in recent weeks, IAEA said on 1 May, as India takes steps to get nuclear back on track. New users will have the opportunity to learn more about operating them.

“This suite of nuclear power plant simulators is part of the IAEA education and training programmes on technology development of advanced reactors worldwide. [It] can be accessed upon request by interested parties from around the world,” said Stefano Monti, head of the IAEA’s Nuclear Power Technology Development Section.

Simulators include several features to help users understand fundamental concepts behind the behaviour of nuclear plants and their reactors. They also provide an overview of how various plant systems and components work to power turbines and produce low-carbon electricity, while illustrating roles beyond electricity as well.

In the integral pressurised water reactor (IPWR) simulator, for instance, a type of advanced nuclear power design, users can navigate through several screens, each containing information allowing them to adjust certain variables. One provides a summary of reactor parameters such as primary pressure, flow and temperature. Another view lays out the status of the reactor core.

The “Systems” screen provides a visual overview of how the plant’s main systems, including the reactor and turbines, work together. On the “Controls” screen, users can adjust values which affect reactor performance and power output.

This simulator provides insight into how the IPWR works, and also allows users to see how the changes they make to plant variables alter the plant’s operation. Operators can also perform manoeuvres similar to those that would take place in the course of real plant operations e.g. in load following mode.

“Currently, most nuclear plants operate in ‘baseload’ mode, continually generating electricity at their maximum capacity. However, there is a trend of countries, aligned with green industrial revolution strategies, moving toward hybrid energy systems which incorporate nuclear together with a diverse mix of renewable energy sources. A greater need for flexible operations is emerging, and many advanced power plants offer standard features for load following,” said Gerardo Martinez-Guridi, an IAEA nuclear engineer who specialises in water-cooled reactor technology.

Prospective nuclear engineers need to understand the dynamics of the consequences of reducing a reactor’s power output, for example, especially in the context of next-generation nuclear systems and emerging grids, and simulators can help students visualise these processes, he noted.

“Many reactor variables change when the power output is adjusted, and it is useful to see how this occurs in real-time,” said Chirayu Batra, an IAEA nuclear engineer, who will lead the webinar on 12 May.

“Users will know that the operation is complete once the various parameters have stabilised at their new values.”

Observing and comparing the parameter changes helps users know what to expect during a real power manoeuvre, he added.

 

Related News

View more

EIA: Pennsylvania exports the most electricity, California imports the most from other states

U.S. Electricity Trade by State, 2013-2017 highlights EIA grid patterns, interstate imports and exports, cross-border flows with Canada and Mexico, net exporters and importers, and market regions like ISOs and RTOs shaping consumption and generation.

 

Key Points

Brief EIA overview of interstate and cross-border power flows, ranking top net importers and exporters.

✅ Pennsylvania was the largest net exporter, averaging 59 million MWh.

✅ California was the largest net importer, averaging 77 million MWh.

✅ Top cross-border: NY, CA, VT, MN, MI imports; WA, TX, CA, NY, MT exports.

 

According to the U.S. Energy Information Administration (EIA) State Electricity Profiles, from 2013 to 2017, Pennsylvania was the largest net exporter of electricity, while California was the largest net importer.

Pennsylvania exported an annual average of 59 million megawatt-hours (MWh), while California imported an average of 77 million MWh annually.

Based on the share of total consumption in each state, the District of Columbia, Maryland, Massachusetts, Idaho and Delaware were the five largest power-importing states between 2013 and 2017, highlighting how some clean states import 'dirty' electricity as consumption outpaces local generation. Wyoming, West Virginia, North Dakota, Montana and New Hampshire were the five largest power-exporting states. Wyoming and West Virginia were net power exporting states between 2013 and 2017.

New York, California, Vermont, Minnesota and Michigan imported the most electricity from Canada or Mexico on average from 2013 to 2017, reflecting the U.S. look to Canada for green power during that period. Similarly, Washington, Texas, California, New York, and Montana exported the most electricity to Canada or Mexico, on average, during the same period.

Electricity routinely flows among the Lower 48 states and, to a lesser extent, between the United States and Canada and Mexico. From 2013 to 2017, Pennsylvania was the largest net exporter of electricity, sending an annual average of 59 million megawatthours (MWh) outside the state. California was the largest net importer, receiving an average of 77 million MWh annually.

Based on the share of total consumption within each state, the District of Columbia, Maryland, Massachusetts, Idaho, and Delaware were the five largest power-importing states between 2013 and 2017. Wyoming, West Virginia, North Dakota, Montana, and New Hampshire were the five largest power-exporting states. States with major population centers and relatively less generating capacity within their state boundaries tend to have higher ratios of net electricity imports to total electricity consumption, as utilities devote more to electricity delivery than to power production in many markets.

Wyoming and West Virginia were net power exporting states (they exported more power to other states than they consumed) between 2013 and 2017. Customers residing in these two states are not necessarily at an economic disadvantage or advantage compared with customers in neighboring states when considering their electricity bills and fees and market dynamics. However, large amounts of power trading may affect a state’s revenue derived from power generation.

Some states also import and export electricity outside the United States to Canada or Mexico, even as Canada's electricity exports face trade tensions today. New York, California, Vermont, Minnesota, and Michigan are the five states that imported the most electricity from Canada or Mexico on average from 2013 through 2017. Similarly, Washington, Texas (where electricity production and consumption lead the nation), California, New York, and Montana are the five states that exported the most electricity to Canada or Mexico, on average, for the same period.

Many states within the continental United States fall within integrated market regions, referred to as independent system operators or regional transmission organizations. These integrated market regions allow electricity to flow freely between states or parts of states within their boundaries.

EIA’s State Electricity Profiles provide details about the supply and disposition of electricity for each state, including net trade with other states and international imports and exports, and help you understand where your electricity comes from more clearly.

 

Related News

View more

Research shows that Ontario electricity customers want more choice and flexibility

Hydro One Account Customization lets Ontario customers pick billing due dates, enable balanced billing, get early high usage notifications, monitor electricity consumption, and receive outage alerts, offering flexibility during COVID-19.

 

Key Points

A flexible toolkit to set due dates, balance bills, get usage alerts, and track electricity.

✅ Pick your billing due date for better cash flow

✅ Balanced billing smooths seasonal usage spikes

✅ Early high usage and outage alerts via text or email

 

Hydro One announced it is providing its customers with the flexibility to customize their account. Customers can choose their own billing due date, flatten usage spikes from temperature fluctuations through balanced billing and the Ultra-Low Overnight Price Plan, and monitor their electricity consumption by signing up for early high usage notifications.

Research shows that Ontario electricity customers want more choice and flexibility (CNW Group/Hydro One Inc.)
"Being in-tune with our customers' needs is more important than ever. As we continue to navigate the COVID-19 pandemic, customers tell us that choice and flexibility, alongside electricity relief, will help them during this difficult time," said Jason Fitzsimmons, Chief Corporate Affairs and Customer Care Officer, Hydro One. "As a customer-driven organization, we have an important responsibility to support customers with relief, flexibility and choice."

According to recent research conducted by Angus Reid, 78 per cent of Ontario electricity customers said balanced billing would help them better manage their finances, even as peak hydro rates remained unchanged for many self-isolating customers. Balanced billing flattens out the spikes in electricity usage that commonly occurs in the summer due to air conditioning use and in the winter due to heating.

The research also found that 72 per cent of customers would like to pick their own due date to better manage their finances. This feature is now included in Hydro One's new customization bundle, which will be shared with customers through an awareness campaign. Other customization tools include alerts when electricity usage falls outside of the customer's normal pattern, the ability to report outages online and the ability to receive text messages or emails when outages occur. Customers can visit www.HydroOne.com/Choice to learn more.

"Customers can pick and choose the tools that work best for them. We are now able to offer a suite of features built for any lifestyle as our employees support Ontario's COVID-19 response across the province," said Fitzsimmons.

In addition to these customization options, Hydro One has also developed a number of customer support measures during COVID-19, including a Pandemic Relief Fund to offer payment flexibility and financial assistance to customers. The company is also extending its ban on electricity disconnections to ensure that no customer is disconnected at a time when support is needed most. More information about Hydro One's Pandemic Relief Program can be found at www.HydroOne.com/PandemicRelief. Customers can continue to contact Hydro One to determine individual payment plans and determine financial assistance programs available to meet their needs, especially as disconnection pressures can arise for some households.

 

Related News

View more

Duke solar solicitation nearly 6x over-subscribed

Duke Energy Carolinas Solar RFP draws 3.9 GW of utility-scale bids, oversubscribed in DEP and DEC, below avoided cost rates, minimal battery storage, strict PPA terms, and interconnection challenges across North and South Carolina.

 

Key Points

Utility-scale solar procurement in DEC and DEP, evaluated against avoided cost, with few storage bids and PPA terms.

✅ 3.9 GW bids for 680 MW; DEP most oversubscribed

✅ Most projects 7-80 MWac; few include battery storage

✅ Bids must price below 20-year avoided cost estimate

 

Last week the independent administrator for Duke’s 680 MW solar solicitation revealed data about the projects which have bid in response to the offer, showing a massive amount of interest in the opportunity.

Overall, 18 individuals submitted bids for projects in Duke Energy Carolinas (DEC) territory and 10 in Duke Energy Progress (DEP), with a total of more than 3.9 GW of proposals – more nearly 6x the available volume. DEP was relatively more over-subscribed, with 1.2 GWac of projects vying for only 80 MW of available capacity.

This is despite a requirement that such projects come in below the estimate of Duke’s avoided cost for the next 20 years, and amid changes in solar compensation that could affect project economics. Individual projects varied in capacity from 7-80 MWac, with most coming within the upper portion of that range.

These bids will be evaluated in the spring of 2019, and as Duke Energy Renewables continues to expand its portfolio, Duke Energy Communications Manager Randy Wheeless says he expects the plants to come online in a year or two.

 

Lack of storage

Despite recent trends in affordable batteries, of the 78 bids that came in only four included integrated battery storage. Tyler Norris, Cypress Creek Renewables’ market lead for North Carolina, says that this reflects that the methodology used is not properly valuing storage.

“The lack of storage in these bids is a missed opportunity for the state, and it reflects a poorly designed avoided cost rate structure that improperly values storage resources, commercially unreasonable PPA provisions, and unfavorable interconnection treatment toward independent storage,” Norris told pv magazine.

“We’re hopeful that these issues will be addressed in the second RFP tranche and in the current regulatory proceedings on avoided cost and state interconnection standards and grid upgrades across the region.”

 

Limited volume for North Carolina?

Another curious feature of the bids is that nearly the same volume of solar has been proposed for South Carolina as North Carolina – despite this solicitation being in response to a North Carolina law and ongoing legal disputes such as a church solar case that challenged the state’s monopoly model.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified