PricewaterhouseCoopers warns of coming tax shifts to combat climate change

By Vancouver Sun


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
British Columbia business operators were urged to prepare themselves for wholesale shifts in taxation regimes as the federal and provincial governments begin to tackle climate change.

Climate-change tax experts with PricewaterhouseCoopers told a PwC forum that substantial changes are coming in a little over a year.

Across Canada, electricity producers using gas- and coal-generation, companies in the oil and gas, smelting, mining, forest products, iron and steel and cement industries will feel the pinch.

B.C. is already imposing carbon taxes on fossil fuel users, and plans annual increases in the size of the tax. In addition, the province is implementing its own caps on carbon dioxide emissions.

"Regulation is a big and emerging and coming area," said Bruce McIntyre, a PwC partner in the accounting firm's B.C. sustainable business solutions practice.

"The federal government's climate-change regulations are coming in play Jan. 1, 2010. That's little over a year away and there is going to be a lot of change driven by those regulatory changes."

The feds are offering credits for companies taking early action, and also plan to introduce a system compelling the nation's largest polluters to bid for extra emissions quota beyond stated minimums.

McIntyre added that the B.C. government has been "very proactive" on this front as well.

The government has developed a climate-change secretariat, announced that the provincial government itself will be carbon-neutral by 2010, and introduced both a carbon tax and cap and trade programs involving several provinces and U.S. states.

Christine Schuh, PwC environmental practice leader, said government efforts to reduce the effects of climate change by curtailing emissions will have "very significant business implications."

"One of the drivers is Canada's commitment to the Kyoto Accord. Canada is a signatory, and has commitment to reducing its annual emissions from 720 megatonnes to 560.

"That is a huge difference, and it's pretty obvious that we are not going to make that in the short term."

That represents "approximately a $40-billion liability to the Canadian government."

Schuh said B.C.'s regulations may make it difficult for Alberta to export oil and gas from the oil sands - which generates three times the carbon dioxide emissions of conventional oil - into the neighbouring provincial market.

"There is going to be an issue around where fuel comes from," Schuh said. "Fuel that comes from the oil sands will be looked at in a very stringent light - and they don't know if they are going to allow that (fuel) in B.C.

"That has huge implications to people that are working in the oil sands area."

Schuh said it was interesting that the governments are also offering a range of tax refunds and incentives in order to "stimulate innovation."

"If you can come up with a project that reduces greenhouse gas emissions from (levels of) business as usual, that creates an asset and you can trade that with people who have over-emitted.

"There are tons of opportunities in the agricultural business, in the forestry business, and in a variety of industries that want to reduce greenhouse gas emissions."

Related News

Building begins on facility linking Canada hydropower to NYC

Champlain Hudson Power Express Converter Station brings Canadian hydropower via HVDC to Queens, converting 1,250 MW to AC for New York City's grid, replacing a retired fossil site with a zero-emission, grid-scale clean energy hub.

 

Key Points

A Queens converter turning 1,250 MW HVDC hydropower into AC for NYC's grid, repurposing an Astoria fossil site.

✅ 340-mile underwater/underground HVDC link from Quebec to Queens

✅ 1,250 MW DC-AC conversion feeding directly into NY grid by 2026

✅ Replaces Astoria oil site; supports NY's 70% renewables by 2030

 

New York Governor Kathy Hochul has announced the start of construction on the converter station of the Champlain Hudson Power Express transmission line, a project to bring electricity generated from Canadian hydropower to New York City.

The 340 mile (547 km) transmission line is a proposed underwater and underground high-voltage direct current power transmission line to deliver the power from Quebec, Canada, to Queens, New York City. The project is being developed by Montreal-based public utility Hydro-Quebec (QBEC.UL) and its U.S. partner Transmission Developers, while neighboring New Brunswick has signed NB Power deals to bring more Quebec electricity into the province.

The converter station for the line will be the first-ever transformation of a fossil fuel site into a grid-scale zero-emission facility in New York City, its backers say.

Workers have already removed six tanks that previously stored 12 million gallons (45.4 million liters) of heavy oil for burning in power plants and nearly four miles (6.44 km) of piping from the site in the Astoria, Queens neighborhood, echoing Hydro-Quebec's push to wean the province off fossil fuels as regional power systems decarbonize.

The facility is expected to begin operating in 2026, even as the Ontario-Quebec power deal was not renewed elsewhere in the region. Once the construction is completed, it will convert 1,250 megawatts of energy from direct current to alternating current power that will be fed directly into the state's power grid, helping address transmission constraints that have impeded incremental Quebec-to-U.S. power deliveries.

“Renewable energy plays a critical role in the transformation of our power grid while creating a cleaner environment for our future generations,” Hochul said. The converter station is a step towards New York’s target for 70% of the state’s electricity to come from renewable sources by 2030, as neighboring Quebec has closed the door on nuclear power and continues to lean on hydropower.

 

Related News

View more

Canada expected to miss its 2035 clean electricity goals

Canada 2035 Clean Electricity Target faces a 48.4GW shortfall as renewable capacity lags; accelerating wind, solar PV, grid upgrades, and coherent federal-provincial policy is vital to reach zero-emissions power and strengthen transmission and distribution.

 

Key Points

Canada's plan to supply nearly 100% of electricity from zero-emitting sources by 2035, requiring renewable buildout.

✅ Average adds 2.6GW; shortfall totals 48.4GW by 2035

✅ Expand wind, solar PV, storage, and grid modernization

✅ Align federal-province policy; retire or convert thermal plants

 

GlobalData’s latest report, ‘Canada Power Market Size and Trends by Installed Capacity, Generation, Transmission, Distribution and Technology, Regulations, Key Players and Forecast, 2022-2035’, discusses the power market structure of Canada and, amid looming power challenges, provides historical and forecast numbers for capacity, generation and consumption up to 2035. Detailed analysis of the country’s power market regulatory structure, competitive landscape and a list of major power plants are provided. The report also gives a snapshot of the power sector in the country on broad parameters of macroeconomics, supply security, generation infrastructure, transmission and distribution infrastructure, electricity import and export scenario, degree of competition, regulatory scenario, and future potential. An analysis of the deals in the country’s power sector is also included in the report.

Canada is expected to fall short of its 2035 clean electricity target after reviewing the country’s current renewable capacity activity. The country has targeted to produce nearly 100% of its electricity from zero-emitting sources by 2035, while electricity associations' net-zero goals extend to 2050; however, the country is adding only 2.6GW of annual renewable capacity additions on average every year, which would mean a cumulative shortfall of 48.4GW.

Canada has good governmental support, but it is not doing enough to ensure its targets are met. If the country is to meet its target to produce nearly 100% of electricity from zero-emitting sources by 2035, the country should both increase the capacity and efficiency of renewable power plants, as well as provide comprehensive end-to-end policies at both the federal and provincial levels, as debates over whether Ontario is embracing clean power continue across provinces. It should also involve communities and businesses in raising awareness of the benefits of adopting renewable energy.

The country has a large amount of proven natural gas and oil reserves that are proving too tempting an opportunity, and the Canadian Government is planning to increase the capacity of its gas-based plants under net-zero regulations permit some gas in the power mix, to secure real-time demand and supply. However, the country’s dependency on gas-based plants creates a major challenge to achieve its 2035 clean electricity target.

If the Canadian Government is to meet its 2035 targets, it should draw on examples from its European counterparts and add renewable capacity at a rapid pace, while balancing demand and emissions in key provinces. One advantage for Canada here is that it does not have land constraints, which is common in other major renewable power-generating countries. This could give the country an estimated 6.1GW of renewable capacity every year on average during the 2021-2035 period: enough capacity to meet its target. Most of these installations are expected to be for wind and solar PV.

Changing provincial governments are not helpful when it comes to implementing long-term projects, especially as Ontario faces looming electricity shortfalls that heighten planning risks, and continued stopping and starting of projects like this will only be damaging to renewable goals. Another way the country can achieve its target is by converting thermal power plants into clean energy plants and providing a roadmap or timeline for provinces to retire thermal power plants completely, even as scrapping coal can be costly for some systems.

Canada’s GDP (at constant prices) increased from $1,617.3bn in 2010 to $1,924.5bn in 2021, at a CAGR of 1.6%. The GDP (at constant prices) of the country declined sharply from $1,943.8bn in 2019 to $1,840.5bn in 2020 because of Covid-19 pandemic. After the recommencement of regular industrial and trade activities, the GDP grew by 4.6% in 2021 from 2020. The GDP is expected to cross pre-pandemic levels by the end of 2022.

 

Related News

View more

Ontario's electricity operator kept quiet about phantom demand that cost customers millions

IESO Fictitious Demand Error inflated HOEP in the Ontario electricity market, after embedded generation was mis-modeled; the OEB says double-counted load lifted wholesale prices and shifted costs via the Global Adjustment.

 

Key Points

An IESO modeling flaw that double-counted load, inflating HOEP and charges in Ontario's wholesale market.

✅ Double-counted unmetered load from embedded generation

✅ Inflated HOEP; shifted costs via Global Adjustment

✅ OEB flagged transparency; exporters paid more

 

For almost a year, the operator of Ontario’s electricity system erroneously counted enough phantom demand to power a small city, causing prices to spike and hundreds of millions of dollars in extra charges to consumers, according to the provincial energy regulator.

The Independent Electricity System Operator (IESO) also failed to tell anyone about the error once it noticed and fixed it.

The error likely added between $450 million and $560 million to hourly rates and other charges before it was fixed in April 2017, according to a report released this month by the Ontario Energy Board’s Market Surveillance Panel.

It did this by adding as much as 220 MW of “fictitious demand” to the market starting in May 2016, when the IESO started paying consumers who reduced their demand for power during peak periods. This involved the integration of small-scale embedded generation (largely made up of solar) into its wholesale model for the first time.

The mistake assumed maximum consumption at such sites without meters, and double-counted that consumption.

The OEB said the mistake particularly hurt exporters and some end-users, who did not benefit from a related reduction of a global adjustment rate applicable to other customers.

“The most direct impact of the increase in HOEP (Hourly Ontario Energy Price) was felt by Ontario consumers and exporters of electricity, who paid an artificially high HOEP, to the benefit of generators and importers,” the OEB said.

The mix-up did not result in an equivalent increase in total system costs, because changes to the HOEP are offset by inverse changes to a electricity cost allocation mechanism such as the Global Adjustment rate, the OEB noted.


A chart from the OEB's report shows the time of day when fictitious demand was added to the system, and its influence on hourly rates.

Peak time spikes
The OEB said that the fictitious demand “regularly inflated” the hourly price of energy and other costs calculated as a direct function of it.

For almost a year, Ontario's electricity system operator @IESO_Tweets erroneously counted enough phantom demand to power a small city, causing price spikes and hundreds of millions in charges to consumers, @OntEnergyBoard says. @5thEstate reports.

It estimated the average increase to the HOEP was as much as $4.50/MWh, but that price spikes, compounded by scheduled OEB rate changes, would have been much higher during busier times, such as the mid-morning and early evening.

“In times of tight supply, the addition of fictitious demand often had a dramatic inflationary impact on the HOEP,” the report said.

That meant on one summer evening in 2016 the hourly rate jumped to $1,619/MWh, it said, which was the fourth highest in the history of the Ontario wholesale electricity market.

“Additional demand is met by scheduling increasingly expensive supply, thus increasing the market price. In instances where supply is tight and the supply stack is steep, small increases in demand can cause significant increases in the market price.

The OEB questioned why, as of September this year, the IESO had failed to notify its customers or the broader public, amid a broader auditor-regulator dispute that drew political attention, about the mistake and its effect on prices.

“It's time for greater transparency on where electricity costs are really coming from,” said Sarah Buchanan, clean energy program manager at Environmental Defence.

“Ontario will be making big decisions in the coming years about whether to keep our electricity grid clean, or burn more fossil fuels to keep the lights on,” she added. “These decisions need to be informed by the best possible evidence, and that can't happen if critical information is hidden.”

In a response to the OEB report on Monday, the IESO said its own initial analysis found that the error likely pushed wholesale electricity payments up by $225 million. That calculation assumed that the higher prices would have changed consumer behaviour, while upcoming electricity auctions were cited as a way to lower costs, it said.

In response to questions, a spokesperson said residential and small commercial consumers would have saved $11 million in electricity costs over the 11-month period, even as a typical bill increase loomed province-wide, while larger consumers would have paid an extra $14 million.

That is because residential and small commercial customers pay some costs via time-of-use rates, including a temporary recovery rate framework, the IESO said, while larger customers pay them in a way that reflects their share of overall electricity use during the five highest demand hours of the year.

The IESO said it could not compensate those that had paid too much, given the complexity of the system, and that the modelling error did not have a significant impact on ratepayers.

While acknowledging the effects of the mistake would vary among its customers, the IESO said the net market impact was less than $10 million, amid ongoing legislation to lower electricity rates in Ontario.

It said it would improve testing of its processes prior to deployment and agreed to publicly disclose errors that significantly affect the wholesale market in the future.

 

Related News

View more

California lawmakers plan to overturn income-based utility charges

California income-based utility charges face bipartisan pushback as the PUC weighs fixed fees for PG&E, SDG&E, and Southern California Edison, reshaping rate design, electricity affordability, energy equity, and privacy amid proposed per-kWh reductions.

 

Key Points

PUC-approved fixed fees tied to household income for PG&E, SDG&E, and SCE, offset by lower per-kWh rates.

✅ Proposed fixed fees: $51 SCE, $73.31 SDG&E, $50.92 PG&E

✅ Critics warn admin, privacy, legal risks and higher bills for savers

✅ Backers say lower-income pay less; kWh rates cut ~33% in PG&E area

 

Efforts are being made across California's political landscape to derail a legislative initiative that introduced income-based utility charges for customers of Southern California Edison and other major utilities.

Legislators from both the Democratic and Republican parties have proposed bills aimed at nullifying the 2022 legislation that established a sliding scale for utility charges based on customer income, a decision made in a late-hour session and subsequently endorsed by Governor Gavin Newsom.

The plan, pending final approval from the state Public Utilities Commission (PUC) — all of whose current members were appointed by Governor Newsom — would enable utilities like Southern California Edison, San Diego Gas & Electric, and PG&E to apply new income-based charges as early as this July.

Among the state legislators pushing back against the income-based charge scheme are Democrats Jacqui Irwin and Marc Berman, along with Republicans Janet Nguyen, Kelly Seyarto, Rosilicie Ochoa Bogh, Scott Wilk, Brian Dahle, Shannon Grove, and Roger Niello.

A cadre of specialists, including economist Ahmad Faruqui who has advised all three utilities implicated in the fee proposal, have outlined several concerns regarding the PUC's pending decision.

Faruqui and his colleagues argue that the proposed charges are excessively high in comparison to national standards, reflecting soaring electricity prices across the state, potentially leading to administrative challenges, legal disputes, and negative unintended outcomes, such as penalizing energy-conservative consumers.

Advocates for the income-based fee model, including The Utility Reform Network (TURN) and the National Resources Defense Council, argue it would result in higher charges for wealthier consumers and reduced fees for those with lower incomes. They also believe that the utilities plan to decrease per kilowatt-hour rates as part of a broader rate structure review to balance out the new fees.

However, even supporters like TURN and the Natural Resources Defense Council acknowledge that the income-based fee model is not a comprehensive solution to making soaring electricity bills more affordable.

If implemented, California would have the highest income-based utility fees in the country, with averages far surpassing the national average of $11.15, as reported by EQ Research:

  • Southern California Edison would charge $51.
  • San Diego Gas & Electric would levy $73.31.
  • PG&E would set fees at $50.92.

The proposal has raised concerns among state legislators about the additional financial burden on Californians already struggling with high electricity costs.

Critics highlight several practical challenges, including the PUC's task of assessing customers' income levels, a process fraught with privacy concerns, potential errors, and constitutional questions regarding access to tax information.

Economists have pointed out further complications, such as the difficulty in accurately assessing incomes for out-of-state property owners and the variability of customers' incomes over time.

The proposed income-based charges would differ by income bracket within the PG&E service area, for example, with lower-income households facing lower fixed charges and higher-income households facing higher charges, alongside a proposed 33% reduction in electricity rates to help mitigate the fixed charge impact.

Yet, the economists warn that most customers, particularly low-usage customers, could end up paying more, essentially rewarding higher consumption and penalizing efficiency.

This legislative approach, they caution, could inadvertently increase costs for moderate users across all income brackets, a sign of major changes to electric bills that could emerge, challenging the very goals it aims to achieve by promoting energy inefficiency.

 

Related News

View more

Nova Scotia regulator approves 14% electricity rate hike, defying premier

Nova Scotia Power Rate Increase 2023-2024 approved by the UARB lifts electricity rates 14 percent, citing fuel costs and investments, despite Bill 212; includes ROE 9 percent, decarbonization deferral, and a storm cost recovery rider.

 

Key Points

An approved UARB rate case raising electricity bills about 14% over 2023-2024, with ROE 9% and cost recovery tools.

✅ UARB approves average 6.9% annual increases for 2023 and 2024.

✅ Maintains 9% ROE; sets storm cost rider trial and decarbonization deferral.

✅ Government opposed via Bill 212, but settlement mostly upheld.

 

Nova Scotia regulators approved a 14 per cent electricity rate hike on Thursday, defying calls by Premier Tim Houston to reject the increase.

Rates will rise on average by 6.9 per cent each year in 2023 and 2024.

In Newfoundland and Labrador, the NL Consumer Advocate called an 18 per cent electricity rate hike unacceptable amid affordability concerns.

The Nova Scotia Utility and Review Board (UARB) issued a 203-page decision ratifying most of the elements in a settlement agreement reached between Nova Scotia Power and customer groups after Houston's government legislated a rate, spending and profit cap on the utility in November.

The board said approval was in the public interest and the increase is "reasonable and appropriate."

"The board cannot simply disallow N.S. Power's reasonable costs to make rates more affordable. These principles ensure fair rates and the financial health of a utility so it can continue to invest in the system providing services to its customers," the three-member panel wrote.

"While the board can (and has) disallowed costs found to be imprudent or unreasonable, absent such a finding, N.S. Power's costs must be reflected in the rates."

In addition to the 14 per cent hike, the board maintained Nova Scotia Power's current return on equity of 9 per cent, with an earnings band of 8.75 to 9.25 per cent. It agreed in principle to establish a decarbonization deferral account to pay for the retirement of coal plants and related decommissioning costs, and implemented a storm cost recovery rider for a three-year trial period.

The board rejected several items in the agreement, including rolling some Maritime Link transmission capital projects into consumers' rates.

Nova Scotia Power welcomed the ruling in a statement, describing it as "the culmination of an extensive and transparent regulatory process over the past year."

Natural Resources and Renewables Minister Tory Rushton, who has said the government cannot order lower power rates in Nova Scotia, stated the UARB decision was not what the government wanted, but he did not indicate the government has any plans to bring forward legislation to overturn it. 

"We're disappointed by the decision today. We've always been very clear that we were standing by ratepayers right from the get-go but we also respect the independent body of the UARB and their decision today."


Pressure from the province
Houston claimed the settlement breached his government's legislation, known as Bill 212 in Nova Scotia, which he said was intended to protect ratepayers. It capped rates to cover non-fuel costs by 1.8 per cent. It did not cap rates to cover fuel costs or energy efficiency programs.

Bill 212 was passed after the board concluded weeks of public hearings into Nova Scotia Power's request for an electricity rate increase, its first general rate application in 10 years. Nova Scotia Power is a subsidiary of Halifax-based Emera, which is a publicly traded company.

The legislation triggered credit downgrades from two credit rating agencies who said it compromised the independence of the Nova Scotia Utility and Review Board.

In Newfoundland and Labrador, electricity users have begun paying for Muskrat Falls as project costs flow through rates, highlighting broader pressures on Atlantic Canada utilities.

In its decision, the board accepted that legislation was intended to protect ratepayers but did not preclude increases in rates.

"Given the exclusion of fuel and purchased power costs when these were expected to cause significant upward pressure on rates, it also did not preclude large increases in rates. Instead, the protection afforded by the Public Utilities Act amendments appears to be focused on N.S. Power's non-fuel costs, with several amendments targeting N.S. Power's cost of capital and earnings."

The board noted the province was the only intervenor in the rate case to object to the settlement.


Opposition reaction
Rushton said despite the outcome, Bill 212 achieved its goal, which was to protect ratepayers.

"Without Bill 212 the rates would have actually been higher," he said. "It would have double-digit rates for this year and next year and now it's single digits."

NDP Leader Claudia Chender said the end result is that Nova Scotians are still facing "incredibly unaffordable power."

Similar criticism emerged in Saskatchewan after an 8 per cent SaskPower increase, which the NDP opposed during provincial debates.

"It's really unfortunate for a lot of Nova Scotians who are heading into a freezing weekend where heat is not optional."

Chender said a different legislative approach is needed to change the regulatory system, and more needs to be done to help people pay their electricity bills.

Liberal MLA Kelly Regan echoed that sentiment.

"There are lots of people who can absorb this. There are a lot of people who cannot, and those are the people that we should be worried about right now. This is why we've been saying all along the government needs to actually give money directly to Nova Scotians who need help with power rates."

Rushton said the government has introduced programs to help Nova Scotians pay for heat, including raising the income threshold to access the Heating Assistance Rebate Program and creating incentives to install heat pumps.

Elsewhere, some governments have provided a lump-sum credit on electricity bills to ease short-term costs for households.

 

Related News

View more

Ontario announces SMR plans to four reactors at Darlington

Ontario Darlington SMR Expansion advances four GE Hitachi BWRX-300 reactors with OPG, adding 1,200 MW of baseload nuclear power to support electrification, grid reliability, and clean energy growth across Ontario and Saskatchewan.

 

Key Points

Plan to build four BWRX-300 SMRs at Darlington, delivering 1,200 MW of clean, reliable baseload power under OPG.

✅ Four GE Hitachi BWRX-300 units, 1,200 MW total

✅ Shared infrastructure cuts costs and timelines

✅ Supports electrification, grid reliability, net zero

 

The day after Ontario announced it would be building an additional 4,800 megawatts of nuclear reactors at Bruce Nuclear Generating Station, the province announced it would be dramatically expanding its planned rollout of small modular reactors at its Darlington Nuclear Generating Station, and confirmed plans to refurbish Pickering B as part of its broader strategy.

Ontario Power Generation OPG was always going to be the first to build the GE-Hitachi BWRX-300 small modular reactor SMR, with the U.S.’s Tennessee Valley Authority among others like SaskPower and several European nations following suit. But the OPG was originally going to build just one. On July 7, OPG and the Province of Ontario announced they would be bumping that up to four units of the BWRX-300.

The Ontario government is working with Ontario Power Generation (OPG) to commence planning and licensing for three additional small modular reactors (SMRs), for a total of four SMRs at the Darlington nuclear site. Once deployed, these four units would produce a total 1,200 megawatts (MW) of electricity, equivalent to powering 1.2 million homes, helping to meet increasing demand from electrification and fuel the province’s strong economic growth, the Ontario Ministry of Energy said in a release.

“Our government’s open for business approach has led to unprecedented investments across the province — from electric vehicles and battery manufacturing to critical minerals to green steel,” said Todd Smith, Minister of Energy. “Expanding Ontario’s world-leading SMR program will ensure we have the reliable, affordable and clean electricity we need to power the next major international investment, the new homes we are building and industries as they grow and electrify.”

For the first time since 2005, Ontario’s electricity demand is rising. While the government has implemented its plan to meet rising electricity demand this decade, the experts at Ontario’s Independent Electricity System Operator have recommended the province advance new nuclear generation and pursue life-extension at Pickering NGS to provide reliable, baseload power to meet increasing electricity needs in the 2030s and beyond.

Subject to Ontario Government and Canadian Nuclear Safety Commission (CNSC) regulatory approvals on construction, the additional SMRs could come online between 2034 and 2036. That is the same timeframe that SaskPower is looking at for its first, and possibly second, units.

The initial unit is expected to go online in 2028 following Ontario’s first SMR groundbreaking at Darlington.

The Darlington site, which already hosts four reactors, was originally considered for an expansion of “large nuclear,” which is why OPG was already well on its way for site approvals of additional nuclear power generation. The plan changed to one, singular, SMR. Now that has been updated to four.

The announcement has significant impact on Saskatchewan, and its plans to build four of its own SMRs. The timing would allow Ontario Power Generation to apply learnings from the construction of the first unit to deliver cost savings on subsequent units. This is also the strategy SaskPower is following – allow Ontario to build the first, then learn from that experience.

Building multiple units will also allow common infrastructure such as cooling water intake, transmission connection and control room to be utilized by all four units instead of just one, reducing costs even further, the Ministry said.

“A fleet of SMRs at the Darlington New Nuclear Site is key to meeting growing electricity demands and net zero goals,” said Ken Hartwick, OPG President and CEO. “OPG has proven its large nuclear project expertise through the on-time, on budget Darlington Refurbishment project. By taking a similar approach to building a fleet of SMRs, we will deliver cost and schedule savings, and power 1.2 million homes from this site by the mid-2030s.”

The Darlington SMR project is situated on the traditional and treaty territories of the seven Williams Treaties First Nations and is also located within the traditional territory of the Huron Wendat peoples. OPG is actively engaging and consulting with potentially impacted Indigenous communities, including exploring economic opportunities in the Darlington SMR project such as commercial participation and employment.

The Ministry noted, “Ontario’s robust nuclear supply chain is uniquely positioned to support SMR development and deployment in Ontario, Canada and globally. Building additional SMRs at Darlington would provide more opportunities for Ontario companies and broader economic benefits as suppliers of nuclear equipment, components, and services to make further investments to expand their operation to serve the growing SMR market both domestically and abroad.”

Supporting new SMR development and investing in nuclear power is part of the Ontario government’s larger plan, aligned with a Canadian interprovincial nuclear initiative that brings provinces together, to prepare for electricity demand in the 2030s and 2040s that will build on Ontario’s clean electricity advantage and ensure the province has the power to maintain it’s position as leader in job creation and a magnet for the industries of the future, the Ministry said.

In February, World Nuclear News (WNN) reported that Poland was considering up to 79 small modular reactors of the same design as OPG and SaskPower. And on June 5, it reported, “Canada’s Ontario Power Generation will provide operator services to Poland’s Orlen Synthos Green Energy under a letter of intent signed between the partners, extending their existing cooperation on the deployment of small modular reactors.”

WNN added, “The letter of intent is aimed at concluding future agreements under which OPG and its subsidiaries could provide operator services for SMR reactors to OSGE in connection with the deployment of SMRs in Poland and other European countries. The partnership would include a number of SMR-related activities including: development and deployment; operations and maintenance; operator training; commissioning; and regulatory support.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.