NIMBY: Nukes In My Backyard

By Investor's Business Daily


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
In a Sunday New York Times op-ed, Gore called for "an emergency rescue of human civilization from the imminent and rapidly growing threat posed by the climate crisis." To that end, he proposed "a commitment to producing 100% of our electricity from carbon-free sources within 10 years."

Oddly, Gore does not mention nuclear power, a source from which we already get 20% of our electricity and from which we could get more, thanks in part to the development of a new type of power plant that compares roughly to the evolution from the room-size vacuum-tube computers of the 1950s to today's laptops.

Using technology developed at the Los Alamos National Laboratory and licensed from the U.S. government, New Mexico-based Hyperion Power Generation Inc., has taken its first orders for miniature nuclear power plants that could literally fit in your backyard.

The module produces about 70 megawatts of thermal energy or 27 megawatts of electricity via steam turbine, enough to power about 20,000 American-style houses.

"Our goal is to generate electricity for 10 cents a watt anywhere in the world," says John Deal, chief executive of Hyperion. They will cost approximately $25 million each. For a community with 10,000 households, that is a very comfortable $250 per home."

The units are factory-sealed, can be delivered by truck and are buried underground. Like a car battery, there are no moving parts and no danger of a Chernobyl-type event. The module uses very low enriched materials that remain sealed for the five- to seven-year life of the module. It's also terrorist-proof.

Other companies are working on similar nuclear projects, large and small. Toshiba is reportedly working on a small-scale design for Galena, Alaska. NuScale Power, a startup spawned in the nuclear engineering department at Oregon State, was the first U.S. company to submit plans to the Nuclear Regulatory Commission, which regulates all domestic nuclear power plants.

NuScale's design is somewhat larger. The whole unit is 65 feet long, with the reactor unit taking up 14 feet of that. Each 45-megawatt electrical unit would generate enough power for about 45,000 homes. It can be mass-produced entirely in the U.S., an important factor since our domestic industry has atrophied since Three Mile Island, and the worldwide backlog for power plants is huge.

Such mini-nukes can be delivered anywhere in the world and have a multitude of uses. For example, an estimated 25% of the world's population is without adequate drinking water; mini-nukes could provide the power in remote areas to pump, purify and circulate clean water.

Their footprint compared to wind and solar plants is like comparing a Chihuahua to Godzilla. Modern turbines can be as tall as 400 feet and carry 130-foot, seven-ton, endangered-bird-slicing blades. Building these wind farms requires five to 10 times more steel and concrete than a nuclear plant generating the same amount of power.

"Alternative" or "renewable" energies such as wind and solar are romantic notions, but bump up hard against reality — including the fact that just a single 50-megawatt wind facility requires an appalling 4,000 acres of land covered with these enormous towers that work only when the wind is blowing.

In his op-ed, Gore noted that "President John F. Kennedy challenged our nation to land a man on the moon within 10 years." The Manhattan Project, which harnessed nuclear power for war, took half that time.

How about a new Manhattan Project — not one that subsidizes tilting at windmills or putting food in our gas tanks, but that encourages the rapid development, licensing and mass production of an existing clean and virtually limitless source of energy?

Related News

Nigeria's Electricity Crisis

Nigeria Electricity Crisis undermines energy access as aging grid, limited generation, and transmission losses cause power outages, raising costs for businesses and public services; renewables, microgrids, and investment offer resilient, inclusive solutions.

 

Key Points

A nationwide power gap from weak infrastructure, low generation, and grid losses that disrupt services and growth.

✅ Aging grid and underinvestment drive frequent power outages

✅ Businesses face higher costs, lost productivity, weak competitiveness

✅ Renewables, microgrids, and regulatory reform can expand access

 

In Nigeria, millions of residents face persistent challenges with access to reliable electricity, a crisis that has profound implications for businesses, public services, and overall socio-economic development. This article explores the root causes of Nigeria's electricity deficit, drawing on 2021 electricity lessons to inform analysis, its impact on various sectors, and potential solutions to alleviate this pressing issue.

Challenges with Electricity Access

The issue of inadequate electricity access in Nigeria is multifaceted. The country's electricity generation capacity falls short of demand due to aging infrastructure, inadequate maintenance, and insufficient investment in power generation and distribution, a dynamic echoed when green energy supply constraints emerge elsewhere as well. As a result, many Nigerians, particularly in rural and underserved urban areas, experience frequent power outages or have limited access to electricity altogether.

Impact on Businesses

The unreliable electricity supply poses significant challenges to businesses across Nigeria. Manufacturing industries, small enterprises, and commercial establishments rely heavily on electricity to operate machinery, maintain refrigeration for perishable goods, and power essential services. Persistent power outages disrupt production schedules, increase operational costs, and, as grids prepare for new loads from electric vehicle adoption worldwide, hinder business growth and competitiveness in both domestic and international markets.

Public Services Strain

Public services, including healthcare facilities, schools, and government offices, also grapple with the consequences of Nigeria's electricity crisis. Hospitals rely on electricity to power life-saving medical equipment, maintain proper sanitation, and ensure patient comfort. Educational institutions require electricity for lighting, technological resources, and administrative functions. Without reliable power, the delivery of essential public services is compromised, impacting the quality of education, healthcare outcomes, and overall public welfare.

Socio-economic Impact

The electricity deficit in Nigeria exacerbates socio-economic disparities and hampers poverty alleviation efforts, even as debates continue over whether access alone reduces poverty in every context. Lack of access to electricity limits economic opportunities, stifles entrepreneurship, and perpetuates income inequality. Rural communities, where access to electricity is particularly limited, face greater challenges in accessing educational resources, healthcare services, and economic opportunities compared to urban counterparts.

Government Initiatives and Challenges

The Nigerian government has implemented various initiatives to address the electricity crisis, including privatization of the power sector, investment in renewable energy projects, and regulatory reforms aimed at improving efficiency and accountability, while examples like India's village electrification illustrate rapid expansion potential too. However, progress has been slow, and challenges such as corruption, bureaucratic inefficiencies, and inadequate funding continue to impede efforts to expand electricity access nationwide.

Community Resilience and Adaptation

Despite these challenges, communities and businesses in Nigeria demonstrate resilience and adaptability in navigating the electricity crisis. Some businesses invest in alternative power sources such as generators, solar panels, or hybrid systems to mitigate the impact of power outages, while utilities weigh shifts signaled by EVs' impact on utilities for future planning. Community-led initiatives, including local cooperatives and microgrids, provide decentralized electricity solutions in underserved areas, promoting self-sufficiency and resilience.

Path Forward

Addressing Nigeria's electricity crisis requires a concerted effort from government, private sector stakeholders, and international partners, informed by UK grid transformation experience as well. Key priorities include increasing investment in power infrastructure, enhancing regulatory frameworks to attract private sector participation, and promoting renewable energy deployment. Improving energy efficiency, reducing transmission losses, and expanding electricity access to underserved communities are critical steps towards achieving sustainable development goals and improving quality of life for all Nigerians.

Conclusion

The electricity crisis in Nigeria poses significant challenges to businesses, public services, and socio-economic development. Addressing these challenges requires comprehensive strategies that prioritize infrastructure investment, regulatory reform, and community empowerment. By working together to expand electricity access and promote sustainable energy solutions, Nigeria can unlock its full economic potential, improve living standards, and create opportunities for prosperity and growth across the country.

 

Related News

View more

'Pakistan benefits from nuclear technology'

Pakistan Nuclear Energy advances clean power with IAEA guidance, supporting SDGs via electricity generation, nuclear security, and applications in healthcare, agriculture, and COVID-19 testing, as new 1,100 MW reactors near grid connection.

 

Key Points

Pakistan Nuclear Energy is the nation's atomic program delivering clean electricity, SDGs gains, and IAEA-guided safety.

✅ Two 1,100 MW reactors nearing grid connection

✅ IAEA-aligned safety and nuclear security regime

✅ Nuclear tech supports healthcare, agriculture, COVID-19 tests

 

Pakistan is utilising its nuclear technology to achieve its full potential by generating electricity, aligning with China's steady nuclear development trends, and attaining socio-economic development goals outlined by the United Nations Sustainable Development Goals.

This was stated by Pakistan Atomic Energy Commission (PAEC) Chairperson Muhammad Naeem on Tuesday while addressing the 64th International Atomic Energy Agency (IAEA) General Conference (GC) which is being held in Vienna from September 21, a forum taking place amid regional milestones like the UAE's first Arab nuclear plant startup as well.

Regarding nuclear security, the PAEC chief stated that Pakistan considered it as a national responsibility and that it has developed a comprehensive and stringent safety and security regime, echoing IAEA praise for China's nuclear security in the region, which is regularly reviewed and upgraded in accordance with IAEA's guidelines.

Many delegates are attending the event through video link due to the novel coronavirus (Covid-19) pandemic.

On the first day of the conference, IAEA Director General Rafael Mariano Grossi highlighted the role of the nuclear watchdog in the monitoring and verification of nuclear activities across the globe, as seen in Barakah Unit 1 at 100% power milestones reported worldwide.

He also talked about the various steps taken by the IAEA to help member states contain the spread of coronavirus such as providing testing kits etc.

In a recorded video statement, the PAEC chairperson said that Pakistan has a mutually beneficial relationship with IAEA, similar to IAEA assistance to Bangladesh on nuclear power development efforts. He also congratulated Ambassador Azzeddine Farhane on his election to become the President of the 64th GC and assured him of Pakistan's full support and cooperation.

Naeem stated that as a clean, affordable and reliable source, nuclear energy can play a key role, with India's nuclear program moving back on track, in fighting climate change and achieving the Sustainable Development Goals (SDGs).

The PAEC chief informed the audience that two 1,100-megawatt (MW) nuclear power plants are near completion and, like the UAE grid connection milestone, are expected to be connected to the national grid next year.

He also highlighted the role of PAEC in generating electricity through nuclear power plants, while also helping the country achieve the socio-economic development goals outlined under the United Nations SDGs through the application of nuclear technology in diverse fields like agriculture, healthcare, engineering and manufacturing, human resource development and other sectors.

 

Related News

View more

Sens. Wyden, Merkley Introduce Bill to Ensure More Wildfire Resilient Power Grid

Wildfire Resilient Power Grid Act proposes DOE grants for utility companies to fund wildfire mitigation, grid resilience upgrades, undergrounding power lines, fast-tripping protection, weather monitoring, and vegetation management, prioritizing rural electric cooperatives.

 

Key Points

A federal bill funding utility wildfire mitigation and grid hardening via DOE grants, prioritizing rural utilities.

✅ $1B DOE matching grants for grid upgrades and wildfire mitigation.

✅ Prioritizes rural utilities; supports undergrounding and hardening.

✅ Funds fast-tripping protection, weather stations, vegetation management.

 

U.S. Sens. Ron Wyden and Jeff Merkley today introduced new legislation, amid transmission barriers that persist, to incentivize utility companies to do more to reduce wildfire risks as aging power infrastructure ignite wildfires in Oregon and across the West.

Wyden and Merkley's Wildfire Resilient Power Grid Act of 2020 would ensure power companies do their part to reduce the risk of wildfires through power system upgrades, even as California utility spending crackdown seeks accountability, such as the undergrounding of power lines, fire safety equipment installation and proper vegetation management.

"First and foremost, this is a public safety issue. Fire after fire ignited this summer because the aging power grid could not withstand a major windstorm during the season's hottest and driest days," Wyden said. "Many utility companies are already working to improve the resiliency of their power grid, but the sheer costs of these investments must not come at the expense of equitable regulation for rural utility customers. Congress must do all that it can to stop the catastrophic wildfires decimating the West, and that means improving rural infrastructure. By partnering with utilities around the country, we can increase wildfire mitigation efforts at a modest cost -- a fire prevention investment that will pay dividends by saving lives, homes and businesses."

"When this year's unprecedented wildfire event hit, I drove hundreds of miles across our state to see the damage firsthand and to hear directly from impacted communities, so that I could go back to D.C. and work for the solutions they need," said Merkley. "What I saw was apocalyptic--and we have to do everything we can to reduce the risk of this happening again. That means we have to work with our power companies to get critical upgrades and safety investments into place as quickly as possible."

The Wildfire Resilient Power Grid Act of 2020:

* Establishes a $1 billion-per-year matching grant program for power companies through the Department of Energy, even as ACORE opposed DOE subsidy proposals, to reduce the risk of power lines and grid infrastructure causing wildfires.

* Gives special priority to smaller, rural electric companies to ensure mitigation efforts are targeted to forested rural areas.

* Promotes proven methods for reducing wildfire risks, including undergrounding of lines, installing fast-tripping protection systems, and constructing weather monitoring stations to respond to electrical system fire risks.

* Provides for hardening of overhead power lines and installation of fault location equipment where undergrounding of power lines is not a favorable option.

* Ensures fuels management activities of power companies are carried out in accordance with Federal, State, and local laws and regulations.

* Requires power companies to have "skin in the game" by making the program a 1-to-1 matching grant, with an exception for smaller utilities where the matching requirement is one third of the grant.

* Delivers accountability on the part of utilities and the Department of Energy by generating a report every two years on efforts conducted under the grant program.

Portland General Electric President and CEO Maria Pope: "We appreciate Senator Wyden's and Senator Merkley's leadership in proposing legislation to provide federal funding that will help protect Oregon from devastating wildfires. When passed, this will help make Oregon's electric system safer, faster, without increasing customer prices. That is especially important given the economy and hotter, drier summers and longer wildfire seasons that Oregon will continue to face."

Lane County Commission Chair Heather Butch: " In a matter of hours, the entire Lane County community of Blue River was reduced to ashes by the Holiday Farm Fire. Since the moment I first toured that devastation I've been committed to building it back better. I applaud Senators Wyden and Merkley for drafting the Wildfire Resilient Power Grid Act, as it could well provide the path towards meeting this important goal. Moreover, the resultant programs will better protect rural communities from the increasing dangers of wildfires through a number of preventative measures that would otherwise be difficult to implement."

Linn County Commissioner Roger Nyquist: "This legislation is a smart strategic investment for the future safety of our residents as well as the economic vitality of our community."

Marion County Commissioner Kevin Cameron: "After experiencing a traumatic evacuation during the Beachie Creek and Lion's Head wild fires, I understand the need to strengthen the utility Infrastructure. The improvements resulting from Senator Wyden and Merkley's bill will reduce disasters in the future, but improve everyday reliability for our citizens who live, work and protect the environment in potential wildfire areas."

Edison Electric Institute President Tom Kuhn: "EEI thanks Senator Wyden and Senator Merkley for their leadership in introducing the Wildfire Resilient Power Grid Act. This bill will help support and accelerate projects already planned and underway to enhance energy grid resiliency and mitigate the risk of wildfire damage to power lines. Electric companies across the country are committed to working with our government partners and other stakeholders on preparation and mitigation efforts that combat the wildfire threat and on the rapid deployment of technology solutions, including aggregated DERs at FERC, that address wildfire risks, while still maintaining the safe, reliable, and affordable energy we all need."

Oregon Rural Electric Cooperative Association Executive Director Ted Case: "Oregon's electric cooperatives support the Wildfire Resilient Power Grid Act and appreciate Senator Wyden's and Senator Merkley's leadership and innovative approach to wildfire mitigation, particularly for small, rural utilities. This legislation includes targeted assistance that will help us to continue to provide affordable, reliable and safe electricity to over 500,000 Oregonians."

Sustainable Northwest Director of Government Affairs & Program Strategy Dylan Kruse: "In recent years, the West has seen too many wildfires originate due to poorly maintained or damaged electric utility transmission and distribution infrastructure. This legislation plays an important role to ensure that power lines do not contribute to wildfire starts, while providing safe and reliable power to communities during wildfire events. Utilities must, even as Wyoming clean energy bill proposals emerge, live up to their legal requirements to maintain their infrastructure, but this bill provides welcome resources to expedite and prioritize risk reduction, while preventing cost increases for ratepayers."

Oregon Wild Wilderness Program Manager Erik Fernandez: "2020 taught Oregon the lesson that California learned in the Paradise Fire, and SCE wildfire lawsuits that followed underscore the stakes. Addressing the risk of unnaturally caused powerline fires is an increasingly important critical task. I appreciate Senator Ron Wyden's efforts to protect our homes and communities from powerline fires."

 

Related News

View more

Experiment Shows We Can Actually Generate Electricity From The Night Sky

Nighttime thermoradiative power converts outgoing infrared radiation into electricity using semiconductor photodiodes, leveraging negative illumination and sky cooling to harvest renewable energy from Earth-to-space heat flow when solar panels rest, regardless of weather.

 

Key Points

Nighttime thermoradiative power converts Earth's outgoing infrared heat into electricity using semiconductor diodes.

✅ Uses negative illumination to tap Earth-to-space heat flow

✅ Infrared semiconductor photodiodes generate small nighttime current

✅ Theoretical output ~4 W/m^2; lab demo reached 64 nW/m^2

 

There's a stark contrast between the freezing temperatures of space and the relatively balmy atmosphere of Earth, and that contrast could help generate electricity, scientists say – and alongside concepts such as space-based solar power, utilizing the same optoelectronic physics used in solar panels. The obvious difference this would have compared with solar energy is that it would work during the night time, a potential source of renewable power that could keep on going round the clock and regardless of weather conditions.

Solar panels are basically large-scale photodiodes - devices made out of a semiconducting material that converts the photons (light particles) coming from the Sun into electricity by exciting electrons in a material such as silicon, while concepts like space solar beaming could complement them during adverse weather.

In this experiment, the photodiodes work 'backwards': as photons in the form of infrared radiation - also known as heat radiation - leave the system, a small amount of energy is produced, similar to how raindrop electricity harvesting taps ambient fluxes in other experiments.

This way, the experimental system takes advantage of what researchers call the "negative illumination effect" – that is, the flow of outgoing radiation as heat escapes from Earth back into space. The setup explained in the new study uses an infrared semiconductor facing into the sky to convert this flow into electrical current.

"The vastness of the Universe is a thermodynamic resource," says one of the researchers, Shanhui Fan from Stanford University in California.

"In terms of optoelectronic physics, there is really this very beautiful symmetry between harvesting incoming radiation and harvesting outgoing radiation."

It's an interesting follow-up to a research project Fan participated in last year: a solar panel that can capture sunlight while also allowing excess heat in the form of infrared radiation to escape into space.

In the new study, this "energy harvesting from the sky" process can produce a measurable amount of electricity, the researchers have shown – though for the time being it's a long way from being efficient enough to contribute to our power grids, but advances in peer-to-peer energy sharing could still make niche deployments valuable.

In the team's experiments they were able to produce 64 nanowatts per square metre (10.8 square feet) of power – only a trickle, but an amazing proof of concept nevertheless. In theory, the right materials and conditions could produce a million times more than that, and analyses of cheap abundant electricity show how rapidly such advances compound, reaching about 4 watts per square metre.

"The amount of power that we can generate with this experiment, at the moment, is far below what the theoretical limit is," says one of the team, Masashi Ono from Stanford.

When you consider today's solar panels are able to generate up to 100-200 watts per square metre, and in China solar is cheaper than grid power across every city, this is obviously a long way behind. Even in its earliest form, though, it could be helpful for keeping low-power devices and machines running at night: not every renewable energy device needs to power up a city.

Now that the researchers have proved this can work, the challenge is to improve the performance of the experimental device. If it continues to show promise, the same idea could be applied to capture energy from waste heat given off by machinery, and results in humidity-powered generation suggest ambient sources are plentiful.

"Such a demonstration of direct power generation of a diode facing the sky has not been previously reported," explain the researchers in their published paper.

"Our results point to a pathway for energy harvesting during the night time directly using the coldness of outer space."

The research has been published in Applied Physics Letters.

 

Related News

View more

Rising Electricity Prices: Inflation, Climate Change, and Clean Energy Challenges

Rising Electricity Prices are driven by inflation, climate change, and the clean energy transition, affecting energy bills, grid resilience, and supply. Renewables, storage, and infrastructure upgrades shape costs, volatility, and long-term sustainability.

 

Key Points

Rising electricity prices stem from inflation, climate risk, and costs of integrating clean energy and storage into modern grids.

✅ Inflation raises fuel, materials, and labor costs for utilities

✅ Extreme weather damages infrastructure and strains peak demand

✅ Clean energy rollout needs storage, backup, and grid upgrades

 

In recent months, consumers have been grappling with a concerning trend: rising electricity prices across the country. This increase is not merely a fluctuation but a complex issue shaped by a confluence of factors including inflation, climate change, and the transition to clean energy. Understanding these dynamics is crucial for navigating the current energy landscape and preparing for its future.

Inflation and Its Impact on Energy Costs

Inflation, the economic phenomenon of rising prices across various sectors, has significantly impacted the cost of living, including electricity and natural gas prices for households. As the price of goods and services increases, so too does the cost of producing and delivering electricity. Energy production relies heavily on raw materials, such as metals and fuels, whose prices have surged in recent years. For instance, the costs associated with mining, transporting, and refining these materials have risen, thereby increasing the operational expenses for power plants.

Moreover, inflation affects labor costs, as wages often need to keep pace with the rising cost of living. As utility companies face higher expenses for both materials and labor, these costs are inevitably passed on to consumers in the form of higher electricity bills.

Climate Change and Energy Supply Disruptions

Climate change also plays a significant role in driving up electricity prices. Extreme weather events, such as hurricanes, heatwaves, and floods, have become more frequent and severe due to climate change. These events disrupt energy production and distribution by damaging infrastructure, impeding transportation, and affecting the availability of resources.

For example, hurricanes can knock out power plants and damage transmission lines, leading to shortages and higher costs. During periods of extreme summer heat across many regions, heatwaves can strain the power grid as increased demand for air conditioning pushes the system to its limits. Such disruptions not only lead to higher immediate costs but also necessitate costly repairs and infrastructure upgrades.

Additionally, the increasing frequency of natural disasters forces utilities to invest in more resilient infrastructure, as many utilities spend more on delivery to harden grids and reduce outages, which adds to overall costs. These investments, while necessary for long-term reliability, contribute to short-term price increases for consumers.

The Transition to Clean Energy

The shift towards clean energy is another pivotal factor influencing electricity prices. While renewable energy sources like wind, solar, and hydro power are crucial for reducing greenhouse gas emissions and combating climate change, their integration into the existing grid presents challenges.

Renewable energy infrastructure requires substantial initial investment. The construction of wind farms, solar panels, and the associated grid improvements involve significant capital expenditure. These upfront costs are often reflected in electricity prices. Moreover, renewable energy sources can be intermittent, meaning they do not always produce electricity at times of high demand. This intermittency necessitates the development of energy storage solutions and backup systems, which further adds to the costs.

Utilities are also transitioning from fossil fuel-based energy production to cleaner alternatives, a process that involves both technological and operational shifts and intersects with the broader energy crisis impacts on electricity, gas, and EVs nationwide. These changes can temporarily increase costs as utilities phase out old systems and implement new ones. While the long-term benefits of cleaner energy include environmental sustainability and potentially lower operating costs, the transition period can be financially burdensome for consumers.

The Path Forward

Addressing rising electricity prices requires a multifaceted approach. Policymakers must balance the need for immediate relief, as California regulators face calls for action amid soaring bills, with the long-term goals of sustainability and resilience. Investments in energy efficiency can help reduce overall demand and ease pressure on the grid. Expanding and modernizing energy infrastructure to accommodate renewable sources can also mitigate price volatility.

Additionally, efforts to mitigate climate change through improved resilience and adaptive measures can reduce the frequency and impact of extreme weather events, thereby stabilizing energy costs.

Consumer education is vital in this process. Understanding the factors driving electricity prices can empower individuals to make informed decisions about energy consumption and conservation. Furthermore, exploring energy-efficient appliances and practices can help manage costs in the face of rising prices.

In summary, the rising cost of electricity is a multifaceted issue influenced by inflation, climate change, and the transition to clean energy, and recent developments show Germany's rising energy costs in the coming year. While these factors pose significant challenges, they also offer opportunities for innovation and improvement in how we produce, distribute, and consume energy. By addressing these issues with a balanced approach, it is possible to navigate the complexities of rising electricity prices while working towards a more sustainable and resilient energy future.

 

Related News

View more

Neo-Nazi, woman accused of plotting 'hate-fueled attacks' on power stations, federal complaint says

Baltimore Substation Attack Plot highlights alleged neo-Nazi plans targeting electrical substations and the power grid, as FBI and DHS warn of domestic extremism threats to critical infrastructure, with arrests in Maryland disrupting potential sniper attacks.

 

Key Points

An alleged extremist plot to disable Baltimore's power grid by shooting substations, thwarted by federal arrests.

✅ Two suspects charged in Maryland conspiracy

✅ Targets included five substations around Baltimore

✅ FBI cites domestic extremism threat to infrastructure

 

A neo-Nazi in Florida and a Maryland woman conspired to attack several electrical substations in the Baltimore area, federal officials say.

Sarah Beth Clendaniel and Brandon Clint Russell were arrested and charged in a conspiracy to disable the power grid by shooting out substations via "sniper attacks," according to a criminal complaint from the U.S. Attorney's Office for the District of Maryland.

Clendaniel allegedly said she wanted to "completely destroy this whole city" and was planning to target five substations situated in a "ring" around Baltimore, the complaint said. Russell is part of a violent extremist group that has cells in multiple states, and he previously planned to attack critical infrastructure in Florida, the complaint said.

"This planned attack threatened lives and would have left thousands of Marylanders in the cold and dark," Maryland U.S. Attorney Erek Barron said in a press release. "We are united and committed to using every legal means necessary to disrupt violence, including hate-fueled attacks."

The news comes as concerns grow about an increase in targeted substation attacks on U.S. substations tied to domestic extremism.

 

What to know about substation attacks

Federal data shows vandalism and suspicious activities at electrical facilities soared nationwide last year, and cyber actors have accessed utilities' control rooms as well.

At the end of the year, attacks or potential attacks were reported on more than a dozen substations and one power plant across five states, and Symantec documented Russia-linked Dragonfly activity targeting the energy sector earlier. Several involved firearms.

In December, targeted attacks on substations in North Carolina left tens of thousands without power amid freezing temperatures, spurring renewed focus on protecting the U.S. power grid among officials. The FBI is investigating.

Vandalism at facilities in Washington left more than 21,000 without electricity on Christmas Day, even as hackers breached power-plant systems in other states. Two men were arrested, and one told police he planned to disrupt power to commit a burglary.

The Department of Homeland Security last year said domestic extremists had been developing "credible, specific plans" since at least 2020 and would continue to "encourage physical attacks against electrical infrastructure," and the U.S. government has condemned Russia for power grid hacking as well.

Last February, three neo-Nazis pleaded guilty to federal crimes related to a scheme to attack the grid with rifles, with each targeting a substation in a different region of the U.S., even as reports that Russians hacked into US electric utilities drew widespread attention.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.