Orecon to test wave-energy conversion buoy off English coast

By Industrial Info Resources


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Orecon Limited, a spinoff company from Plymouth University, has developed a wave-energy conversion buoy that utilizes three multi-resonant chambers to provide renewable energy.

Orecon has raised more than $19.5 million to fund the construction and deployment of the project, its first commercial 1.5-megawatt (MW) offshore buoy, southwest of Hayle, England, in conjunction with the South West of England Regional Development Agency's Wave Hub Project.

The buoy utilizes multiple oscillating water columns that drive air turbo-generator sets. The buoys are about 40 meters in diameter and rise more than 5 meters over waves. All of the machinery is above the water. Construction of the first unit is expected to take eight months.

After the prototype is complete, Orecon expects following units to be built in about five months. Deployment is quick and depends a lot on how far the buoys are transported. The actual installation will take about three and a half days: three days to install the six anchors and another 12 hours to attach the buoy.

Construction of the first unit is expected to begin in second quarter of 2009 with deployment set for April 2010.

Related News

B.C. Hydro doing good job managing billions in capital assets, says auditor

BC Hydro Asset Management Audit confirms disciplined oversight of dams, generators, power lines, substations, and transformers, with robust lifecycle planning, reliability metrics, and capital investment sustaining aging infrastructure and near full-capacity performance.

 

Key Points

Audit confirming BC Hydro's asset governance and lifecycle planning, ensuring safe, reliable grid infrastructure.

✅ $25B in assets; many facilities operating near full capacity.

✅ 80% of assets are dams, generators, lines, poles, substations, transformers.

✅ $2.5B invested in renewal, repair, and replacement in fiscal 2018.

 

A report by B.C.’s auditor-general says B.C. Hydro is doing a good job managing the province’s dams, generating stations and power lines, including storm response during severe weather events.

Carol Bellringer says in the audit that B.C. Hydro’s assets are valued at more than $25 billion and even though some generating facilities are more than 85 years old they continue to operate near full-capacity and can accommodate holiday demand peaks when needed.

The report says about 80 per cent of Hydro’s assets are dams, generators, power lines, poles, substations and transformers that are used to provide electrical service to B.C., where residential electricity use shifted during the pandemic.

The audit says Hydro invested almost $2.5 billion to renew, repair or replace the assets it manages during the last fiscal year, ending March 31, 2018, and, in a broader context, bill relief has been offered to only part of the province.

Bellringer’s audit doesn’t examine the $10.7 billion Site C dam project, which is currently under construction in northeast B.C. and not slated for completion until 2024.

She says the audit examined whether B.C. Hydro has the information, practices, processes and systems needed to support good asset management, at a time when other utilities are dealing with pandemic impacts on operations.

 

 

Related News

View more

Military Is Ramping Up Preparation For Major U.S. Power Grid Hack

DARPA RADICS Power Grid Security targets DoD resilience to cyber attacks, delivering early warning, detection, isolation, and characterization tools, plus a secure emergency network to protect critical infrastructure and speed grid restoration and communications.

 

Key Points

A DoD/DARPA initiative to detect, contain, and rapidly recover the U.S. grid from sophisticated cyber attacks.

✅ Early warning separates attacks from routine outages

✅ Pinpoints intrusion points and malware used

✅ Builds secure emergency network for rapid restoration

 

The U.S. Department of Defense is growing increasingly concerned about hackers taking down our power grid and crippling the nation, reflecting a renewed focus on grid protection across agencies, which is why the Pentagon has created a $77-million security plan that it hopes will be up and running by 2020.

The U.S. power grid is threatened every few days. While these physical and cyber attacks have never led to wide-scale outages, attacks are getting more sophisticated. According to a 494-page report released by the Department of Energy in January and a new grid report card, the nation’s grid “faces imminent danger from cyber attacks.” Such a major, sweeping attack could threaten “U.S. lifeline networks, critical defense infrastructure, and much of the economy; it could also endanger the health and safety of millions of citizens.” If it were to happen today, America could be powered-down and vulnerable for weeks.

#google#

The DoD is working on an automated system to speed up recovery time to a week or less — what it calls the Rapid Attack Detection, Isolation, and Characterization (RADICS) program. DARPA, the Pentagon’s research arm, originally solicited proposals in late 2015, asking for technology that did three things. Primarily, it had to detect early warning signs and distinguish between attacks and normal outages, especially after intrusions at U.S. electric utilities underscored the risk, but it also had to pinpoint the access point of the attack and determine what malicious software was used. Finally, it must include an emergency system that can rapidly connect various power-supply centers, without any human coordination. This would allow emergency and military responders to have an ad hoc communication system in place moments after an attack.

“If a well-coordinated cyberattack on the nation’s power grid were to occur today, the time it would take to restore power would pose daunting national security challenges,” said DARPA program manager John Everett, in a statement, at the time. “Beyond the severe domestic impacts, including economic and human costs, prolonged disruption of the grid would hamper military mobilization and logistics, impairing the government’s ability to project force or pursue solutions to international crises.”

DARPA plans to spend $77 million on RADICS, while DOE funding to improve the grid complements these initiatives. Last November, SRI International announced it had received $7.3 million from the program. In December, Raython was granted $9 million. The latest addition is BAE Systems, which received $8.6 million last month to develop technology that detects and contains power-grid threats, and creates a secure emergency provisional system that restores some power and communication in the wake of an attack — what is being called a secure emergency network.

According to the military news site Defense Systems, BAE’s SEN would rely on radio, satellite, or wireless internet — particularly as ransomware attacks continue to rise — whatever is available that allows the grid to continue working. The SEN would serve as a wireless connection between separate power grid stations.

While the ultimate goal of the RADICS program will be the restoration of civilian power and communications, the SEN will prioritize communication networks that would be used for defense or combat, so the U.S. government can still wage war while the rest of us are in the dark.

 

Related News

View more

Global Energy War Escalates: Price Hikes and Instability

Russia-Ukraine Energy War disrupts infrastructure, oil, gas, and electricity, triggering supply shocks, price spikes, and inflation. Global markets face volatility, import risks, and cybersecurity threats, underscoring energy security, grid resilience, and diversified supply.

 

Key Points

It is Russia's strategic targeting of Ukraine's energy system to disrupt supplies, raise prices, and hit global markets.

✅ Attacks weaponize energy to strain Ukraine and allies

✅ Supply shocks risk oil, gas, and electricity price spikes

✅ Urgent need for cybersecurity, grid resilience, diversification

 

Russia's targeting of Ukraine's energy infrastructure has unleashed an "energy war" that could lead to widespread price increases, supply disruptions, and ripple effects throughout the global energy market, felt across the continent, with warnings of Europe's energy nightmare taking shape.

This highlights the unprecedented scale and severity of the attacks on Ukrainian energy infrastructure. These attacks have disrupted power supplies, prompting increased electricity imports to keep the lights on, hindered oil and gas production, and damaged refineries, impacting Ukraine and the broader global energy system.


Energy as a Weapon

Experts claim that Russia's deliberate attacks on Ukraine's energy infrastructure represent a strategic escalation, amid energy ceasefire violations alleged by both sides, demonstrating the Kremlin's willingness to weaponize energy as part of its war effort. By crippling Ukraine's energy system, Russia aims to destabilize the country, inflict suffering on civilians, and undermine Western support for Ukraine.


Impacts on Global Oil and Gas Markets

The ongoing attacks on Ukraine's energy infrastructure could significantly impact global oil and gas markets, leading to supply shortages and dramatic price increases, even as European gas prices briefly returned to pre-war levels earlier this year, underscoring extreme volatility. Ukraine's oil and gas production, while not massive in global terms, is still significant, and its disruption feeds into existing anxieties about global energy supplies already affected by the war.


Ripple Effects Beyond Ukraine

The impacts of the "energy war" won't be limited to Ukraine or its immediate neighbours. Price increases for oil, gas, and electricity are expected worldwide, further fueling inflation and exacerbating the global cost of living crisis.  Additionally, supply disruptions could disproportionately affect developing nations and regions heavily dependent on energy imports, making targeted energy security support to Ukraine and other vulnerable importers vital.


Vulnerability of Energy Infrastructure

The attacks on Ukraine highlight the vulnerability of critical energy infrastructure worldwide, as the country prepares for winter under persistent threats. The potential for other state or non-state actors to use similar tactics raises concerns about security and long-term stability in the global energy sector.


Strengthening Resilience

Experts emphasize the urgent need for global cooperation in strengthening the resilience of energy infrastructure. Investments in cybersecurity, diverse energy sources, and decentralized grids are crucial for mitigating the risks of future attacks, with some arguing that stepping away from fossil fuels would improve US energy security over time. International cooperation will be key in identifying vulnerable areas and providing aid to nations whose infrastructure is under threat.


The Unpredictable Future of Energy

The "energy war" unleashed by Russia has injected a new level of uncertainty into the global energy market. In addition to short-term price fluctuations and supply issues, the conflict could accelerate the long-term transition towards renewable energy sources and reshape how nations approach energy security.

 

Related News

View more

Ontario confronts reality of being short of electricity in the coming years

Ontario electricity shortage is looming, RBC and IESO warn, as EV electrification surges, Pickering nuclear faces delays, and gas plants backstop expiring renewables, raising GHG emissions and grid reliability concerns across the province.

 

Key Points

A projected supply shortfall as demand rises from electrification, expiring contracts, and delayed nuclear capacity.

✅ RBC warns shortages as early as 2026, significant by 2030

✅ IESO sees EV-driven demand; 5,000-15,000 MW by 2035

✅ Gas reliance boosts GHGs; Pickering life extension assessed

 

In a fit of ideological pique, Doug Ford’s government spent more than $200 million to scrap more than 700 green energy projects soon after winning the 2018 election, amid calls to make clean, affordable power a central issue, portraying them as “unnecessary and expensive energy schemes.”

A year later, then Associate Energy Minister Bill Walker defended the decision, declaring, “Ontario has an adequate supply of power right now.”

Well, life moves fast. At the time, scrapping the renewable energy projects was criticized as short-sighted and wasteful, raising doubts about whether Ontario was embracing clean power in a meaningful way. It seems especially so now as Ontario confronts the reality of being short of electricity in the coming years.

How short? A recent report by RBC calls the situation “urgent,” saying that Canada’s most populous province could face energy shortages as early as 2026. As contracts for non-hydro renewables and gas plants expire, the shortages could be “significant” by 2030, the bank report said, with grid greening costs adding to the challenge.

The Independent Electricity System Operator (IESO), which manages the electrical supply in Ontario, says demand for electricity could rise at rates not seen in many years, as the government moves to add new gas plants to boost capacity. “Economic growth coming out of the pandemic, along with electrification in many sectors, is driving energy use up,” the agency said in a December assessment.

The good news is that demand is being driven, in part, by the transition to “green” power – carbon-emission-free electricity – by sectors such as transportation and manufacturing. That will help reduce emissions. Yet meeting that demand presents some challenges, prompting the province to outline a plan to address growing needs across the system. The shift to electric vehicles alone is expected to cause a spike in demand starting in 2030. By 2035, the province could need an additional 5,000 to 15,000 megawatts of electricity, the IESO estimates.

It was perhaps no surprise then to see the province announce last week that it wants to delay the long-planned closing of the Pickering nuclear plant by a year to 2026, even as others note the station is slated to close as planned. Operations beyond that would require refurbishing the facility. The province said it’s taking a fresh look at whether that would make sense to extend its life by another 30 years.

In the interim, the province will be forced to dramatically ramp up its reliance on natural gas plants for electricity generation – and, as analysts warn, Ontario’s power mix could get dirtier even before new non-emitting capacity is built, and in the process, increase greenhouse gas emissions from the energy grid by 400 per cent. Broader electrification is expected to produce “significant” GHG emissions reductions in Ontario over the next two decades, according to the IESO. Still, it’s working at cross-purposes if your electric car is charged by electricity generated by fossil fuels.

 

Related News

View more

Hot Houston summer and cold winter set new electricity records

US Electricity Demand 2018-2050 projects slower growth as energy consumption, power generation, air conditioning, and electric heating shift with efficiency standards, commercial floor space, industrial load, and household growth across the forecast horizon.

 

Key Points

A forecast of US power use across homes, commercial space, industrial load, and efficiency trends from 2018 to 2050.

✅ 2018 generation hit record; residential sales up 6%.

✅ Efficiency curbs demand; growth lags population and floor space.

✅ Commercial sales up 2%; industrial demand fell 3% in 2018.

 

Last year's Houston cold winter and hot summer drove power use to record levels, especially among households that rely on electricity for air conditioning during extreme weather conditions.

Electricity generation increased 4 per cent nationwide in 2018 and produced 4,178 million megawatt hours, driven in part by record natural gas generation across the U.S., surpassing the previous peak of 4,157 megawatt hours set in 2007, the Energy Department reported.

U.S. households bought 6 percent more electricity in 2018 than they did the previous year, despite longer-term declines in national consumption, reflecting the fact 87 percent of households cool their homes with air conditioning and 35 percent use electricity for heating.

Electricity sales to the commercial sector increased 2 percent in 2018 compared to the previous year while the industrial sector bought 3 percent less last year.

Going forward, the Energy Department forecasts that electricity consumption will grow at a slower pace than in recent decades, aligning with falling sales projections as technology improves and energy efficiency standards moderate consumption.

The economy and population growth are primary drivers of demand and the government predicts the number of households will grow at 0.7 percent per year from now until 2050 but electricity demand will grow only by 0.4 percent annually.

Likewise, commercial floor space is expected to increase 1 percent per year from now until 2050 but electricity sales will increase only by half that amount.

Globally, surging electricity demand is putting power systems under strain, providing context for these domestic trends.

 

Related News

View more

NRC Begins Special Inspection at River Bend Nuclear Power Plant

NRC Special Inspection at River Bend reviews failures of portable emergency diesel generators, nuclear safety measures, and Entergy Operations actions after Fukushima; off-site power loss readiness, remote COVID-19 oversight, and corrective action plans are assessed.

 

Key Points

An NRC review of generator test failures at River Bend, assessing nuclear safety, root causes, and corrective actions.

✅ Evaluates failures of portable emergency diesel generators

✅ Reviews causal analyses and adequacy of corrective actions

✅ Remote COVID-19 oversight; public report expected within 45 days

 

The Nuclear Regulatory Commission has begun a special inspection at the River Bend nuclear power plant, part of broader oversight that includes the Turkey Point renewal application, to review circumstances related to the failure of five portable emergency diesel generators during testing. The plant, operated by Entergy Operations, is located in St. Francisville, La., as nations like France outage risks continue to highlight broader reliability concerns.

The generators are used to supply power to plant systems in the event of a prolonged loss of off-site electrical power coupled with a failure of the permanently installed emergency generators, a concern underscored by incidents such as the SC nuclear plant leak that shut down production for weeks. These portable generators were acquired as part of the facility's safety enhancements mandated by the NRC following the 2011 accident at the Fukushima Dai-ichi facility in Japan, and amid constraints like France limiting output from warm rivers, the emphasis on resilience remains.

The three-member NRC team will develop a chronology of the test failures and evaluate the licensee's causal analyses and the adequacy of corrective actions, informed by lessons from cases like Davis-Besse closure stakes that underscore risk management.

Due to the COVID-19 pandemic, they will complete most of their work remotely, while other regions address constraints such as high river temperatures limiting output for nuclear stations. An inspection report documenting the team's findings, released as global nuclear project milestones continue across the sector, will be publicly available within 45 days of the end of the inspection.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified