Petrochemicals group Sasol, the world's leader in making motor fuel from coal, plans to reduce its carbon footprint by capturing its emissions, producing solar power and making its plants more efficient.
Henri Loubser, project director at the company's New Energy unit, said a public-private partnership between Sasol, other energy firms and a South African university would start producing thin film solar modules within 2-1/2 years.
"We are still speaking two and a half years before the facility can realistically be operational," Loubser told journalists.
A South African team of scientists invented the design for the solar panels, which consist of micro-thin metallic film — only five microns thick – that converts light into energy at a fraction of the cost of conventional panels.
The Thin Film Solar Technology (TFST) joint venture will build a power plant to produce 40 MW using the film, he said.
Sasol, ranked second after power utility Eskom the country's top polluter, reported total carbon emissions in South Africa for the financial year to end-June of 62 million tonnes.
The firm, criticized by environmentalists for doing little to streamline its operations toward a carbon-free economy, said it had set a target to reduce its emissions intensity by 15 percent across its operations by 2020 from a 2005 baseline.
It also plans to make new coal-to-liquids (CTL) plants more efficient by reducing emissions of those built before 2020 by 20 percent and those built before 2030 by 30 percent.
Loubser said producing energy from solar sources, of which there is an abundance in South Africa, will be a focus for the company, and Sasol plans to make a choice which type of concentrated solar power technology it will pursue by next June.
Loubser said Sasol also plans to make its power generation units cleaner by either converting natural gas to electricity or by building nuclear plants to power its operations.
"We will consider a technology step like that (in nuclear)... it's baseload power and it's a proven technology," he said.
The company said switching from coal to natural gas already reduces its plant's emissions by 40 percent.
In the long term it will also invest in producing power from hydro sources, preferably from countries around South Africa.
Sasol would like to store emissions from its power plants.
It currently captures between 20-30 million tonnes of carbon dioxide from its Secunda CTL plant a year but it flares the carbon into the air as it has yet to find a proper storage site.
Sasol plans to generate half of its power needs by 2012 to beat rising electricity prices and to reduce its dependence on the national grid, especially as utility Eskom struggles to supply fast rising demand from industrial and residential users.
ITER Nuclear Fusion advances tokamak magnetic confinement, heating deuterium-tritium plasma with superconducting magnets, targeting net energy gain, tritium breeding, and steam-turbine power, while complementing laser inertial confinement milestones for grid-scale electricity and 2025 startup goals.
Key Points
ITER Nuclear Fusion is a tokamak project confining D-T plasma with magnets to achieve net energy gain and clean power.
✅ Tokamak magnetic confinement with high-temp superconducting coils
✅ Deuterium-tritium fuel cycle with on-site tritium breeding
✅ Targets net energy gain and grid-scale, low-carbon electricity
It sounds like the stuff of dreams: a virtually limitless source of energy that doesn’t produce greenhouse gases or radioactive waste. That’s the promise of nuclear fusion, often described as the holy grail of clean energy by proponents, which for decades has been nothing more than a fantasy due to insurmountable technical challenges. But things are heating up in what has turned into a race to create what amounts to an artificial sun here on Earth, one that can provide power for our kettles, cars and light bulbs.
Today’s nuclear power plants create electricity through nuclear fission, in which atoms are split, with next-gen nuclear power exploring smaller, cheaper, safer designs that remain distinct from fusion. Nuclear fusion however, involves combining atomic nuclei to release energy. It’s the same reaction that’s taking place at the Sun’s core. But overcoming the natural repulsion between atomic nuclei and maintaining the right conditions for fusion to occur isn’t straightforward. And doing so in a way that produces more energy than the reaction consumes has been beyond the grasp of the finest minds in physics for decades.
But perhaps not for much longer. Some major technical challenges have been overcome in the past few years and governments around the world have been pouring money into fusion power research as part of a broader green industrial revolution under way in several regions. There are also over 20 private ventures in the UK, US, Europe, China and Australia vying to be the first to make fusion energy production a reality.
“People are saying, ‘If it really is the ultimate solution, let’s find out whether it works or not,’” says Dr Tim Luce, head of science and operation at the International Thermonuclear Experimental Reactor (ITER), being built in southeast France. ITER is the biggest throw of the fusion dice yet.
Its $22bn (£15.9bn) build cost is being met by the governments of two-thirds of the world’s population, including the EU, the US, China and Russia, at a time when Europe is losing nuclear power and needs energy, and when it’s fired up in 2025 it’ll be the world’s largest fusion reactor. If it works, ITER will transform fusion power from being the stuff of dreams into a viable energy source.
Constructing a nuclear fusion reactor ITER will be a tokamak reactor – thought to be the best hope for fusion power. Inside a tokamak, a gas, often a hydrogen isotope called deuterium, is subjected to intense heat and pressure, forcing electrons out of the atoms. This creates a plasma – a superheated, ionised gas – that has to be contained by intense magnetic fields.
The containment is vital, as no material on Earth could withstand the intense heat (100,000,000°C and above) that the plasma has to reach so that fusion can begin. It’s close to 10 times the heat at the Sun’s core, and temperatures like that are needed in a tokamak because the gravitational pressure within the Sun can’t be recreated.
When atomic nuclei do start to fuse, vast amounts of energy are released. While the experimental reactors currently in operation release that energy as heat, in a fusion reactor power plant, the heat would be used to produce steam that would drive turbines to generate electricity, even as some envision nuclear beyond electricity for industrial heat and fuels.
Tokamaks aren’t the only fusion reactors being tried. Another type of reactor uses lasers to heat and compress a hydrogen fuel to initiate fusion. In August 2021, one such device at the National Ignition Facility, at the Lawrence Livermore National Laboratory in California, generated 1.35 megajoules of energy. This record-breaking figure brings fusion power a step closer to net energy gain, but most hopes are still pinned on tokamak reactors rather than lasers.
In June 2021, China’s Experimental Advanced Superconducting Tokamak (EAST) reactor maintained a plasma for 101 seconds at 120,000,000°C. Before that, the record was 20 seconds. Ultimately, a fusion reactor would need to sustain the plasma indefinitely – or at least for eight-hour ‘pulses’ during periods of peak electricity demand.
A real game-changer for tokamaks has been the magnets used to produce the magnetic field. “We know how to make magnets that generate a very high magnetic field from copper or other kinds of metal, but you would pay a fortune for the electricity. It wouldn’t be a net energy gain from the plant,” says Luce.
One route for nuclear fusion is to use atoms of deuterium and tritium, both isotopes of hydrogen. They fuse under incredible heat and pressure, and the resulting products release energy as heat
The solution is to use high-temperature, superconducting magnets made from superconducting wire, or ‘tape’, that has no electrical resistance. These magnets can create intense magnetic fields and don’t lose energy as heat.
“High temperature superconductivity has been known about for 35 years. But the manufacturing capability to make tape in the lengths that would be required to make a reasonable fusion coil has just recently been developed,” says Luce. One of ITER’s magnets, the central solenoid, will produce a field of 13 tesla – 280,000 times Earth’s magnetic field.
The inner walls of ITER’s vacuum vessel, where the fusion will occur, will be lined with beryllium, a metal that won’t contaminate the plasma much if they touch. At the bottom is the divertor that will keep the temperature inside the reactor under control.
“The heat load on the divertor can be as large as in a rocket nozzle,” says Luce. “Rocket nozzles work because you can get into orbit within minutes and in space it’s really cold.” In a fusion reactor, a divertor would need to withstand this heat indefinitely and at ITER they’ll be testing one made out of tungsten.
Meanwhile, in the US, the National Spherical Torus Experiment – Upgrade (NSTX-U) fusion reactor will be fired up in the autumn of 2022, while efforts in advanced fission such as a mini-reactor design are also progressing. One of its priorities will be to see whether lining the reactor with lithium helps to keep the plasma stable.
Choosing a fuel Instead of just using deuterium as the fusion fuel, ITER will use deuterium mixed with tritium, another hydrogen isotope. The deuterium-tritium blend offers the best chance of getting significantly more power out than is put in. Proponents of fusion power say one reason the technology is safe is that the fuel needs to be constantly fed into the reactor to keep fusion happening, making a runaway reaction impossible.
Deuterium can be extracted from seawater, so there’s a virtually limitless supply of it. But only 20kg of tritium are thought to exist worldwide, so fusion power plants will have to produce it (ITER will develop technology to ‘breed’ tritium). While some radioactive waste will be produced in a fusion plant, it’ll have a lifetime of around 100 years, rather than the thousands of years from fission.
At the time of writing in September, researchers at the Joint European Torus (JET) fusion reactor in Oxfordshire were due to start their deuterium-tritium fusion reactions. “JET will help ITER prepare a choice of machine parameters to optimise the fusion power,” says Dr Joelle Mailloux, one of the scientific programme leaders at JET. These parameters will include finding the best combination of deuterium and tritium, and establishing how the current is increased in the magnets before fusion starts.
The groundwork laid down at JET should accelerate ITER’s efforts to accomplish net energy gain. ITER will produce ‘first plasma’ in December 2025 and be cranked up to full power over the following decade. Its plasma temperature will reach 150,000,000°C and its target is to produce 500 megawatts of fusion power for every 50 megawatts of input heating power.
“If ITER is successful, it’ll eliminate most, if not all, doubts about the science and liberate money for technology development,” says Luce. That technology development will be demonstration fusion power plants that actually produce electricity, where advanced reactors can build on decades of expertise. “ITER is opening the door and saying, yeah, this works – the science is there.”
EU Renewable Energy Transition is accelerating under REPowerEU, as wind and solar generation hit records, improving energy security, efficiency, and decarbonization while reducing reliance on Russian fossil fuels across the EU grid.
Key Points
EU shift to wind and solar under REPowerEU to cut fossil fuels, boost efficiency, and secure energy supply.
✅ Wind and solar set record 22% of EU electricity in 2022
✅ REPowerEU targets over 40% renewables and 15% lower demand by 2030
✅ Diversifies away from Russian fuels; partners with US and Norway
Europe is producing all-time highs of wind and solar energy as the 27-country group works to reduce its reliance on fossil fuels from Russia, a shift underscored by Europe's green surge across the bloc.
Four months after Vladimir Putin’s full-scale invasion of Ukraine in February 2022, the European Commission launched REPowerEU. This campaign aims to:
Boost the use of renewable energy.
Reduce overall energy consumption.
Diversify energy sources.
EU countries were already moving toward renewable energy, but Russia’s war against Ukraine accelerated that trend. In 2022, for the first time, renewables surpassed fossil fuels and wind and solar power surpassed gas as a source of electricity. Wind and solar provided a record-breaking 22% of EU countries’ electrical supply, according to London-based energy think tank Ember.
“We have to double down on investments in home-grown renewables,” European Commission President Ursula von der Leyen said in October 2022. “Not only for the climate but also because the transition to the clean energy is the best way to gain independence and to have security of energy supply.”
Across the continent, growth in solar generation rose by 25% in 2022, according to Ember, as solar reshapes electricity prices in Northern Europe. Twenty EU countries produced their highest share of solar power in 2022. In October, Greece ran entirely on renewables for several hours and is seven years ahead of schedule for its 2030 solar capacity target.
By 2030, RePowerEU aims to provide more than 40% of the EU’s total power from renewables, aligning with global renewable records being shattered worldwide.
To meet the European Commission’s goal to cut EU energy usage by 15%, people and governments changed their habits and became more energy-efficient, while Germany's solar power boost helped bolster supply. Among their actions:
Germany turned down the heat in public buildings and lowered the cost of train tickets to reduce car usage, as clean energy hit 50% in Germany during this period.
Spain ordered stores and public buildings to turn off their lights at night.
France dimmed the Eiffel Tower and reduced city speed limits.
For the oil and gas that the EU still needed to import, countries turned to partners such as Norway and the United States.
Ontario Off-Peak Electricity Rate Relief extends 8.5 cents/kWh pricing 24/7 for residential, small business, and farm customers, covering Time-Of-Use and tiered plans to stabilize utility bills during COVID-19 Stay-at-Home measures across Ontario.
Key Points
A province-wide 8.5 cents/kWh price applied 24/7 until Feb 22, 2021 for TOU and tiered users to reduce electricity bills
✅ 8.5 cents/kWh, applied 24/7 through Feb 22, 2021
✅ Available to TOU and tiered OEB-regulated customers
✅ Automatic on bills for homes, small businesses, farms
The Ontario government is once again extending electricity rate relief for families, small businesses and farms to support those spending more time at home while the province maintains the Stay-at-Home Order in the majority of public health regions. The government will continue to hold electricity prices to the off-peak rate of 8.5 cents per kilowatt-hour, compared with higher peak rates elsewhere in the day, until February 22, 2021. This lower rate is available 24 hours per day, seven days a week for Time-Of-Use and tiered customers.
"We know staying at home means using more electricity during the day when electricity prices are higher, that's why we are once again extending the off-peak electricity rate to provide households, small businesses and farms with stable and predictable electricity bills when they need it most," said Greg Rickford, Minister of Energy, Northern Development and Mines, Minister of Indigenous Affairs. "We thank Ontarians for continuing to follow regional Stay-at-Home orders to help stop the spread of COVID-19."
The off-peak rate came into effect January 1, 2021, providing families, farms and small businesses with immediate electricity rate relief, and for industrial and commercial companies, stable pricing initiatives have provided additional certainty. The off-peak rate will now be extended until the end of day February 22, 2021, for a total of 53 days of emergency rate relief. During this period, and alongside temporary disconnect moratoriums for residential customers, the off-peak price will continue to be automatically applied to electricity bills of all residential, small business, and farm customers who pay regulated rates set by the Ontario Energy Board and get a bill from a utility.
"We extend our thanks to the Ontario Energy Board and local distribution companies across the province, including Hydro One, for implementing this extended emergency rate relief and supporting Ontarians as they continue to work and learn from home," said Bill Walker, Associate Minister of Energy.
Ontario Electricity Pricing Pilot Projects explore alternative rates beyond time-of-use, with LDCs and the Ontario Energy Board testing dynamic pricing, demand management, smart-meter billing, and residential customer choice to enhance service and energy efficiency.
Key Points
Ontario LDC trials testing alternatives to time-of-use rates to improve billing, demand response, and efficiency.
✅ Data shared across LDCs and Ontario Energy Board provincewide
✅ Insights to enhance customer choice, bills, and energy savings
The results from three electricity pilot projects being offered in southern Ontario will be valuable to utility companies across the province.
Ontario Energy Minister Glenn Thibeault was in Barrie on Tuesday to announce the pilot projects, which will explore alternative pricing plans for electricity customers from three different utility companies, informed by the electricity cost allocation framework guiding rate design.
"Everyone in the industry is watching to see how the pilots deliver.", said Wendy Watson, director of communications for Greater Sudbury Utilities.
"The data will be shared will all the LDCs [local distribution companies] in the province, and probably beyond...because the industry tends to share that kind of information."
Most electricity customers in the province are billed using time-of-use rates, including options like the ultra-low overnight rates that lower costs during off-peak periods, where the cost of electricity varies depending on demand.
The Ontario Energy Board said in a media release that the projects will give residential customers more choice in how much they pay for electricity at different times, reflecting changes for Ontario electricity consumers that expand plan options.
Pilot projects can help improve service
Watson says these kinds of projects give LDCs the chance to experiment and explore new ways of delivering their service, including demand-response initiatives like the Peak Perks program that encourage conservation.
"Any pilot project is a great way to see if in practice if the theory proves out, so I think it's great that the province is supporting these LDCs," she says.
GSU recently completed its own pilot project, the Home Energy Assessment and Retrofit (HEAR) program, which focused on customers who use electric baseboards to heat their homes, amid broader provincial support for electric bills to ease costs."We installed some measures, like programmable thermostats and a few other pieces of equipment into their house," Watson says. "We also made some recommendations about other things that they could do to make their homes more energy efficient."
At the end of the program, GSU provided customers with a report so that they could the see the overall impact on their energy consumption.
Watson says a report on the results of the HEAR program will be released in the near future, for other LDCs interested in new ways to improve their service.
"We think it's incumbent on every LDC...to see what ideas that they can come up with and get approved so they can best serve their customers."
Germany nuclear phase-out underscores a high-stakes energy transition, trading reactors for renewables, LNG imports, and grid resilience to secure supply, cut emissions, and navigate climate policy, public opinion shifts, and post-Ukraine supply shocks.
Key Points
Germany's nuclear phase-out retires reactors, shifting to renewables, LNG, and grid upgrades for low-carbon power.
✅ Last three reactors: Neckarwestheim, Isar 2, and Emsland closed
✅ Supply secured via LNG imports, renewables, and grid flexibility
✅ Policy accelerated post-Fukushima; debate renewed after Ukraine war
The German government is phasing out nuclear power despite the energy crisis. The country is pulling the plug on its last three reactors, betting it will succeed in its green transition without nuclear power.
On the banks of the Neckar River, not far from Stuttgart in south Germany, the white steam escaping from the nuclear power plant in Baden-Württemberg will soon be a memory.
The same applies further east for the Bavarian Isar 2 complex and the Emsland complex, at the other end of the country, not far from the Dutch border.
While many Western countries depend on nuclear power, Europe's largest economy is turning the page, even if a possible resurgence of nuclear energy is debated until the end.
Germany is implementing the decision to phase out nuclear power taken in 2002 and accelerated by Angela Merkel in 2011, after the Fukushima disaster.
Fukushima showed that "even in a high-tech country like Japan, the risks associated with nuclear energy cannot be controlled 100 per cent", the former chancellor justified at the time.
The announcement convinced public opinion in a country where the powerful anti-nuclear movement was initially fuelled by fears of a Cold War conflict, and then by accidents such as Chernobyl.
The invasion of Ukraine on 24 February 2022 brought everything into question. Deprived of Russian gas, the flow of which was essentially interrupted by Moscow, Germany found itself exposed to the worst possible scenarios, from the risk of its factories being shut down to the risk of being without heating in the middle of winter.
With just a few months to go before the initial deadline for closing the last three reactors on 31 December, the tide of public opinion began to turn, and talk of a U-turn on the nuclear phaseout grew louder.
"With high energy prices and the burning issue of climate change, there were of course calls to extend the plants," says Jochen Winkler, mayor of Neckarwestheim, where the plant of the same name is in its final days.
Olaf Scholz's government, which the Green Party - the most hostile to nuclear power - is part of, finally decided to extend the operation of the reactors to secure the supply until 15 April.
"There might have been a new discussion if the winter had been more difficult if there had been power cuts and gas shortages nationwide. But we have had a winter without too many problems," thanks to the massive import of liquefied natural gas, notes Mr Winkler.
UK Future System Operator to replace National Grid as ESO, enabling smart grid reform, impartial system planning, vehicle-to-grid, long duration storage, and data-driven oversight to meet net zero and cut consumer energy costs.
Key Points
The UK Future System Operator is an independent ESO and planner, steering net zero with impartial data and smart grid coordination.
✅ Replaces National Grid ESO with independent system operator
✅ Enables smart grid, vehicle-to-grid, and long-duration storage
✅ Supports net zero, lower bills, and impartial system planning
The government plans to strip National Grid of its role keeping Great Britain’s lights on as part of a proposed “revolution’” in the electricity network driven by smart digital grid technologies.
The FTSE 100 company has played a role in managing the energy system of England, Scotland and Wales, including efforts such as a subsea power link that brings renewable power from Scotland to England (Northern Ireland has its own network). It is the electricity system operator, balancing supply and demand to ensure the electricity supply. But it will lose its place at the heart of the industry after government officials put forward plans to replace it with an independent “future system operator”.
The new system controller would help steer the country towards its climate targets, at the lowest cost to energy bill payers, by providing impartial data and advice after an overhaul of the rules governing the energy system to make it “fit for the future”.
The plans are part of a string of new proposals to help connect millions of electric cars, smart appliances and other green technologies to the energy system, and to fast-track grid connections nationwide, which government officials believe could help to save £10bn a year by 2050, and create up to 10,000 jobs for electricians, data scientists and engineers.
The new regulations aim to make it easier for electric cars to export electricity from their batteries back on to the power grid or to homes when needed. They could also help large-scale and long-duration batteries play a role in storing renewable energy, supported by infrastructure such as a 2GW substation helping integrate supply, so that it is available when solar and wind power generation levels are low.
Anne-Marie Trevelyan, the energy and climate change minister, said the rules would allow households to “take control of their energy use and save money” while helping to make sure there is clean electricity available “when and where it’s needed”.
She added: “We need to ensure our energy system can cope with the demands of the future. Smart technologies will help us to tackle climate change while making sure that the lights stay on and bills stay low.”
The energy regulator, Ofgem, raised concerns earlier this year that National Grid would face a “conflict of interest” in providing advice on the future electricity system because it also owns energy networks that stand to benefit financially from future investment plans. It called for a new independent operator to take its place.
Jonathan Brearley, Ofgem’s chief executive, said the UK requires a “revolution” in how and when it uses electricity, including demand shifts during self-isolation to help meet its climate targets and added that the government’s plans for a new digital energy system were “essential” to meeting this goal “while keeping energy bills affordable for everyone”.
A National Grid spokesperson said the company would “work closely” with the government and Ofgem on the role of a future system operator, as well as “the most appropriate ownership model and any future related sale”.
The division has earned National Grid, which has addressed cybersecurity fears in supplier choices, an average of £199m a year over the last five years, or 1.3% of the group’s total revenues, which are split between the UK – where it operates high-voltage transmission lines in England and Wales, and the country’s gas system – and its growing energy supply business in the US, aligned with investment in a smarter electricity infrastructure in the US to modernize grids.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.