Siemens eyes 46 billion euros in green sales

By Reuters


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Siemens aims to generate sales of more than 40 billion euros US $56 billion from its green technologies and products by 2014, Europe's biggest industrial conglomerate said.

It said revenue from environment portfolio was around 28 billion euros in its fiscal year to Sept 30, 2010 compared with slightly less than 27 billion euros the year before.

A bellwether of the euro zone's largest economy, Siemens has achieved earlier than planned its original target of generating green revenue of at least 25 billion euros in 2011.

Related News

Restrict price charged for gas and electricity - British MPs

UK Energy Price Cap aims to protect consumers on gas and electricity bills, tackling Big Six overcharging on default and standard variable tariffs, with Ofgem and MPs pushing urgent reforms to the broken market.

 

Key Points

A temporary absolute limit on default energy tariffs to shield consumers from overcharging on gas and electricity bills.

✅ Caps standard variable and default tariffs to protect loyalty.

✅ Targets Big Six pricing; oversight by Ofgem and BEIS MPs.

✅ Aims for winter protection while maintaining competition.

 

MPs are calling for a cap on the price of gas and electricity, with questions over the expected cost of a UK price cap amid fears consumers are being ripped off.

The Business, Energy and Industrial Strategy (BEIS) Select Committee says the Big Six energy companies have been overcharging for years.

MPs on the committee backed plans for a temporary absolute cap, noting debates over EU gas price cap strategies to fix what they called a "broken" energy market.

Labour's Rachel Reeves, who chairs the committee, said: "The energy market is broken. Energy is an essential good and yet millions of customers are ripped off for staying loyal to their energy provider.

"An energy price cap is now necessary and the Government must act urgently to ensure it is in place to protect customers next winter.

"The Big Six energy companies might whine and wail about the introduction of a price cap but they've been overcharging their customers on default and SVTs (standard variable tariffs) for years and their recent feeble efforts to move consumers off these tariffs has only served to highlight the need for this intervention."

The Committee also criticised Ofgem for failing to protect customers, especially the most vulnerable.

Draft legislation for an absolute cap on energy tariffs was published by the Government last year, and later developments like the Energy Security Bill have kept reform on the agenda.

But Business Secretary Greg Clark refused to guarantee that the flagship plans would be in place by next winter, despite warnings about high winter energy costs for households.

Committee members said there was a "clear lack of will" on the part of the Big Six to do what was necessary, including exploring decoupling gas and electricity prices, to deal with pricing problems.

A report from the committee found that customers are paying £1.4bn a year more than they should be under the current system.

Around 12 million households are stuck on poor-value tariffs, according to the report.

National assistance charity Citizens Advice said "loyal and vulnerable" customers had been "ripped off" for too long.

Chief executive Gillian Guy said: "An absolute cap, as recommended by the committee, is crucial to securing protection for the largest number of customers while continuing to provide competition in the market. This should apply to all default tariffs."

 

Related News

View more

Canadian Scientists say power utilities need to adapt to climate change

Canada Power Grid Climate Resilience integrates extreme weather planning, microgrids, battery storage, renewable energy, vegetation management, and undergrounding to reduce outages, harden infrastructure, modernize utilities, and safeguard reliability during storms, ice events, and wildfires.

 

Key Points

Canada's grid resilience hardens utilities against extreme weather using microgrids, storage, renewables, and upgrades.

✅ Grid hardening: microgrids, storage, renewable integration

✅ Vegetation management reduces storm-related line contact

✅ Selective undergrounding where risk and cost justify

 

The increasing intensity of storms that lead to massive power outages highlights the need for Canada’s electrical utilities to be more robust and innovative, climate change scientists say.

“We need to plan to be more resilient in the face of the increasing chances of these events occurring,” University of New Brunswick climate change scientist Louise Comeau said in a recent interview.

The East Coast was walloped this week by the third storm in as many days, with high winds toppling trees and even part of a Halifax church steeple, underscoring the value of storm-season electrical safety tips for residents.

Significant weather events have consistently increased over the last five years, according to the Canadian Electricity Association (CEA), which has tracked such events since 2003.

#google#

Nearly a quarter of total outage hours nationally in 2016 – 22 per cent – were caused by two ice storms, a lightning storm, and the Fort McMurray fires, which the CEA said may or may not be classified as a climate event.

“It (climate change) is putting quite a lot of pressure on electricity companies coast to coast to coast to improve their processes and look for ways to strengthen their systems in the face of this evolving threat,” said Devin McCarthy, vice president of public affairs and U.S. policy for the CEA, which represents 40 utilities serving 14 million customers.

The 2016 figures – the most recent available – indicate the average Canadian customer experienced 3.1 outages and 5.66 hours of outage time.

McCarthy said electricity companies can’t just build their systems to withstand the worst storm they’d dealt with over the previous 30 years. They must prepare for worse, and address risks highlighted by Site C dam stability concerns as part of long-term planning.

“There needs to be a more forward looking approach, climate science led, that looks at what do we expect our system to be up against in the next 20, 30 or 50 years,” he said.

Toronto Hydro is either looking at or installing equipment with extreme weather in mind, Elias Lyberogiannis, the utility’s general manager of engineering, said in an email.

That includes stainless steel transformers that are more resistant to corrosion, and breakaway links for overhead service connections, which allow service wires to safely disconnect from poles and prevents damage to service masts.

Comeau said smaller grids, tied to electrical systems operated by larger utilities, often utilize renewable energy sources such as solar and wind as well as battery storage technology to power collections of buildings, homes, schools and hospitals.

“Capacity to do that means we are less vulnerable when the central systems break down,” Comeau said.

Nova Scotia Power recently announced an “intelligent feeder” pilot project, which involves the installation of Tesla Powerwall storage batteries in 10 homes in Elmsdale, N.S., and a large grid-sized battery at the local substation. The batteries are connected to an electrical line powered in part by nearby wind turbines.

The idea is to test the capability of providing customers with back-up power, while collecting data that will be useful for planning future energy needs.

Tony O’Hara, NB Power’s vice-president of engineering, said the utility, which recently sounded an alarm on copper theft, was in the late planning stages of a micro-grid for the western part of the province, and is also studying the use of large battery storage banks.

“Those things are coming, that will be an evolution over time for sure,” said O’Hara.

Some solutions may be simpler. Smaller utilities, like Nova Scotia Power, are focusing on strengthening overhead systems, mainly through vegetation management, while in Ontario, Hydro One and Alectra are making major investments to strengthen infrastructure in the Hamilton area.

“The number one cause of outages during storms, particularly those with high winds and heavy snow, is trees making contact with power lines,” said N.S. Power’s Tiffany Chase.

The company has an annual budget of $20 million for tree trimming and removal.

“But the reality is with overhead infrastructure, trees are going to cause damage no matter how robust the infrastructure is,” said Matt Drover, the utility’s director for regional operations.

“We are looking at things like battery storage and a variety of other reliability programs to help with that.”

NB Power also has an increased emphasis on tree trimming and removal, and now spends $14 million a year on it, up from $6 million prior to 2014.

O’Hara said the vegetation program has helped drive the average duration of power outages down since 2014 from about three hours to two hours and 45 minutes.

Some power cables are buried in both Nova Scotia and New Brunswick, mostly in urban areas. But both utilities maintain it’s too expensive to bury entire systems – estimated at $1 million per kilometre by Nova Scotia Power.

The issue of burying more lines was top of mind in Toronto following a 2013 ice storm, but that’s city’s utility also rejected the idea of a large-scale underground system as too expensive – estimating the cost at around $15 billion, while Ontario customers have seen Hydro One delivery rates rise in recent adjustments.

“Having said that, it is prudent to do so for some installations depending on site specific conditions and the risks that exist,” Lyberogiannis said.

Comeau said lowering risks will both save money and disruption to people’s lives.

“We can’t just do what we used to do,” said Xuebin Zhang, a senior climate change scientist at Environment and Climate Change Canada.

“We have to build in management risk … this has to be a new norm.”

 

Related News

View more

British carbon tax leads to 93% drop in coal-fired electricity

Carbon Price Support, the UK carbon tax on power, slashed coal generation, cut CO2 emissions, boosted gas and imports via interconnectors, and signaled effective electricity market decarbonization across Great Britain and the EU.

 

Key Points

A UK power-sector carbon tax that drove coal off the grid, cut emissions, and shifted generation toward gas and imports.

✅ Coal generation fell from 40% to 3% in six years

✅ Rate rose to £18/tCO2 in 2015, boosting the coal-to-gas switch

✅ Added ~£39 to 2018 bills; imports via interconnectors eased prices

 

A tax on carbon dioxide emissions in Great Britain, introduced in 2013, has led to the proportion of electricity generated from coal falling from 40% to 3% over six years, a trend mirrored by global coal decline in power generation, according to research led by UCL.

British electricity generated from coal fell from 13.1 TWh (terawatt hours) in 2013 to 0.97 TWh in September 2019, and was replaced by other less emission-heavy forms of generation such as gas, as producers move away from coal in many markets. The decline in coal generation accelerated substantially after the tax was increased in 2015.

In the report, 'The Value of International Electricity Trading', researchers from UCL and the University of Cambridge also showed that the tax—called Carbon Price Support—added on average £39 to British household electricity bills, within the broader context of UK net zero policies shaping the energy transition, collecting around £740m for the Treasury, in 2018.

Academics researched how the tax affected electricity flows to connected countries and interconnector (the large cables connecting the countries) revenue between 2015—when the tax was increased to £18 per tonne of carbon dioxide—and 2018. Following this increase, the share of coal-fired electricity generation fell from 28% in 2015 to 5% in 2018, reaching 3% by September 2019. Increased electricity imports from the continent, alongside the EU electricity demand outlook across member states, reduced the price impact in the UK, and meant that some of the cost was paid through a slight increase in continental electricity prices (mainly in France and the Netherlands).

Project lead Dr. Giorgio Castagneto Gissey (Bartlett Institute for Sustainable Resources, UCL) said: "Should EU countries also adopt a high carbon tax we would likely see huge carbon emission reductions throughout the Continent, as we've seen in Great Britain over the last few years."

Lead author, Professor David Newbery (University of Cambridge), said: "The Carbon Price Support provides a clear signal to our neighbours of its efficacy at reducing CO2 emissions."

The Carbon Price Support was introduced in England, Scotland and Wales at a rate of £4.94 per tonne of carbon dioxide-equivalent and is now capped at £18 until 2021.The tax is one part of the Total Carbon Price, which also includes the price of EU Emissions Trading System permits and reflects global CO2 emissions trends shaping policy design.

Report co-author Bowei Guo (University of Cambridge) said: "The Carbon Price Support has been instrumental in driving coal off the grid, but we show how it also creates distortions to cross-border trade, making a case for EU-wide adoption."

Professor Michael Grubb (Bartlett Institute for Sustainable Resources, UCL) said: "Great Britain's electricity transition is a monumental achievement of global interest, and has also demonstrated the power of an effective carbon price in lowering dependence on electricity generated from coal."

The overall report on electricity trading also covers the value of EU interconnectors to Great Britain, measures the efficiency of cross-border electricity trading and considers the value of post-Brexit decoupling from EU electricity markets, setting these findings against the global energy transition underway.

Published today, the report annex focusing on the Carbon Price Support was produced by UCL to focus on the impact of the tax on British energy bills, with comparisons to Canadian climate policy debates informing grid impacts.

 

Related News

View more

Current Model For Storing Nuclear Waste Is Incomplete

Nuclear Waste Corrosion accelerates as stainless steel, glass, and ceramics interact in aqueous conditions, driving localized corrosion in repositories like Yucca Mountain, according to Nature Materials research on high-level radioactive waste storage.

 

Key Points

Degradation of waste forms and canisters from water-driven chemistry, causing accelerated, localized corrosion in storage.

✅ Stainless steel-glass contact triggers severe localized attack

✅ Ceramics and steel co-corrosion observed under aqueous conditions

✅ Yucca Mountain-like chemistry accelerates waste form degradation

 

The materials the United States and other countries plan to use to store high-level nuclear waste, even as utilities expand carbon-free electricity portfolios, will likely degrade faster than anyone previously knew because of the way those materials interact, new research shows.

The findings, published today in the journal Nature Materials (https://www.nature.com/articles/s41563-019-0579-x), show that corrosion of nuclear waste storage materials accelerates because of changes in the chemistry of the nuclear waste solution, and because of the way the materials interact with one another.

"This indicates that the current models may not be sufficient to keep this waste safely stored," said Xiaolei Guo, lead author of the study and deputy director of Ohio State's Center for Performance and Design of Nuclear Waste Forms and Containers, part of the university's College of Engineering. "And it shows that we need to develop a new model for storing nuclear waste."

Beyond waste storage, options like carbon capture technologies are being explored to reduce atmospheric CO2 alongside nuclear energy.

The team's research focused on storage materials for high-level nuclear waste -- primarily defense waste, the legacy of past nuclear arms production. The waste is highly radioactive. While some types of the waste have half-lives of about 30 years, others -- for example, plutonium -- have a half-life that can be tens of thousands of years. The half-life of a radioactive element is the time needed for half of the material to decay.

The United States currently has no disposal site for that waste; according to the U.S. General Accountability Office, it is typically stored near the nuclear power plants where it is produced. A permanent site has been proposed for Yucca Mountain in Nevada, though plans have stalled. Countries around the world have debated the best way to deal with nuclear waste; only one, Finland, has started construction on a long-term repository for high-level nuclear waste.

But the long-term plan for high-level defense waste disposal and storage around the globe is largely the same, even as the U.S. works to sustain nuclear power for decarbonization efforts. It involves mixing the nuclear waste with other materials to form glass or ceramics, and then encasing those pieces of glass or ceramics -- now radioactive -- inside metallic canisters. The canisters then would be buried deep underground in a repository to isolate it.

At the generation level, regulators are advancing EPA power plant rules on carbon capture to curb emissions while nuclear waste strategies evolve.

In this study, the researchers found that when exposed to an aqueous environment, glass and ceramics interact with stainless steel to accelerate corrosion, especially of the glass and ceramic materials holding nuclear waste.

In parallel, the electrical grid's reliance on SF6 insulating gas has raised warming concerns across Europe.

The study qualitatively measured the difference between accelerated corrosion and natural corrosion of the storage materials. Guo called it "severe."

"In the real-life scenario, the glass or ceramic waste forms would be in close contact with stainless steel canisters. Under specific conditions, the corrosion of stainless steel will go crazy," he said. "It creates a super-aggressive environment that can corrode surrounding materials."

To analyze corrosion, the research team pressed glass or ceramic "waste forms" -- the shapes into which nuclear waste is encapsulated -- against stainless steel and immersed them in solutions for up to 30 days, under conditions that simulate those under Yucca Mountain, the proposed nuclear waste repository.

Those experiments showed that when glass and stainless steel were pressed against one another, stainless steel corrosion was "severe" and "localized," according to the study. The researchers also noted cracks and enhanced corrosion on the parts of the glass that had been in contact with stainless steel.

Part of the problem lies in the Periodic Table. Stainless steel is made primarily of iron mixed with other elements, including nickel and chromium. Iron has a chemical affinity for silicon, which is a key element of glass.

The experiments also showed that when ceramics -- another potential holder for nuclear waste -- were pressed against stainless steel under conditions that mimicked those beneath Yucca Mountain, both the ceramics and stainless steel corroded in a "severe localized" way.

Other Ohio State researchers involved in this study include Gopal Viswanathan, Tianshu Li and Gerald Frankel.

This work was funded in part by the U.S. Department of Energy Office of Science.

Meanwhile, U.S. monitoring shows potent greenhouse gas declines confirming the impact of control efforts across the energy sector.

 

Related News

View more

BC Hydro suspends new crypto mining connections due to extreme electricity use

BC Hydro Cryptocurrency Mining Suspension pauses new grid connections for Bitcoin data centers, preserving electricity for EVs, heat pumps, and industry electrification, as Site C capacity and megawatt demand trigger provincial energy policy review.

 

Key Points

An 18-month pause on new crypto-mining grid hookups to preserve electricity for EVs, heat pumps, and electrification.

✅ 18-month moratorium on new BC Hydro crypto connections

✅ Preserves capacity for EVs, heat pumps, and industry

✅ 21 pending mines sought 1,403 MW; Site C adds 1,100 MW

 

New cryptocurrency mining businesses in British Columbia are now temporarily banned from being hooked up to BC Hydro’s electrical grid.

The 18-month suspension on new electricity-connection requests is intended to provide the electrical utility and provincial government with the time needed, a move similar to N.B. Power's pause during a crypto review, to create a permanent framework for any future additional cryptocurrency mining operations.

Currently, BC Hydro already provides electricity to seven cryptocurrency mining operations, and six more are in advanced stages of being connected to the grid, with a combined total power consumption of 273 megawatts. These existing operations, unlike the Siwash Creek project now in limbo, will not be affected by the temporary ban.

The electrical utility’s suspension comes at a time when there are 21 applications to open cryptocurrency mining businesses in BC, even as electricity imports supplement the grid during peaks, which would have a combined total power consumption of 1,403 megawatts — equivalent to the electricity needed for 570,000 homes or 2.3 million battery-electric vehicles annually.

In fact, the 21 cryptocurrency mining businesses would completely wipe out the new electrical capacity gained by building the $16 billion Site C hydroelectric dam, alongside two newly commissioned stations that add supply, which has an output capacity of 1,100 megawatts or enough power for the equivalent of 450,000 homes. Site C is expected to be operational by 2025.

Cryptocurrency mining, such as Bitcoin, use a very substantial amount of electricity to operate high-powered computers around the clock, which perform complex cryptographic and math problems to verify transactions. High electricity needs are the result of not only to run the racks of computers, but to provide extreme cooling given the significant heat produced.

“We are suspending electricity connection requests from cryptocurrency mining operators to preserve our electricity supply for people who are switching to electric vehicles, amid BC Hydro's first call for power in 15 years, and heat pumps, and for businesses and industries that are undertaking electrification projects that reduce carbon emissions and generate jobs and economic opportunities,” said Josie Osborne, the BC minister of energy, mines and low carbon innovation, adding that cryptocurrency mining creates very few jobs for the local economy.

Such businesses are attracted to BC due to the availability of its clean, plentiful, and cheap hydroelectricity, which LNG companies continue to seek for their operations as well.

If left unchecked, the provincial government suggests BC Hydro’s long-term electrical capacity could be wiped out by cryptocurrency mining operations, even as debates over going nuclear persist among residents across the province.

 

Related News

View more

Nine EU countries oppose electricity market reforms as fix for energy price spike

EU Electricity Market Reform Opposition highlights nine states resisting an overhaul of the wholesale power market amid gas price spikes, urging energy efficiency, interconnection targets, and EU caution rather than redesigns affecting renewables.

 

Key Points

Nine EU states reject overhauling wholesale power pricing, favoring efficiency and prudent policy over redesigns.

✅ Nine states oppose redesign of wholesale power market.

✅ Call for efficiency and 15% interconnection by 2030.

✅ Ministers to debate responses amid gas-driven price spikes.

 

Germany, Denmark, Ireland and six other European countries said on Monday they would not support a reform of the EU electricity market, ahead of an emergency meeting of energy ministers to discuss emergency measures and the recent price spike.

European gas and power prices soared to record high levels in autumn and have remained high, prompting countries including Spain and France to urge Brussels to redesign its electricity market rules.

Nine countries on Monday poured cold water on those proposals, in a joint statement that said they "cannot support any measure that conflicts with the internal gas and electricity market" such as an overhaul of the wholesale power market altogether.

"As the price spikes have global drivers, we should be very careful before interfering in the design of internal energy markets," the statement said.

"This will not be a remedy to mitigate the current rising energy prices linked to fossil fuels markets across Europe."

Austria, Germany, Denmark, Estonia, Finland, Ireland, Luxembourg, Latvia and the Netherlands signed the statement, which called instead for more measures to save energy and a target for a 15% interconnection of the EU electricity market by 2030.

European energy ministers meet tomorrow to discuss their response to the price spike, including gas price cap strategies under consideration. Most countries are using tax cuts, subsidies and other national measures to shield consumers against the impact higher gas prices are having on energy bills, but EU governments are struggling to agree on a longer term response.

Spain has led calls for a revamp of the wholesale power market in response to the price spike, amid tensions between France and Germany over reform, arguing that the system is not supporting the EU's green transition.

Under the current system, the wholesale electricity price is set by the last power plant needed to meet overall demand for power. Gas plants often set the price in this system, which Spain said was unfair as it results in cheap renewable energy being sold for the same price as costlier fossil fuel-based power.

The European Commission has said it will investigate whether the EU power market is functioning well, but that there is no evidence to suggest a different system would have better protected countries against the surge in energy costs, and that rolling back electricity prices is tougher than it appears during such spikes.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified