Avoiding a blackout

By Investor's Business Daily


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Blackouts are more than an annoyance. They are costly in terms of economic loss and needless deaths.

In less than 48 hours, the Aug. 14, 2003, blackout, the largest power outage in U.S. history, ran up as much as $12 billion in economic losses. Life went dark for roughly 60 million Americans and Canadians, many of whom also lost their water supplies, as well.

At least 11 died from various causes linked to the loss of electricity. Looting, fires and general civic unrest plagued the big cities affected by the blackout.

A once-in-a-lifetime event, an anomaly that shouldn't require a second thought? Not necessarily.

"The U.S. faces potentially crippling electricity brownouts and blackouts beginning in the summer of 2009, which may cost tens of billions of dollars and threaten lives," says the NextGen Energy Council's report, "Lights Out In 2009?"

If the nation is to avoid a repeat of the 2003 blackout, its power supply desperately needs to be boosted through new construction of nuclear-, coal- and gas-fired plants. NextGen estimates that 120 gigawatts of new generation, enough to power as many as 48 million homes, will be needed to provide a 15% reserve margin. That's the rough minimum needed to ensure that the system is reliable.

But that's only half the fix. Additional electricity is worthless if it can't be distributed to users. NextGen estimates the U.S. needs more than 14,500 miles — that's New York to Los Angeles and back three times — of transmission lines by 2016 to relieve congestion that will inevitably cause power outages if the issue isn't addressed.

The improvements need to begin immediately. Power demand is expected to grow by 18% over the next 10 years while estimates indicate that power output will increase only 8% through 2016.

In a fully rational world where markets are left to themselves, the work would get done. The capital is available and the incentives are in place.

But our world is filled with irrational actors who foolishly — and predictably — resist the changes that are obviously needed to move forward by erecting difficult regulatory and policy hurdles. The "development of numerous coal plants," for instance, has been canceled or deferred in recent years, NextGen says, because of environmental rules.

"The single biggest threat to system reliability," says the NextGen report, "is opposition from well-funded environmental groups that oppose and file lawsuits against virtually every new electricity project proposed."

Report authors say at least $300 billion will be needed to update the system. But as long as policymakers let themselves be bullied and bought off by environmental groups, it might as well be $300 trillion.

Related News

Top Senate Democrat calls for permanent renewable energy, storage, EV tax credits

Clean Energy Tax Incentives could expand under Democratic proposals, including ITC, PTC, and EV tax credits, boosting renewable energy, energy storage, and grid modernization within a broader infrastructure package influenced by Green New Deal goals.

 

Key Points

Federal incentives like ITC, PTC, and EV credits that cut costs and speed renewables, storage, and grid upgrades.

✅ Proposes permanence for ITC, PTC, and EV tax credits

✅ Could accelerate solar, wind, storage, and grid upgrades

✅ Passage depends on bipartisan infrastructure compromise

 

The 115th U.S. Congress has not even adjourned for the winter, and already a newly resurgent Democratic Party is making demands that reflect its majority status in the U.S. House come January.

Climate appears to be near the top of the list. Last Thursday, Senator Chuck Schumer (D-NY), the Democratic Leader in the Senate, sent a letter to President Trump demanding that any infrastructure package taken up in 2019 include “policies and funding to transition to a clean energy economy and mitigate the risks that the United States is already facing due to climate change.”

And in a list of policies that Schumer says should be included, the top item is “permanent tax incentives for domestic production of clean electricity and storage, energy efficient homes and commercial buildings, electric vehicles, and modernizing the electric grid.”

In concrete terms, this could mean an extension of the Investment Tax Credit (ITC) for solar and energy storage, the Production Tax Credit (PTC) for wind and the federal electric vehicle (EV) tax credit program as well.

 

Pressure from the Left

This strong statement on climate change, clean energy and infrastructure investment comes as at least 30 incoming members of the U.S. House of Representatives have signed onto a call for the creation of a committee to explore a “Green New Deal” and to move the nation to 100% renewable energy by 2030.*

It also comes as Schumer has come under fire by activists for rumors that he plans to replace Senator Maria Cantwell (D-Washington) with coal state Democrat Joe Manchin (D-West Virginia) as the top Democrat on the Senate Energy and Natural Resources Committee.

As such, one possible way to read these moves is that centrist leaders like Schumer are responding to pressure from an energized and newly elected Left wing of the Democratic Party. It is notable that Schumer’s program includes many of the aims of the Green New Deal, while avoiding any explicit use of that phrase.

 

Implications of a potential ITC extension

The details of levels and timelines are important here, particularly for the ITC.

The ITC was set to expire at the end of 2016, but was extended in legislative horse-trading at the end of 2015 to a schedule where it remains at 30% through the end of 2019 and then steps down for the next three years, and disappears entirely for residential projects. Since that extension the IRS has issued guidance around the use of co-located energy storage, as well as setting a standard under which PV projects can claim the ITC for the year that they begin construction.

This language around construction means that projects can start work in 2019, complete in 2023 and still claim the 30% ITC, and this may be why we at pv magazine USA are seeing an unprecedented boom in project pipelines across the United States.

Of course, if the ITC were to become permanent some of those projects would be pushed out to later years. But as we saw in 2016, despite an extension of the ITC many projects were still completed before the deadline, leading to the largest volume of PV installed in the United States in any one year to date.

This means that if the ITC were extended by the end of 2020, we could see the same thing all over again – a boom in projects created by the expected sunset, and then after a slight lull a continuation of growth.

Or it is possible that a combination of raw economics, increased investor and utility interest, and accelerating renewable energy mandates will cause solar growth rates to continue every year, and that any changes in the ITC will only be a bump against a larger trend.

While the basis for expiration of the EV tax credit is the number of vehicles sold, not any year, both the battery storage and EV industries, which many see at an inflection point, could see similar effects if the ITC and EV tax credits are made permanent.

 

Will consensus be reached?

It is also unclear that any such infrastructure package will be taken up by Republicans, or that both parties will be able to come to a compromise on this issue. While the U.S. Congress passed an infrastructure bill in 2017, given the sharp and growing differences between the two parties, and divergent trade approaches such as the 100% tariff on Chinese-made EVs, it is not clear that they will be able to come to a meaningful compromise during the next two years.

 

Related News

View more

Electricity alert ends after Alberta forced to rely on reserves to run grid

Alberta Power Grid Level 2 Alert signals AESO reserve power usage, load management, supply shortage from generator outages, low wind, and limited imports, urging peak demand conservation to avoid blackouts and preserve grid reliability.

 

Key Points

An AESO status where reserves power the grid and load management is used during supply constraints to prevent blackouts.

✅ Triggered by outages, low wind, and reduced import capacity

✅ Peak hours 4 to 7 pm saw conservation requests

✅ Several hundred MW margin from Level 3 load shedding

 

Alberta's energy grid ran on reserves Wednesday, after multiple factors led to a supply shortage, a scenario explored in U.S. grid COVID response discussions as operators plan for contingencies.

At 3:52 p.m. Wednesday, the Alberta Electric System Operator issued a Level 2 alert, meaning that reserves were being used to supply energy requirements and that load management procedures had been implemented, while operators elsewhere adopted Ontario power staffing lockdown measures during COVID-19 for continuity. The alert ended at 6:06 p.m.

"This is due to unplanned generator outages, low wind and a reduction of import capability," the agency said in a post to social media. "Supply is tight but still meeting demand."

AESO spokesperson Mike Deising said the intertie with Saskatchewan had tripped off, and an issue on the British Columbia side of the border, as seen during BC Hydro storm response events, meant the province couldn't import power. 

"There are no blackouts … this just means we're using our reserve power, and that's a standard procedure we'll deploy," he said. 

AESO had asked that people reduce their energy consumption between 4 and 7 p.m., similar to Cal ISO conservation calls during grid strain, which is typically when peak use occurs. 

Deising said the system was several hundred MWs away from needing to move to an alert Level 3, with utilities such as FortisAlberta precautions in place to support continuity, which is when power is cut off to some customers in order to keep the system operating. Deising said Level 2 alerts are fairly rare and occur every few years. The last Level 3 alert was in 2013. 

According to the supply and demand report on AESO's website, the load on the grid at 5 p.m. was 10,643 MW.

That's down significantly from last week, when a heat wave pushed demand to record highs on the grid, with loads in the 11,700 MW range, contrasting with Ontario demand drop during COVID when many stayed home. 

A heat warning was issued Wednesday for Edmonton and surrounding areas shortly before 4 p.m., with temperatures above 29 C expected over the next three days, with many households seeing residential electricity use up during such periods. 

 

Related News

View more

Wyoming wind boost for US utility

Black Hills Energy Corriedale Wind Farm Expansion earns regulatory approval in Wyoming, boosting capacity to over 52MW near Cheyenne with five turbines, supporting Renewable Ready customers and wind power goals under PUC and PSC oversight.

 

Key Points

An approved Wyoming wind project upgrade to over 52MW, adding five turbines to serve Renewable Ready customers.

✅ Adds 12.5MW via five new wind turbines near Cheyenne

✅ Cost increases to $79m; prior estimate $57m

✅ Approved by SD PUC after Wyoming PSC review

 

US company Black Hills Energy has received regulatory approval to increase the size of its Corriedale wind farm in Wyoming, where Wyoming wind exports to California are advancing, to over 52MW from 40MW previously.

The South Dakota Public Utilities Commission approved the additional 12.5MW capacity after the Wyoming Public Service Commission determined the boost was within commission rules, as federal initiatives like DOE wind energy awards continue to support the sector.

Black Hills Energy will install five additional turbines, raising the project cost to $79m from $57m, amid growing heartland wind investment across the region.
Corriedale will be built near Cheyenne and is expected to be placed in service in late 2020.

Similar market momentum is seen in Canada, where a Warren Buffett-linked Alberta wind farm is planned to expand capacity across the region.

Black Hills said that during the initial subscription period for its Renewable Ready program, applications of interest from eligible commercial, industrial and governmental agency customers were received in excess of the program's 40MW, underscoring the view that more energy sources can make stronger projects.

Black Hills Corporations chief executive and president Linden Evans said: “We are pleased with the opportunity to expand our Renewable Ready program, allowing us to meet our customers’ interest in renewable wind energy, which co-op members increasingly support.

“This innovative program expands our clean energy portfolio while meeting our customers’ evolving needs, particularly around cleaner and more sustainable energy, as projects like new energy generation coming online demonstrate.”

 

Related News

View more

Swiss Earthquake Service and ETH Zurich aim to make geothermal energy safer

Advanced Traffic Light System for Geothermal Safety models fracture growth and friction with rock physics, geophones, and supercomputers to predict induced seismicity during hydraulic stimulation, enabling real-time risk control for ETH Zurich and SED.

 

Key Points

ATLS uses rock physics, geophones, and HPC to forecast induced seismicity in real time during geothermal stimulation.

✅ Real-time seismic risk forecasts during hydraulic stimulation

✅ Uses rock physics, friction, and fracture modeling on HPC

✅ Supports ETH Zurich and SED field tests in Iceland and Bedretto

 

The Swiss Earthquake Service and ETH Zurich want to make geothermal energy safer, so news piece from Switzerland earlier this month. This is to be made possible by new software, including machine learning, and the computing power of supercomputers. The first geothermal tests have already been carried out in Iceland, and more will follow in the Bedretto laboratory.

In areas with volcanic activity, the conditions for operating geothermal plants are ideal. In Iceland, the Hellisheidi power plant makes an important contribution to sustainable energy use, alongside innovations like electricity from snow in cold regions.

Deep geothermal energy still has potential. This is the basis of the 2050 energy strategy. While the inexhaustible source of energy in volcanically active areas along fault zones of the earth’s crust can be tapped with comparatively little effort and, where viable, HVDC transmission used to move power to demand centers, access on the continents is often much more difficult and risky. Because the geology of Switzerland creates conditions that are more difficult for sustainable energy production.

Improve the water permeability of the rock

On one hand, you have to drill four to five kilometers deep to reach the correspondingly heated layers of earth in Switzerland. It is only at this depth that temperatures between 160 and 180 degrees Celsius can be reached, which is necessary for an economically usable water cycle. On the other hand, the problem of low permeability arises with rock at these depths. “We need a permeability of at least 10 millidarcy, but you can typically only find a thousandth of this value at a depth of four to five kilometers,” says Thomas Driesner, professor at the Institute of Geochemistry and Petrology at ETH Zurich.

In order to improve the permeability, water is pumped into the subsurface using the so-called “fracture”. The water acts against friction, any fracture surfaces shift against each other and tensions are released. This hydraulic stimulation expands fractures in the rock so that the water can circulate in the hot crust. The fractures in the earth’s crust originate from tectonic tensions, caused in Switzerland by the Adriatic plate, which moves northwards and presses against the Eurasian plate.

In addition to geothermal energy, the “Advanced Traffic Light System” could also be used in underground construction or in construction projects for the storage of carbon dioxide.

Quake due to water injection

The disadvantage of such hydraulic stimulations are vibrations, which are often so weak or cannot be perceived without measuring instruments. But that was not the case with the geothermal projects in St. Gallen 2013 and Basel 2016. A total of around 11,000 cubic meters of water were pumped into the borehole in Basel, causing the pressure to rise. Using statistical surveys, the magnitudes 2.4 and 2.9 defined two limit values ??for the maximum permitted magnitude of the earthquakes generated. If these are reached, the water supply is stopped.

In Basel, however, there was a series of vibrations after a loud bang, with a time delay there were stronger earthquakes, which startled the residents. In both cities, earthquakes with a magnitude greater than 3 have been recorded. Since then it has been clear that reaching threshold values ??determines the stop of the water discharge, but this does not guarantee safety during the actual drilling process.

Simulation during stimulation

The Swiss Seismological Service SED and the ETH Zurich are now pursuing a new approach that can be used to predict in real time, building on advances by electricity prediction specialists in Europe, during a hydraulic stimulation whether noticeable earthquakes are expected in the further course. This is to be made possible by the so-called “Advanced Traffic Light System” based on rock physics, a software developed by the SED, which carries out the analysis on a high-performance computer.

Geophones measure the ground vibrations around the borehole, which serve as indicators for the probability of noticeable earthquakes. The supercomputer then runs through millions of possible scenarios, similar to algorithms to prevent power blackouts during ransomware attacks, based on the number and type of fractures to be expected, the friction and tensions in the rock. Finally, you can filter out the scenario that best reflects the underground.

Further tests in the mountain

However, research is currently still lacking any real test facility for the system, because incorrect measurements must be eliminated and a certain data format adhered to before the calculations on the supercomputer. The first tests were carried out in Iceland last year, with more to follow in the Bedretto geothermal laboratory in late summer, where reliable backup power from fuel cell solutions can keep instrumentation running. An optimum can now be found between increasing the permeability of rock layers and an adequate water supply.

The new approach could make geothermal energy safer and ultimately help this energy source to become more accepted, while grid upgrades like superconducting cables improve efficiency. Research also sees areas of application wherever artificially caused earthquakes can occur, such as in underground mining or in the storage of carbon dioxide underground.

 

Related News

View more

Prime minister, B.C. premier announce $1B B.C. battery plant

Maple Ridge Lithium-Ion Battery Plant will be a $1B E-One Moli clean-tech facility in Canada, manufacturing high-performance cells for tools and devices, with federal and provincial funding, creating 450 jobs and boosting battery supply chains.

 

Key Points

A $1B E-One Moli facility in B.C. producing lithium-ion cells, backed by federal and provincial funding.

✅ $204.5M federal and up to $80M B.C. support committed

✅ E-One Moli to create 450 skilled jobs in Maple Ridge

✅ High-performance cells for tools, medical devices, and equipment

 

A lithium-ion battery cell production plant costing more than $1 billion will be built in Maple Ridge, B.C., Prime Minister Justin Trudeau and Premier David Eby jointly announced on Tuesday.

Trudeau and Eby say the new E-One Moli facility will bolster Canada's role as a global leader in clean technology, as recent investments in Quebec's EV battery assembly illustrate today.

It will be the largest factory in Canada to manufacture such high-performance batteries, Trudeau said during the announcement, amid other developments such as a new plant in the Niagara Region supporting EV growth.

The B.C. government will contribute up to $80 million, while the federal government plans to contribute up to $204.5 million to the project. E-One Moli and private sources will supply the rest of the funding. 

Trudeau said B.C. has long been known for its innovation in the clean-technology sector, and securing the clean battery manufacturing project, alongside Northvolt's project near Montreal, will build on that expertise.

"The world is looking to Canada. When we support projects like E-One Moli's new facility in Maple Ridge, we bolster Canada's role as a global clean-tech leader, create good jobs and help keep our air clean," he said.

"This is the future we are building together, every single day. Climate policy is economic policy."

Nelson Chang, chairman of E-One Moli Energy, said the company has always been committed to innovation and creativity as creator of the world's first commercialized lithium-metal battery.

E-One Moli has been operating a plant in Maple Ridge since 1990. Its parent company, Taiwan Cement Corp., is based in Taiwan.

"We believe that human freedom is a chance for us to do good for others and appreciate life's fleeing nature, to leave a positive impact on the world," Chang said.

"We believe that [carbon dioxide] reduction is absolutely the key to success for all future businesses," he said.

The new plant will produce high-performance lithium-cell batteries found in numerous products, including vacuums, medical devices, and power and gardening tools, aligning with B.C.'s grid development and job plans already underway, and is expected to create 450 jobs, making E-One Moli the largest private-sector employer in Maple Ridge.

Eby said every industry needs to find ways to reduce their carbon footprint to ensure they have a prosperous future and every province should do the same, with resource plays like Alberta's lithium supporting the EV supply chain today.

It's the responsible thing to do given the record wildfires, extreme heat, and atmospheric rivers that caused catastrophic flooding in B.C., he said, with large-scale battery storage in southwestern Ontario helping grid reliability.

"We know that this is what we have to do. The people who suggest that we have to accept that as the future and stop taking action are simply wrong."

Trudeau, Eby and Chang toured the existing plant in Maple Ridge, east of Vancouver, before making the announcement.

The prime minister wove his way around several machines and apologized to technicians about the commotion his visit was creating.

The Canadian Taxpayers Federation criticized the federal and B.C. governments for the announcement, saying in a statement the multimillion-dollar handout to the battery firm will cost taxpayers hundreds of thousands of dollars for each job.

Federation director Franco Terrazzano said the Trudeau government has recently given "buckets of cash" to corporations such as Volkswagen, Stellantis, the Ford Motor Company and Northvolt.

"Instead of raising taxes on ordinary Canadians and handing out corporate welfare, governments should be cutting red tape and taxes to grow the economy," said Terrazzano. 

Construction is expected to start next June, as EV assembly deals put Canada in the race, and the company plans for the facility to be fully operational in 2028.

 

Related News

View more

Ameren, Safe Electricity urge safety near downed lines

Downed Power Line Vehicle Safety: Follow stay-in-the-car protocol, call 911, avoid live wires and utility poles, and use the bunny hop to escape only for fire. Electrical hazards demand emergency response caution.

 

Key Points

Stay in the car, call 911, and use a bunny hop escape only if fire threatens during downed power line incidents.

✅ Stay in vehicle; tell bystanders to keep back and call 911.

✅ Exit only for fire; jump clear and bunny hop away.

✅ Treat all downed lines as live; avoid paths to ground.

 

Ameren Illinois and Safe Electricity are urging the public to stay in their cars and call 911 in the event of an accident involving a power pole that brings down power lines on or around the car.

In a media simulation Tuesday at the Ameren facility on West Lafayette Avenue, Ameren Illinois employees demonstrated the proper way to react if a power line has fallen on or around a vehicle, as some utilities consider on-site staffing measures during outbreaks. Although the situation might seem rare, Illinois motorists alone hit 3,000 power poles each year, said Krista Lisser, communications director for Safe Energy.

“We want to get the word out that, if you hit a utility pole and a live wire falls on your vehicle, stay in your car,” Lisser said. “Our first reaction is we panic and think we need to get out, a sign of the electrical knowledge gap many people have. That’s not the case, you need to stay in because, when that live wire comes down, electricity is all around you. You may not see it, it may not arc, it may not flash, you may not know if there’s electricity there.”

Should someoneinvolved in such an accident see a good Samaritan attempting to help, he should try to tell the would-be rescuer to stay back to prevent injury to the Samaritan, Ameren Illinois Communications Executive Brian Bretsch said.

“We have seen instances where someone comes up and wants to help you,” Bretsch said. “You want to yell, ‘Please stay away from the vehicle. Everyone is OK. Please stay away.’ You’ll see … instances every now and then where the Samaritan will come up, create that path to ground and get injured, and there are also climbers seeking social media glory who put themselves at risk.”

The only instance in which one should exit a car in the vicinity of a downed wire is if the vehicle is on fire and there is no choice but to exit. In that situation, those in the car should “bunny hop” out of the car by jumping from the car without touching the car and the ground at the same time, Bretsch and Lisser said.

After the initial jump, those escaping the vehicle should continue jumping with both feet together and hands tucked in and away from danger until they are safely clear of the downed wire.

It’s important for everyone to be informed, because an encounter with a live wire could easily result in serious injury, as in the Hydro One worker injury case, or death, Lisser said.

“They’re so close to our roads, especially in our rural communities, that it’s quite a common occurrence,” Lisser said. “Just stay away from (downed lines), especially after storms and amid grid oversight warnings that highlight reliability risks … Always treat a downed line as a live wire. Never assume the line is dead.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified