Municipal power companies, electric co-ops and eventually customers will see much higher costs in the future from the Western Area Power Administration.
WAPA delivers power mostly from hydroelectric dams in the region.
Agency spokesman Randy Wilkerson says WAPA will increase rates by nearly 23 percent on Jan. 1.
He attributes the increase to several years of drought, which resulted in reduced power production from Missouri River dams and forced WAPA to buy more expensive power elsewhere. While the drought has eased, moisture in the region has not been excessive.
"Even though we seem to have had a little bit of recovery this past year, those reservoirs aren't full yet," Wilkerson said. "And when the reservoirs aren't full, that reduces the generation, so we've got less electricity to provide, and when that happens we've got to go out on the open market and purchase that power to make up what we've contracted with."
WAPA has raised rates by nearly 18 percent in the past two years.
"Our rates, by legislation, are cost-based, and so ultimately the consumers end up paying for that down the road," Wilkerson said.
WAPA has begun a regional environmental impact study on wind power, he said. The agency hopes wind-generated electricity can provide a portion of its power in the future, Wilkerson said.
"When hydropower is short, maybe it could be supplemented with wind," he said.
Texas PUC Spanish Power to Choose mandates bilingual parity in deregulated electricity markets, ensuring equal access to plans, transparent pricing, consumer protection, and provider listings for Spanish speakers, mirroring the English site offerings statewide.
Key Points
PUC mandate requiring identical Spanish and English plan listings for fair access in the deregulated power market.
✅ Orders parity across English and Spanish plan listings
✅ Increases transparency in a deregulated electricity market
✅ Deadline set for providers to post on both sites
The state’s Public Utility Commission has ordered that the Spanish-language version of the Power to Choose website provide the same options available on the English version of the site, a move that comes as shopping for electricity is getting cheaper statewide.
Texas is one of a handful of states with a deregulated electricity market, with ongoing market reforms under consideration to avoid blackouts. The idea is to give consumers the option to pick power plans that they think best fit their needs. Customers can find available plans on the state’s Power To Choose website, or its Spanish-language counterpart, Poder de Escoger. In theory, those two sites should have the exact same offerings, so no one is disadvantaged. But the Texas Public Utility Commission found that wasn’t the case.
Houston Chronicle business reporter Lynn Sixel has been covering this story. She says the Power to Choose website is important for consumers facing the difficult task of choosing an electric provider in a deregulated state, where electricity complaints have recently reached a three-year high for Texans.
“There are about 57 providers listed on the [English] Power to Choose website, and news about retailers like Griddy underscores how varied the offerings can be across providers. [Last week] there were only 23 plans on the Spanish Power to Choose site,” Sixel says. “If you speak Spanish and you’re looking for a low-cost plan, as of last week, it would have been difficult to find some of the really great offers.”
Mustafa Tameez, managing director of Outreach Strategists, a Houston firm that consults with companies and nonprofits on diversity, described this issue as a type of redlining.
“He’s referring to a practice that banks would use to circle areas on maps in which the bank decided they did not want to lend money or would charge higher rates,” Sixel says. “Typically it was poor minority neighborhoods. Those folks would not get the same great deals that their Anglo neighbors would get.”
DeAnn Walker, chairman of the Public Utility Commission, said she was not at all happy about the plans listings in a meeting Friday, against a backdrop where Texas utilities have recently backed out of a plan to create smart home electricity networks.
“She gave a deadline of 8 a.m. Monday morning for any providers who wanted to put their plans on the Power to Choose website, must put them on both the Spanish language and the English language versions,” Sixel says. “All the folks that I talked to really had no idea that there were different plans on both sites and I think that there was sort of an assumption.”
ITER Nuclear Fusion advances tokamak magnetic confinement, heating deuterium-tritium plasma with superconducting magnets, targeting net energy gain, tritium breeding, and steam-turbine power, while complementing laser inertial confinement milestones for grid-scale electricity and 2025 startup goals.
Key Points
ITER Nuclear Fusion is a tokamak project confining D-T plasma with magnets to achieve net energy gain and clean power.
✅ Tokamak magnetic confinement with high-temp superconducting coils
✅ Deuterium-tritium fuel cycle with on-site tritium breeding
✅ Targets net energy gain and grid-scale, low-carbon electricity
It sounds like the stuff of dreams: a virtually limitless source of energy that doesn’t produce greenhouse gases or radioactive waste. That’s the promise of nuclear fusion, often described as the holy grail of clean energy by proponents, which for decades has been nothing more than a fantasy due to insurmountable technical challenges. But things are heating up in what has turned into a race to create what amounts to an artificial sun here on Earth, one that can provide power for our kettles, cars and light bulbs.
Today’s nuclear power plants create electricity through nuclear fission, in which atoms are split, with next-gen nuclear power exploring smaller, cheaper, safer designs that remain distinct from fusion. Nuclear fusion however, involves combining atomic nuclei to release energy. It’s the same reaction that’s taking place at the Sun’s core. But overcoming the natural repulsion between atomic nuclei and maintaining the right conditions for fusion to occur isn’t straightforward. And doing so in a way that produces more energy than the reaction consumes has been beyond the grasp of the finest minds in physics for decades.
But perhaps not for much longer. Some major technical challenges have been overcome in the past few years and governments around the world have been pouring money into fusion power research as part of a broader green industrial revolution under way in several regions. There are also over 20 private ventures in the UK, US, Europe, China and Australia vying to be the first to make fusion energy production a reality.
“People are saying, ‘If it really is the ultimate solution, let’s find out whether it works or not,’” says Dr Tim Luce, head of science and operation at the International Thermonuclear Experimental Reactor (ITER), being built in southeast France. ITER is the biggest throw of the fusion dice yet.
Its $22bn (£15.9bn) build cost is being met by the governments of two-thirds of the world’s population, including the EU, the US, China and Russia, at a time when Europe is losing nuclear power and needs energy, and when it’s fired up in 2025 it’ll be the world’s largest fusion reactor. If it works, ITER will transform fusion power from being the stuff of dreams into a viable energy source.
Constructing a nuclear fusion reactor ITER will be a tokamak reactor – thought to be the best hope for fusion power. Inside a tokamak, a gas, often a hydrogen isotope called deuterium, is subjected to intense heat and pressure, forcing electrons out of the atoms. This creates a plasma – a superheated, ionised gas – that has to be contained by intense magnetic fields.
The containment is vital, as no material on Earth could withstand the intense heat (100,000,000°C and above) that the plasma has to reach so that fusion can begin. It’s close to 10 times the heat at the Sun’s core, and temperatures like that are needed in a tokamak because the gravitational pressure within the Sun can’t be recreated.
When atomic nuclei do start to fuse, vast amounts of energy are released. While the experimental reactors currently in operation release that energy as heat, in a fusion reactor power plant, the heat would be used to produce steam that would drive turbines to generate electricity, even as some envision nuclear beyond electricity for industrial heat and fuels.
Tokamaks aren’t the only fusion reactors being tried. Another type of reactor uses lasers to heat and compress a hydrogen fuel to initiate fusion. In August 2021, one such device at the National Ignition Facility, at the Lawrence Livermore National Laboratory in California, generated 1.35 megajoules of energy. This record-breaking figure brings fusion power a step closer to net energy gain, but most hopes are still pinned on tokamak reactors rather than lasers.
In June 2021, China’s Experimental Advanced Superconducting Tokamak (EAST) reactor maintained a plasma for 101 seconds at 120,000,000°C. Before that, the record was 20 seconds. Ultimately, a fusion reactor would need to sustain the plasma indefinitely – or at least for eight-hour ‘pulses’ during periods of peak electricity demand.
A real game-changer for tokamaks has been the magnets used to produce the magnetic field. “We know how to make magnets that generate a very high magnetic field from copper or other kinds of metal, but you would pay a fortune for the electricity. It wouldn’t be a net energy gain from the plant,” says Luce.
One route for nuclear fusion is to use atoms of deuterium and tritium, both isotopes of hydrogen. They fuse under incredible heat and pressure, and the resulting products release energy as heat
The solution is to use high-temperature, superconducting magnets made from superconducting wire, or ‘tape’, that has no electrical resistance. These magnets can create intense magnetic fields and don’t lose energy as heat.
“High temperature superconductivity has been known about for 35 years. But the manufacturing capability to make tape in the lengths that would be required to make a reasonable fusion coil has just recently been developed,” says Luce. One of ITER’s magnets, the central solenoid, will produce a field of 13 tesla – 280,000 times Earth’s magnetic field.
The inner walls of ITER’s vacuum vessel, where the fusion will occur, will be lined with beryllium, a metal that won’t contaminate the plasma much if they touch. At the bottom is the divertor that will keep the temperature inside the reactor under control.
“The heat load on the divertor can be as large as in a rocket nozzle,” says Luce. “Rocket nozzles work because you can get into orbit within minutes and in space it’s really cold.” In a fusion reactor, a divertor would need to withstand this heat indefinitely and at ITER they’ll be testing one made out of tungsten.
Meanwhile, in the US, the National Spherical Torus Experiment – Upgrade (NSTX-U) fusion reactor will be fired up in the autumn of 2022, while efforts in advanced fission such as a mini-reactor design are also progressing. One of its priorities will be to see whether lining the reactor with lithium helps to keep the plasma stable.
Choosing a fuel Instead of just using deuterium as the fusion fuel, ITER will use deuterium mixed with tritium, another hydrogen isotope. The deuterium-tritium blend offers the best chance of getting significantly more power out than is put in. Proponents of fusion power say one reason the technology is safe is that the fuel needs to be constantly fed into the reactor to keep fusion happening, making a runaway reaction impossible.
Deuterium can be extracted from seawater, so there’s a virtually limitless supply of it. But only 20kg of tritium are thought to exist worldwide, so fusion power plants will have to produce it (ITER will develop technology to ‘breed’ tritium). While some radioactive waste will be produced in a fusion plant, it’ll have a lifetime of around 100 years, rather than the thousands of years from fission.
At the time of writing in September, researchers at the Joint European Torus (JET) fusion reactor in Oxfordshire were due to start their deuterium-tritium fusion reactions. “JET will help ITER prepare a choice of machine parameters to optimise the fusion power,” says Dr Joelle Mailloux, one of the scientific programme leaders at JET. These parameters will include finding the best combination of deuterium and tritium, and establishing how the current is increased in the magnets before fusion starts.
The groundwork laid down at JET should accelerate ITER’s efforts to accomplish net energy gain. ITER will produce ‘first plasma’ in December 2025 and be cranked up to full power over the following decade. Its plasma temperature will reach 150,000,000°C and its target is to produce 500 megawatts of fusion power for every 50 megawatts of input heating power.
“If ITER is successful, it’ll eliminate most, if not all, doubts about the science and liberate money for technology development,” says Luce. That technology development will be demonstration fusion power plants that actually produce electricity, where advanced reactors can build on decades of expertise. “ITER is opening the door and saying, yeah, this works – the science is there.”
Estonia energy prices 2021 show sharp electricity hikes versus the EU average, mixed natural gas trends, kWh tariffs on Nord Pool spiking, and VAT, taxes, and support measures shaping household bills.
Key Points
EU-high electricity growth, early gas dip, then Nord Pool spikes; taxes, VAT, and subsidies shaped energy bills.
✅ Electricity up 7% on year; EU average 2.8% in H1 2021.
✅ Gas fell 1% in H1; later spiked with global market.
✅ VAT, taxes, excise and aid impacted household costs.
Estonia saw one of the highest rates in growth of electricity prices in the first half of 2021, compared with the same period in key trends in 2020 across Europe. These figures were posted before the more recent, record level of electricity and natural gas prices; the latter actually dropped slightly in Estonia in the first half of the year.
While electricity prices rose 7 percent on year in the first half of 2021 in Estonia, the average for the EU as a whole, where energy prices drove inflation across the bloc, stood at 2.8 percent over the same period, BNS reports.
Hungary (€10 per 100 Kwh) and Bulgaria (€10.20 per 100 Kwh) saw the lowest electricity prices EU-wide, while at €31.9 per KWH, Germany's power prices posted the most expensive rate, while Denmark, Belgium and Ireland also had high prices, in excess of €25 per Kwh.
Slovenia saw the highest electricity price rise, at 15 percent, and even the United States' electricity prices saw their steepest rise in decades during the same era, while Estonia was in third place, joint with Romania at 7 percent as noted, and behind Poland (8 percent).
Lithuania, on the other hand, experienced the third highest electricity price fall over the first half of 2021, compared with the same period in 2020, at 6 percent, behind only Cyprus (7 percent) and the Netherlands (10 percent, largely due to a tax cut).
Urmas Reinsalu: VAT on electricity, gas and heating needs to be lowered The EU average price of electricity was €21.9 percent per Kwh, with taxes and excise accounting for 39 percent of this, even as prices in Spain surged across the day-ahead market.
Estonia has also seen severe electricity price rises in the second half of the year so far, with records set and then promptly broken several times earlier in October, while an Irish electricity provider raised prices amid similar pressures, and a support package for low income households rolled out for the winter season (October to March next year). The price on the Nord Pool market as of €95.01 per Kwh; a day earlier it had stood at €66.21 per Kwh, while on October 19 the price was €140.68 per Kwh.
Gas prices Natural gas prices to household, meanwhile, dropped in Estonia over the same period, at a sharper rate (1 percent) than the EU average (0.5 percent), according to Eurostat.
Gas prices across the EU were lowest in Lithuania (€2.8 per 100 Kwh) and highest in the Netherlands (€9.6 per KWH), while the highest growth was seen in Denmark (19 percent), in the first half of 2021.
Natural gas prices dropped in 20 member states, however, with the largest drop again coming in Lithuania (23 percent).
The average price of natural gas EU-side in the first half of 2021 was €6.4, and taxes and excise duties accounted on average for 36 percent of the total.
The second half of the year has seen steep gas price rises in Estonia, largely the result of increases on the world market, though European gas benchmarks later fell to pre-Ukraine war levels.
FirstEnergy Nuclear Plant Closures threaten Ohio and Pennsylvania jobs, tax revenue, and grid stability, as Nuclear Matters and Brattle Group warn of higher carbon emissions and market pressures from PJM and cheap natural gas.
Key Points
Planned shutdowns of Davis-Besse, Perry, and Beaver Valley, with regional economic and carbon impacts.
✅ Over 3,000 direct jobs and local tax revenue at risk
✅ Emissions may rise until renewables scale, possibly into 2034
✅ Debate over subsidies, market design, and PJM capacity rules
A national nuclear lobby wants to remind people what's at stake for Ohio and Pennsylvania if FirstEnergy Solutions follows through with plans to shut down three nuclear plants over the next three years, including its Davis-Besse nuclear plant east of Toledo.
A report issued Monday by Nuclear Matters largely echoes concerns raised by FES, a subsidiary of FirstEnergy Corp., and other supporters of nuclear power about economic and environmental hardships and brownout risks that will likely result from the planned closures.
Along with Davis-Besse, Perry nuclear plant east of Cleveland and the twin-reactor Beaver Valley nuclear complex west of Pittsburgh are slated to close.
#google#
"If these plants close, the livelihoods of thousands of Ohio and Pennsylvania residents will disappear. The over 3,000 highly skilled individuals directly employed by these sites will leave to seek employment at other facilities still operating around the country," Lonnie Stephenson, International Brotherhood of Electrical Workers president, said in a statement distributed by Nuclear Matters. Mr. Stephenson also serves on the Nuclear Matters advocacy council.
This new report and others like it are part of an extensive campaign by nuclear energy advocates to court state and federal legislators one more time for tens of millions of dollars of financial support or at least legislation that better suits the nuclear industry. Critics allege such pleas amount to a request for massive government bailouts, arguing that deregulated electricity markets should not subsidize nuclear.
The latest report was prepared for Nuclear Matters by the Brattle Group, a firm that specializes in analyzing economic, finance, and regulatory issues for corporations, law firms, and governments.
"These announced retirements create a real urgency to learn what would happen if these plants are lost," Dean Murphy, the Brattle report's lead author, said.
More than 3,000 jobs would be lost, as would millions of dollars in tax revenue. It also could take as long as 2034 for the region's climate-altering carbon emissions to be brought back down to existing levels, based on current growth projections for solar- and wind-powered projects, and initiatives such as ending coal by 2032 by some utilities, Mr. Murphy said.
His group's report only takes into account nuclear plant operations, though. Many of those who oppose nuclear power have long pointed out that mining uranium for nuclear plant fuel generates substantial emissions, as does the process of producing steel cladding for fuel bundles and the enrichment-production of that fuel. Still, nuclear has ranked among the better performers in reports that have taken such a broader look at overall emissions.
FES has accused the regional grid operator, PJM Interconnection, of creating market conditions that favor natural gas and, thus, make it almost impossible for nuclear to compete throughout its 13-state region, a debate intensified by proposed electricity pricing changes at the federal level.
PJM has strongly denied those accusations, and has said it anticipates no shortfalls in energy distribution if those nuclear plants close prematurely, even as a recent FERC decision on grid policy drew industry criticism.
FES, citing massive losses, has filed for Chapter 11 bankruptcy. The target dates for closures of the FES properties are May 31, 2020 for Davis-Besse; May 31, 2021 for Perry and Beaver Valley Unit 1, and Oct. 31, 2021 for Beaver Valley Unit 2.
In addition to the three FES sites, the report includes information about the Three Mile Island Unit 1 plant near Harrisburg, Pa., which Chicago-based Exelon Generation Corp. has previously announced will be shut down in 2019. That plant and others are experiencing similar difficulties the FES plants face by competing in a market radically changed by record-low natural gas prices.
EIA U.S. Power Outlook 2023-2024 forecasts lower electricity demand, softer wholesale prices, and faster renewable growth from solar and wind, with steady natural gas, reduced coal generation, slight nuclear gains, and ERCOT market moderation.
Key Points
An EIA forecast of a 2023 demand dip, 2024 rebound, lower prices, and a higher renewable share in the U.S. power mix.
✅ Demand dips to 4,000 billion kWh in 2023; rebounds in 2024.
✅ ERCOT on-peak prices average about $35/MWh versus $80/MWh in 2022.
✅ Renewables grow to 24% share; coal falls to 17%; nuclear edges up.
U.S. power consumption is expected to slip about 1% in 2023 from the previous year as milder weather slows usage from the record high hit in 2022, consistent with recent U.S. consumption trends observed over the past several years, the U.S. Energy Information Administration (EIA) said in its Short-Term Energy Outlook (STEO).
EIA projected that electricity demand is on track to slide to 4,000 billion kilowatt-hours (kWh) in 2023 from a historic high of 4,048 billion kilowatt-hours (kWh) in 2022, reflecting patterns seen during COVID-19 demand shifts in prior years, before rising to 4,062 billion kWh in 2024 as economic growth ramps up.
Less demand coupled with more electricity generation from cheap renewable power sources and lower natural gas prices is forecast to slash wholesale power prices this year, the EIA said.
The on-peak wholesale price at the North hub in Texas’ ERCOT power market is expected to average about $35 per megawatt-hour (MWh) in 2023 compared with an average of nearly $80/MWh in 2022 after the 2022 price surge in power markets.
As capacity for renewables like solar and wind ramp up and as natural gas prices ease amid the broader energy crisis pressures, the EIA said it expects coal-fired power generation to be 17% less in the spring of 2023 than in the spring of 2022.
Coal will provide an average of 17% of total U.S. generation this year, down from 20% last year, as utilities shift investments toward electricity delivery and away from new power production, the EIA said.
The share of total generation supplied by natural gas is seen remaining at about the same this year at 39%. The nuclear share of generation is seen rising slightly to 20% this year from 19% in 2022. Generation from renewable energy sources grows the most in the forecast, increasing to 24% this year from a share of 22% last year, even as residential electricity bills rose in 2022 across the U.S.
Nord Stream Pipeline Sabotage triggers Baltic Sea gas leaks as Norway and Denmark tighten energy infrastructure security, offshore surveillance, and exclusion zones, after drone sightings near platforms and explosions reported by experts.
Key Points
An alleged attack causing Baltic gas leaks and heightened energy security measures in Norway and Denmark.
✅ Norway boosts offshore and onshore site security
✅ Denmark enforces 5 nm exclusion zone near leaks
✅ Drones spotted; police probe sabotage and safety breaches
Norway and Denmark will increase security and surveillance around their energy infrastructure sites after the alleged sabotage of Russia's Nord Stream gas pipeline in the Baltic Sea, as the EU pursues a plan to dump Russian energy to safeguard supplies.
Major leaks struck two underwater natural gas pipelines running from Russia to Germany, which has moved to a 200 billion-euro energy shield amid surging prices, with experts reporting that explosions rattled the Baltic Sea beforehand.
Norway -- an oil-rich nation and Europe's biggest supplier of gas -- will strengthen security at its land and offshore installations, even as it weighs curbing electricity exports to avoid shortages, the country's energy minister said.
The Scandinavian country's Petroleum Safety Authority also urged vigilance on Monday after unidentified drones were seen flying near Norway's offshore oil and gas platforms.
"The PSA has received a number of warnings/notifications from operator companies on the Norwegian Continental Shelf concerning the observation of unidentified drones/aircraft close to offshore facilities" the agency said in a statement.
"Cases where drones have infringed the safety zone around facilities are now being investigated by the Norwegian police."
Meanwhile Denmark will increase security across its energy sector after the Nord Stream incident, as wider market strains, including Germany's struggling local utilities, ripple across Europe, a spokesperson for gas transmission operator Energinet told Upstream.
The Danish Maritime Agency has also imposed an exclusion zone for five nautical miles around the leaks, warning ships of a danger they could lose buoyancy, and stating there is a risk of the escaping gas igniting "above the water and in the air," even as Europe weighs emergency electricity measures to limit prices.
Denmark's defence minister said there was no cause for security concerns in the Baltic Sea region.
"Russia has a significant military presence in the Baltic Sea region and we expect them to continue their sabre-rattling," Morten Bodskov said in a statement.
Video taken by a Danish military plane on Tuesday afternoon showed the extent of one of gas pipeline leaks, with the surface of the Baltic bubbling up as gas escapes, highlighting Europe's energy crisis for global audiences:
Meanwhile police in Sweden have opened a criminal investigation into "gross sabotage" of the Nord Stream 1 and Nord Stream 2 pipelines, and Sweden's crisis management unit was activated to monitor the situation. The unit brings together representatives from different government agencies.
Swedish Foreign Minister Ann Linde had a call with her Danish counterpart Jeppe Kofod on Tuesday evening, and the pair also spoke with Norwegian Foreign Minister Anniken Huitfeldt on Wednesday, as the bloc debates gas price cap strategies to address the crisis, with Kofod saying there should be a "clear and unambiguous EU statement about the explosions in the Baltic Sea."
"Focus now on uncovering exactly what has happened - and why. Any sabotage against European energy infrastructure will be met with a robust and coordinated response," said Kofod.