ISO New England releases 10-year plan

By Reuters


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The 2009 Regional System Plan released by ISO New England Inc. forecasts that the region is likely to have sufficient capacity to meet electricity demand through 2018 and shows that, while more needs to be done, transmission upgrades and resource additions in recent years have bolstered the power systemÂ’s ability to deliver a reliable supply of electricity to New EnglandÂ’s residents and businesses.

The Board of Directors of ISO New England, the operator of the regionÂ’s bulk power system and wholesale electricity markets, approved the 2009 Regional System Plan (RSP09). The 171-page planning document reports on the status of the regionÂ’s power system, defines areas where improvements are needed, and outlines regional challenges and opportunities through 2018. The plan also describes initiatives underway to address the power gridÂ’s future needs.

"RSP09, which was developed in collaboration with our stakeholders, builds on the foundation of earlier system plans. These plans are guiding development of a regional power system that is not only more reliable, but also more capable of efficient production and delivery of competitively priced power," said Gordon van Welie, President and CEO of ISO New England.

The region is expected to have the resources needed to meet consumer demand and maintain bulk power system reliability through 2018 with the 37,283 megawatts (MW) secured in the second Forward Capacity Auction.

Consumer demand for electricity is expected to grow slowly over the next decade, reflecting the impacts of the economic downturn as well as the implementation of energy-efficiency standards for appliances.

Energy consumption is projected to grow an average 0.9 percent annually over the next 10 years, while summer peak demand is expected to grow by 1.2 percent per year.

Transmission upgrades will continue to be needed in all six New England states to meet reliability requirements and improve the economic performance of the system by reducing or eliminating the need to run more expensive generation in areas with transmission constraints. Major transmission projects needed for reliability include the Greater Springfield (MA) Reliability Project; the Maine Power Reliability Program; and the Vermont Southern Loop Project. Other projects in planning, siting, or construction stages include Southeastern Massachusetts transmission upgrades and the Greater Rhode Island Reliability Project.

The region has made numerous improvements required for power system reliability, including the completion of seven major 345 kilovolt (kV) transmission upgrades since 2002.

In total, over 300 transmission upgrades — representing an investment of $4 billion — have been put in service in all six states between 2002 and 2009; all support the reliable operation of the power system and robust, competitive wholesale power markets.

Competitive wholesale markets have encouraged the construction of nearly 12,500 MW of new generation in the region.

Competitive markets, particularly the Forward Capacity Market, have prompted rapid expansion of demand-side resources, such as energy efficiency, that can help lessen or delay the need for new infrastructure. Over 2,900 MW of demand resources — almost 10 percent of total system capacity — will be available in 2011 to lower electricity consumption.

New EnglandÂ’s markets continue to work efficiently, reflecting real-time conditions and production costs. Lower consumer demand, decreased fuel costs, and increased energy efficiency have resulted in lower wholesale prices so far this year.

To prepare for the grid of the future, the ISO is conducting two major studies addressing the challenges of integrating large amounts of wind and demand resources into system operations and markets. The ISO also has ongoing projects to incorporate smart grid technologies.

Economic analyses conducted in 2008 of several hypothetical system expansion scenarios as well as this yearÂ’s New England 2030 Power System Study, done at the request of New EnglandÂ’s six governors, show that large amounts of wind energy development within New England and expanded trade with Canada would require transmission improvements or expansion to move the electricity to load centers.

Gas, which fueled 41 percent of the regionÂ’s electric generation last year, is likely to remain the dominant fuel for the foreseeable future. That said, regional and interregional coordination between the gas and electric power industries, conversions of natural gas plants to dual-fuel capability, and expanded natural gas infrastructure are lessening risks of supply disruptions.

Climate change legislation, the Regional Greenhouse Gas Initiative, and the statesÂ’ Renewable Portfolio Standards are encouraging the development of renewable resources and investment in energy efficiency. Current state targets call for 30 percent of the regionÂ’s electricity use in 2020 to be met by renewable resources and energy efficiency. Renewable resource projects currently proposed in New England, as well as projects not yet proposed, renewable energy from neighboring areas, small on-site renewable energy systems, and the use of state-set Alternative Compliance Payments are among the possible solutions for meeting or exceeding the regionÂ’s goals.

ISO New England continues to work with grid managers and stakeholders in neighboring power systems in Canada and New York, as well as the rest of the nationÂ’s eastern power grid, to coordinate planning for future system needs.

The annual Regional System Plan is developed to help industry and government stakeholders make informed business and policy decisions. In 2000, the Federal Energy Regulatory Commission assigned ISO New England the responsibility for coordinating regional system planning. Each year, the ISO prepares a comprehensive, 10-year plan that includes forecasts of future demand for electricity and addresses how this demand may be satisfied by adding supply resources, demand resources, and new or upgraded transmission facilities. Each RSP is a snapshot in time, and the results are revisited as needed based on the latest available information. Each plan is developed in a year-long, collaborative process that includes state regulators and other government entities, transmission owners, end-users, market participants, and other stakeholders.

Related News

Ukraine Leans on Imports to Keep the Lights On

Ukraine Electricity Imports surge to record levels as EU neighbors bolster grid stability amid Russian strikes, supporting energy security, preventing blackouts, and straining cross-border transmission capacity while Ukraine rebuilds damaged infrastructure and diversifies with renewables.

 

Key Points

Emergency EU power purchases stabilizing Ukraine’s grid after war damage.

✅ Record 19,000 MWh per day from EU interconnectors

✅ Supports grid stability and blackout prevention

✅ Cost and transmission upgrades challenge sustainability

 

Russia's ongoing war in Ukraine has extended far beyond the battlefield, with critical infrastructure becoming a target. Ukraine's once-robust energy system has sustained significant damage amid energy ceasefire violations and Russian missile and drone strikes. To cope with these disruptions and maintain power supplies for Ukrainian citizens, the country is turning to record-breaking electricity imports from neighboring European nations.

Prior to the war, Ukraine enjoyed a self-sufficient energy sector, even exporting electricity to neighboring countries. However, targeted attacks on power plants and transmission lines have crippled generation capacity. The situation is particularly dire in eastern and southern Ukraine, where ongoing fighting has caused extensive damage.

Faced with this energy crisis, Ukraine is looking to Europe for a lifeline. The country's energy ministry has announced plans to import a staggering amount of electricity – exceeding 19,000 megawatt-hours (MWh) per day – to prepare for winter and stabilize supplies. This surpasses the previous record set in March 2024 and represents a significant increase in Ukraine's reliance on external power sources.

Several European nations are stepping up to support Ukraine. Countries like Poland, Slovakia, Romania, Hungary, which maintains quiet energy ties with Russia today, and Moldova have agreed to provide emergency electricity supplies. These imports will help stabilize Ukraine's power grid and prevent widespread blackouts, especially during peak consumption hours.

The reliance on imports, however, presents its own set of challenges. Firstly, the sheer volume of electricity needed puts a strain on the capacity of neighboring grids. Upgrading and expanding transmission infrastructure will be crucial to ensure a smooth flow of electricity. Secondly, the cost of imported electricity can be higher than domestically generated power amid price hikes and instability globally, placing additional pressure on Ukraine's already strained finances.

Beyond these immediate concerns, the long-term implications of relying on external energy sources need to be considered. Ukraine's long-term goal is to rebuild its own energy infrastructure and regain energy independence. International assistance, including energy security support measures, will be crucial in this endeavor. Financial aid and technical expertise can help Ukraine repair damaged power plants, diversify its energy mix through further investment in renewables, and develop more resilient grid infrastructure.

The war in Ukraine has underscored the importance of energy security. A nation's dependence on a single source of energy, be it domestic or foreign, leaves it vulnerable to disruption, as others consider national security and fossil fuels in their own policies. For Ukraine, diversification and building a more resilient energy infrastructure are key takeaways from this crisis.

The international community also has a role to play. Supporting Ukraine's energy sector not only helps the nation weather the current crisis but also strengthens European energy security as a whole, where concerns over Europe's energy nightmare remain pronounced. A stable and independent Ukraine, less reliant on Russian energy, contributes to a more secure and prosperous Europe.

As the war in Ukraine continues, the battle for energy security rages on. While the immediate focus is on keeping the lights on through imports, the long-term goal for Ukraine is to rebuild a stronger, more resilient energy sector that can power the nation's future. The international community's support will be crucial in helping Ukraine achieve this goal.

 

Related News

View more

British Columbia Accelerates Clean Energy Shift

BC Hydro Grid Modernization accelerates clean energy and electrification, upgrading transmission lines, substations, and hydro dams to deliver renewable power for EVs and heat pumps, strengthen grid reliability, and enable industrial decarbonization in British Columbia.

 

Key Points

A $36B, 10-year plan to expand and upgrade B.C.'s clean grid for electrification, reliability, and industrial growth.

✅ $36B for lines, substations, and hydro dam upgrades

✅ Enables EV charging, heat pumps, and smart demand response

✅ Prioritizes industrial electrification and Indigenous partnerships

 

In a significant move towards a clean energy transition, British Columbia has announced a substantial $36-billion investment to enlarge and upgrade its electricity grid over the next ten years. The announcement last Tuesday from BC Hydro indicates a substantial 50 percent increase from its prior capital plan. A major portion of this investment is directed towards new consumer connections and improving current infrastructure, including substations, transmission lines, and hydro dams for more efficient power generation.

The catalyst behind this major investment is the escalating demand for clean energy across residential, commercial, and industrial sectors in British Columbia. Projections show a 15 percent rise in electricity demand by 2030. According to the Canadian Climate Institute's models, achieving Canada’s climate goals will require extensive electrification across various sectors, raising questions about a net-zero grid by 2050 nationwide.

BC Hydro is planning substantial upgrades to the electrical grid to meet the needs of a growing population, decreasing industry carbon emissions, and the shift towards clean technology. This is vital, especially as the province works towards improving housing affordability and as households face escalating costs from the impacts of climate change and increasing exposure to harsh weather events. Affordable, reliable power and access to clean technologies such as electric vehicles and heat pumps are becoming increasingly important for households.

British Columbia is witnessing a significant shift from fossil fuels to clean electricity in powering homes, vehicles, and workplaces. Electric vehicle usage in B.C. has increased twentyfold in the past six years. Last year, one in every five new light-duty passenger vehicles sold in B.C. was electric – the highest rate in Canada. Additionally, over 200,000 B.C. homes are now equipped with heat pumps, indicating a growing preference for the province’s 98 percent renewable electricity.

The investment also targets reducing industrial emissions and attracting industrial investment. For instance, the demand for transmission along the North Coastline, from Prince George to Terrace, is expected to double this decade, especially from sectors like mining. Mining companies are increasingly looking for locations with access to clean power to reduce their carbon footprint.

This grid enhancement plan in B.C. is reflective of similar initiatives in provinces like Quebec and the legacy of Manitoba hydro history in building provincial systems. Hydro-Québec announced a substantial $155 to $185 billion investment in its 2035 Action Plan last year, aimed at supporting decarbonization and economic growth. By 2050, Hydro-Québec predicts a doubling of electricity demand in the province.

Both utilities’ strategies focus on constructing new facilities and enhancing existing assets, like upgrading dams and transmission lines. Hydro-Québec, for instance, includes energy efficiency goals in its plan to double customer savings and potentially save over 3,500 megawatts of power.

However, with this level of investment, provinces need to engage in dialogue about priorities and the optimal use of clean electricity resources, with concepts like macrogrids offering potential benefits. Quebec, for instance, has shifted from a first-come, first-served basis to a strategic review process for significant new industrial power requests.

B.C. is also moving towards strategic prioritization in its energy strategy, evident in its recent moratorium on new connections for virtual currency mining due to their high energy consumption.

Indigenous partnership and leadership are also key in this massive grid expansion. B.C.’s forthcoming Call for Power and Quebec’s financial partnerships with Indigenous communities indicate a commitment to collaborative approaches. British Columbia has also allocated $140 million to support Indigenous-led power projects.

Regarding the rest of Canada, electricity planning varies in provinces with deregulated markets like Ontario and Alberta. However, these provinces are adapting too, and the federal government has funded an Atlantic grid study to improve regional planning efforts. Ontario, for example, has provided clear guidance to its system operator, mirroring the ambition in B.C. and Quebec.

Utilities are rapidly working to not only expand and modernize energy grids but also to make them more resilient, affordable, and smarter, as demonstrated by recent California grid upgrades funding announcements across the sector. Hydro-Québec focuses on grid reliability and affordability, while B.C. experiments with smart-grid technologies.

Both Ontario and B.C. have programs encouraging consumers to reduce consumption in real-time, demonstrating the potential of demand-side management. A recent instance in Alberta showed how customer participation could prevent rolling blackouts by reducing demand by 150 megawatts.

This is a crucial time for all Canadian provinces to develop larger, smarter energy grids, including a coordinated western Canadian electricity grid approach for a sustainable future. Utilities are making significant strides towards this goal.
 

 

Related News

View more

Vehicle-to-grid could be ‘capacity on wheels’ for electricity networks

Vehicle-to-Grid (V2G) enables EV batteries to provide grid balancing, flexibility, and demand response, integrating renewables with bidirectional charging, reducing peaker plant reliance, and unlocking distributed energy storage from millions of connected electric vehicles.

 

Key Points

Vehicle-to-Grid (V2G) lets EVs export power via bidirectional charging to balance grids and support renewables.

✅ Turns parked EVs into distributed energy storage assets

✅ Delivers balancing services and demand response to the grid

✅ Cuts peaker plant use and supports renewable integration

 

“There are already many Gigawatt-hours of batteries on wheels”, which could be used to provide balance and flexibility to electrical grids, if the “ultimate potential” of vehicle-to-grid (V2G) technology could be harnessed.

That’s according to a panel of experts and stakeholders convened by our sister site Current±, which covers the business models and technologies inherent to the low carbon transition to decentralised and clean energy. Focusing mainly on the UK grid but opening up the conversation to other territories and the technologies themselves, representatives including distribution network operator (DNO) Northern Powergrid’s policy and markets director and Nissan Europe’s director of energy services debated the challenges, benefits and that aforementioned ultimate potential.

Decarbonisation of energy systems and of transport go hand-in-hand amid grid challenges from rising EV uptake, with vehicle fuel currently responsible for more emissions than electricity used for energy elsewhere, as Ian Cameron, head of innovation at DNO UK Power Networks says in the Q&A article.

“Furthermore, V2G technology will further help decarbonisation by replacing polluting power plants that back up the electrical grid,” Marc Trahand from EV software company Nuvve Corporation added, pointing to California grid stability initiatives as a leading example.

While the panel states that there will still be a place for standalone utility-scale energy storage systems, various speakers highlighted that there are over 20GWh of so-called ‘batteries on wheels’ in the US, capable of powering buildings as needed, and up to 10 million EVs forecast for Britain’s roads by 2030.

“…it therefore doesn’t make sense to keep building expensive standalone battery farms when you have all this capacity on wheels that just needs to be plugged into bidirectional chargers,” Trahand said.

 

Related News

View more

BOE Says UK Energy Price Guarantee is Key for Next Rates Call

UK Market Stability Outlook remains febrile as the Bank of England, Treasury, and OBR forecasts shape fiscal policy, interest rates, gilt yields, inflation, energy bills, and pound sterling, with Oct. 31 guidance to reassure investors.

 

Key Points

A view of investor confidence as BOE policy, fiscal plans, and energy aid shape inflation and interest rates.

✅ Markets await Oct. 31 fiscal statement and OBR projections

✅ Energy support design drives inflation and disposable income

✅ Pound weakness adds imported inflation; rates seen up 75 bps

 

Bank of England Deputy Governor Dave Ramsden said financial markets are still unsettled about the outlook for the UK and that a Treasury statement due on Oct. 31 may provide some reassurance.

Speaking to the Treasury Committee in Parliament, Ramsden said officials in government and the central bank are dealing with huge economic shocks, notably the surge in energy prices that came with Russia’s attack on Ukraine. Investors are reassessing where interest rates and the fiscal stance are headed.

“Markets remain quite febrile,” Ramsden told members of Parliament in London on Monday. “Things have not settled down yet.”

He described the events following Prime Minister Liz Truss’s ill-fated fiscal statement on Sept. 23, which set out a series of tax cuts funded by borrowing that spooked investors and triggered a rout in UK assets. Ramsden said those events damaged the UK’s credibility among investors, but reversing that program and Truss’s decision to step aside have helped the nation regain confidence.

“Credibility is hard won and easily lost,” Ramsden said. “That credibility is being recovered. That has to be followed through. A return to the kind of stability around policy making and around the framing of fiscal events will be really important.”

He said the issue with the Sept. 23 statement was that “it had one side of the fiscal arithmetic in it” and that the decision to include forecasts from the Office for Budget Responsibility will help underpin the confidence investors have in assessing the UK budget due out next week, including potential moves to end the link between gas and electricity prices for consumers.

“What we are going to get on Oct. 31 will be very important,” Ramsden said, “as it will address measures such as the price cap on household energy bills and other fiscal choices.”

“My sense is that will take account of all the statements on both the revenue and on the spending side.”

The central bank already was getting some information from Chancellor of the Exchequer Jeremy Hunt’s team about the fiscal statement due. Hunt said last week he’d curtail government plans to subsidize household fuel bills in April, when a 16% decrease in energy bills is anticipated, instead of letting it run as long as planned and replace it with a more targeted program. 

“To the extent possible, we will obviously have a little bit of time to take account of that before we make our decisions later next week,” Ramsden said.

With Truss stepping down in the next day and handing power to Rishi Sunak, it isn’t certain the Oct. 31 statement will go ahead as planned. Ramsden’s remarks confirm reports that Hunt is preparing to make the statement, amid a free electricity debate in the industry, even before Sunak names his team.

Any hint about what sort of package Hunt will offer on energy is crucial to the BOE’s forecasts. Without aid for energy, consumers will be exposed to high winter heating and electricity costs and to the full force of whatever happens in natural gas and electricity markets, and that will have a big impact on how much disposable income is available to households.

The energy plan, alongside the energy security bill, “will be a key element, as obviously it will have a bearing on the path for inflation, which is critical, but also how much additional support relative to what we were assuming at the time of the September MPC there will be for households at different points in the income distribution,” Ramsden added.

Investors currently expect the BOE to hike rates by 75 basis points next week.

Ramsden also said the BOE is watching the pound’s decline to assess how that changes the outlook for inflation.

“We have to take account of it,” Ramsden said. “When sterling deprreciaties that feeds through to imported inflation. It’s fallen quite significantly. The overall trend is down.”

 

Related News

View more

California's solar energy gains go up in wildfire smoke

California Wildfire Smoke Impact on Solar reduces photovoltaic output, as particulate pollution, soot, and haze dim sunlight and foul panels, cutting utility-scale generation and grid reliability across CAISO during peak demand and heatwaves.

 

Key Points

How smoke and soot cut solar irradiance and foul panels, slashing PV generation and straining CAISO grid operations.

✅ Smoke blocks sunlight; soot deposition reduces panel efficiency.

✅ CAISO reported ~30% drop versus July during peak smoke.

✅ Longer fire seasons threaten solar reliability and capacity planning.

 

Smoke from California’s unprecedented wildfires was so bad that it cut a significant chunk of solar power production in the state, even as U.S. solar generation rose in 2022 nationwide. Solar power generation dropped off by nearly a third in early September as wildfires darkened the skies with smoke, according to the US Energy Information Administration.

Those fires create thick smoke, laden with particles that block sunlight both when they’re in the air and when they settle onto solar panels. In the first two weeks of September, soot and smoke caused solar-powered electricity generation to fall 30 percent compared to the July average, according to the California Independent System Operator (CAISO), which oversees nearly all utility-scale solar energy in California, where wind and solar curtailments have been rising amid grid constraints. It was a 13.4 percent decrease from the same period last year, even though solar capacity in the state has grown about 5 percent since September 2019.

California depends on solar installations for nearly 20 percent of its electricity generation, and has more solar capacity than the next five US states trailing it combined as it works to manage its solar boom sustainably. It will need even more renewable power to meet its goal of 100 percent clean electricity generation by 2045, building on a recent near-100% renewable milestone that underscored the transition. The state’s emphasis on solar power is part of its long-term efforts to avoid more devastating effects of climate change. But in the short term, California’s renewables are already grappling with rising temperatures.

Two records were smashed early this September that contributed to the loss of solar power. California surpassed 2 million acres burned in a single fire season for the first time (1.7 million more acres have burned since then). And on September 15th, small particle pollution reached the highest levels recorded since 2000, according to the California Air Resources Board. Winds that stoked the flames also drove pollution from the largest fires in Northern California to Southern California, where there are more solar farms.

Smaller residential and commercial solar systems were affected, too, and solar panels during grid blackouts typically shut off for safety, although smoke was the primary issue here. “A lot of my systems were producing zero power,” Steve Pariani, founder of the solar installation company Solar Pro Energy Systems, told the San Mateo Daily Journal in September.

As the planet heats up, California’s fire seasons have grown longer, and blazes are tearing through more land than ever before, while grid operators are also seeing rising curtailments as they integrate more renewables. For both utilities and smaller solar efforts, wildfire smoke will continue to darken solar energy’s otherwise bright future, even as it becomes the No. 3 renewable source in the U.S. by generation.

 

Related News

View more

Alberta Ends Moratorium on Renewable Energy Projects

Alberta Ends Renewable Energy Moratorium, accelerating wind and solar deployment while prioritizing grid stability, reliability, and infrastructure upgrades to attract investment, cut emissions, meet climate targets, and integrate renewables into the provincial power system.

 

Key Points

It is Alberta's decision to lift a pause on new wind and solar projects while enhancing grid reliability.

✅ Resumes wind and solar development across Alberta.

✅ Focuses on grid stability and infrastructure upgrades.

✅ Aims to attract investment and meet climate targets.

 

The Alberta government has announced the end of a temporary suspension on the development of new renewable energy projects, as the power grid operator prepares to accept green energy bids across the market. This pause, which had been in place since May 2023, was initially implemented to evaluate the effects of rapid growth in renewable energy installations on the province's power grid and overall energy system. However, the decision to lift the moratorium reflects a shift in the government’s approach to balancing energy needs and environmental goals.

The suspension was introduced amid concerns that the swift expansion of wind and solar energy projects, including documented challenges with solar energy expansion in the province, could place undue stress on Alberta's electrical grid and infrastructure. Officials expressed worries about the ability of the grid to handle the increased load and the potential need for upgrades to accommodate new renewable energy sources. The government aimed to assess the implications of this growth and determine appropriate measures to ensure that the energy system could support both existing and future demands.

The moratorium drew significant criticism from various sectors, including renewable energy companies, environmental advocates, and local communities. Critics argued that the pause was detrimental to Alberta's efforts to transition to cleaner energy sources and meet climate targets, citing cases like TransAlta scrapping a wind farm amid policy uncertainty. They pointed out that halting projects could delay investments and job creation associated with the renewable energy sector, potentially impeding progress towards a more sustainable energy future.

In response to these concerns, the Alberta government conducted further reviews and consultations. The decision to cancel the pause reflects the government’s recognition of the importance of advancing renewable energy initiatives while also addressing the need for grid stability and infrastructure development. By ending the moratorium, the government aims to support the continued growth of renewable energy projects and maintain momentum in the shift towards greener energy solutions.

The lifting of the moratorium is expected to have a positive impact on the renewable energy industry in Alberta. Several planned projects that were put on hold can now proceed, leading to renewed investment and economic benefits, including a renewable energy surge that could power 4,500 jobs across the province. The government’s decision signals a commitment to integrating renewable energy sources into the provincial grid in a way that ensures both reliability and sustainability.

Going forward, the Alberta government plans to implement measures to better manage the integration of renewable energy into the existing power infrastructure. This includes addressing any potential challenges related to grid capacity and ensuring that the growth of renewable energy projects aligns with the province's overall energy strategy, as recent federal procurement such as a $500M green electricity contract with an Edmonton company underscores demand that integration efforts must accommodate. The goal is to create a balanced approach that supports the development of clean energy while maintaining the stability and efficiency of the energy system.

The end of the moratorium aligns with Alberta’s broader objectives to reduce greenhouse gas emissions and promote environmental sustainability within a province recognized as a powerhouse for both green energy and fossil fuels in Canada. The government’s approach reflects a willingness to adapt policies and strategies in response to evolving industry needs and environmental priorities. By removing the pause, Alberta demonstrates its commitment to fostering a diverse and resilient energy sector that can meet both current and future demands.

The decision to cancel the moratorium is also seen as a move to reinforce Alberta’s position as a leader in renewable energy development. With the lifting of restrictions, the province can continue to attract investment in clean energy projects, as neighboring jurisdictions such as B.C. streamline clean energy approvals to accelerate deployment, enhance its reputation as a progressive energy market, and contribute to global efforts to address climate change.

In summary, the Alberta government’s decision to lift the pause on renewable energy projects represents a significant shift in its approach to energy policy. The move reflects an acknowledgment of the importance of advancing renewable energy while addressing the practical challenges associated with grid management and infrastructure development. By ending the moratorium, Alberta aims to support the growth of clean energy initiatives and maintain its commitment to sustainability and environmental responsibility.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified