Wind turbine doubles as tribute to family

By Knight Ridder Tribune


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Most memorials preserve memories, but a new one nearing completion on a family farm will generate power, too.

If all goes according to schedule today, engineers from Appalachian Power will complete the final inspection of a new wind turbine on The Clarke Farm, located off Route 20 about two miles west of Athens, said Gloria Clarke Zucchet.

Gloria, 86, recalled how her family came to the property and discovered that it offered a steady and abundant resource.

"After searching for many years, my parents purchased our farm on a hilltop overlooking the town of Athens in December 1941," she said. "Our first winter with its howling winds was a new experience for us. The winds and the open hilltop location made it practical to attempt to harvest this clean source of energy." New technology and a gift from a loved one made it possible to tap this resource.

"An inheritance from my sister has made it possible," Gloria said. "I chose PIMBY, Power In My Back Yard, Ltd., a firm from Thomas, W.Va., to plan, design and erect a tower and turbine as a working memorial to family members."

The turbine assembly comes from Abundant Renewable Energy located in Newberg, Oregon, she said, and the tower was constructed in Plymouth, Indiana. The resulting wind turbine and tower system is designed to provide electrical energy for the family's guest house. Any excess current will be fed into the Appalachian Power grid, Gloria said.

"In the winter when the wind is really howling, we'll have excess I'm sure," she added.

For several months, the family has watched their project take shape.

"This past spring and summer have been interesting and exciting, watching the 100- foot tower being assembled and the turbine added," she said. "The real excitement came when a crane from the Richlands area hoisted the assembly up and lowered it to its latform."

A dual flow power meter will be installed after Appalachian Power engineers complete the final inspection.

"With Appalachian Power approval, the system will be activated and the turbine will turn into the wind to begin to generate power," Gloria said. She could not recall offhand how much electricity the turbine can generate, but equipment for the project co t approximately $60,000.

"Labor and the four-foot concrete pad are additional and so far we haven't gotten a bill for those," she said. "It will be really exciting when we see it turning."

Related News

The Phillipines wants nuclear power to be included in the country's energy mix as the demand for electricity is expected to rise.

Philippines Nuclear Energy Policy aims to add nuclear power to the energy mix via executive order, meeting rising electricity demand with 24/7 baseload while balancing safety, renewables, and imported fuel dependence in the Philippines.

 

Key Points

A government plan to include nuclear power in the energy mix to meet demand, ensure baseload, and uphold safety.

✅ Executive order proposed by Energy Secretary Alfonso Cusi

✅ Targets 24/7 baseload, rising electricity demand

✅ Balances safety, renewables, and energy security

 

Phillipines Presidential spokesman Salvador Panelo said Energy Secretary Alfonso Cusi made the proposal during last Monday's Cabinet meeting in Malacaaang. "Secretary Cusi likewise sought the approval of the issuance of a proposed executive order for the inclusion of nuclear power, including next-gen nuclear options in the country's energy mix as the Philippines is expected to the rapid growth in electricity and electricity demand, in which, 24/7 power is essential and necessary," Panelo said in a statement.

Panelo said Duterte would study the energy chief's proposal, as China's nuclear development underscores regional momentum. In the 1960s until the mid 80s, the late president Ferdinand Marcos adopted a nuclear energy program and built the Bataan Nuclear Plant.

The nuclear plant was mothballed after Corazon Aquino became president in 1986. There have been calls to revive the nuclear plant, saying it would help address the Philippines' energy supply issues. Some groups, however, said such move would be expensive and would endanger the lives of people living near the facility, citing Three Mile Island as a cautionary example.

Panelo said proposals to revive the Bataan Nuclear Plant were not discussed during the Cabinet meeting, even as debates like California's renewable classification continue to shape perceptions. Indigenous energy sources natural gas, hydro, coal, oil, geothermal, wind, solar, biomassand ethanol constitute more than half or 59.6%of the Philippines' energy mix.

Imported oil make up 31.7% while imported coal, reflecting the country's coal dependency, contribute about 8.7%.

Imported ethanol make up 0.1% of the energy mix, even as interest in atomic energy rises globally.

In 2018, Duterte said safety should be the priority when deciding whether to tap nuclear energy for the country's power needs, as countries like India's nuclear restart proceed with their own safeguards.

 

Related News

View more

Ukraine Leans on Imports to Keep the Lights On

Ukraine Electricity Imports surge to record levels as EU neighbors bolster grid stability amid Russian strikes, supporting energy security, preventing blackouts, and straining cross-border transmission capacity while Ukraine rebuilds damaged infrastructure and diversifies with renewables.

 

Key Points

Emergency EU power purchases stabilizing Ukraine’s grid after war damage.

✅ Record 19,000 MWh per day from EU interconnectors

✅ Supports grid stability and blackout prevention

✅ Cost and transmission upgrades challenge sustainability

 

Russia's ongoing war in Ukraine has extended far beyond the battlefield, with critical infrastructure becoming a target. Ukraine's once-robust energy system has sustained significant damage amid energy ceasefire violations and Russian missile and drone strikes. To cope with these disruptions and maintain power supplies for Ukrainian citizens, the country is turning to record-breaking electricity imports from neighboring European nations.

Prior to the war, Ukraine enjoyed a self-sufficient energy sector, even exporting electricity to neighboring countries. However, targeted attacks on power plants and transmission lines have crippled generation capacity. The situation is particularly dire in eastern and southern Ukraine, where ongoing fighting has caused extensive damage.

Faced with this energy crisis, Ukraine is looking to Europe for a lifeline. The country's energy ministry has announced plans to import a staggering amount of electricity – exceeding 19,000 megawatt-hours (MWh) per day – to prepare for winter and stabilize supplies. This surpasses the previous record set in March 2024 and represents a significant increase in Ukraine's reliance on external power sources.

Several European nations are stepping up to support Ukraine. Countries like Poland, Slovakia, Romania, Hungary, which maintains quiet energy ties with Russia today, and Moldova have agreed to provide emergency electricity supplies. These imports will help stabilize Ukraine's power grid and prevent widespread blackouts, especially during peak consumption hours.

The reliance on imports, however, presents its own set of challenges. Firstly, the sheer volume of electricity needed puts a strain on the capacity of neighboring grids. Upgrading and expanding transmission infrastructure will be crucial to ensure a smooth flow of electricity. Secondly, the cost of imported electricity can be higher than domestically generated power amid price hikes and instability globally, placing additional pressure on Ukraine's already strained finances.

Beyond these immediate concerns, the long-term implications of relying on external energy sources need to be considered. Ukraine's long-term goal is to rebuild its own energy infrastructure and regain energy independence. International assistance, including energy security support measures, will be crucial in this endeavor. Financial aid and technical expertise can help Ukraine repair damaged power plants, diversify its energy mix through further investment in renewables, and develop more resilient grid infrastructure.

The war in Ukraine has underscored the importance of energy security. A nation's dependence on a single source of energy, be it domestic or foreign, leaves it vulnerable to disruption, as others consider national security and fossil fuels in their own policies. For Ukraine, diversification and building a more resilient energy infrastructure are key takeaways from this crisis.

The international community also has a role to play. Supporting Ukraine's energy sector not only helps the nation weather the current crisis but also strengthens European energy security as a whole, where concerns over Europe's energy nightmare remain pronounced. A stable and independent Ukraine, less reliant on Russian energy, contributes to a more secure and prosperous Europe.

As the war in Ukraine continues, the battle for energy security rages on. While the immediate focus is on keeping the lights on through imports, the long-term goal for Ukraine is to rebuild a stronger, more resilient energy sector that can power the nation's future. The international community's support will be crucial in helping Ukraine achieve this goal.

 

Related News

View more

Tesla Electric is preparing to expand in the UK

Tesla Electric UK Expansion signals retail energy entry, leveraging Powerwall VPPs for grid services, dynamic pricing, and energy trading, building on Texas success and Octopus Energy ties to buy and sell electricity automatically.

 

Key Points

Tesla's plan to launch Tesla Electric in the UK, using Powerwall VPPs to retail energy, trade power, and hedge peaks.

✅ Retail energy model built on Powerwall VPP aggregation

✅ Automated buy-sell arbitrage with dynamic pricing

✅ Leverages prior UK approval and Octopus Energy ties

 

According to a new job posting, Tesla Electric, Tesla’s new electric utility division, is preparing to expand in the United Kingdom as regions such as California grid planners look to electric vehicles for stability to manage demand.

Late last year, after gaining experience through its virtual power plants (VPPs), including response during California blackouts that pressured the grid, Tesla took things a step further with the launch of “Tesla Electric.”

Instead of reacting to specific “events” and providing services to your local electric utilities through demand response programs, as Tesla Powerwall owners have done in VPPs in California, Tesla Electric is actively and automatically buying and selling electricity for Tesla Powerwall owners – providing a buffer against peak prices.

The company is essentially becoming an energy retailer, aligning with a major future for its energy business envisioned by leadership.

Tesla Electric is currently only available to Powerwall owners in Texas, but the company has plans to expand its products through this new division.

We recently reported on Tesla Electric customers in Texas making as much as $150 a day selling electricity back to the grid through the program.

Now Tesla is looking to expand Tesla Electric to the UK, where grid capacity for rising EV demand remains a key consideration.

The company has listed a new job posting for a role called “Head of Operations, Tesla Electric – Retail Energy.”

This has been in the works for a while now. Tesla used to have a partnership with Octopus Energy in the UK for special electricity rates for its owners, during a period when UK EV inquiries surged amid a fuel supply crisis, but it seemed to be a stepping stone before it would itself become an energy provider in the market.

In 2020, Tesla was officially approved as an electricity retailer in the UK. Now it looks like Tesla is going to use this approval with the launch of Tesla Electric.
 

 

Related News

View more

Europe's largest shore power plant opens

AIDAsol shore power Rostock-Warnemfcnde delivers cold ironing for cruise ships, up to 20 MVA at berths P7 and P8, cutting port emissions during berthing and advancing AIDA's green cruising strategy across European ports.

 

Key Points

Rostock-Warnemfcnde shore power supplies two cruise ships up to 20 MVA, enabling cold ironing and cutting emissions.

✅ Up to 20 MVA; powers two cruise ships at berths P7 and P8

✅ Enables cold ironing for AIDA fleet to reduce berth emissions

✅ Part of AIDA green cruising with fuel cells and batteries

 

In a ceremony held in Rostock-Warnemünde yesterday during Germany’s 12th National Maritime Conference, the 2,174-passenger cruise ship AIDAsol inaugurated Europe’s largest shore power plants for ships.

The power plant has been established under a joint agreement between AIDA Cruises, a unit of Carnival Corporation & plc (NYSE/LSE: CCL; NYSE: CUK), the state government of Mecklenburg-Western Pomerania, the city of Rostock and the Port of Rostock.

“With our green cruising strategy, we have been investing in a sustainable cruise market for many years,” said AIDA Cruises President Felix Eichhorn. “The shore power plant in Rostock-Warnemünde is another important step — after the facility in Hamburg — on our way to an emission-neutral cruise that we want to achieve with our fleet. I would like to thank the state government of Mecklenburg-Western Pomerania and all partners involved for the good and trusting cooperation. Together, we are sending out an important signal, not just in Germany, but throughout Europe.”

CAN POWER TWO CRUISE SHIPS AT A TIME
The shore power plant, which was completed in summer 2020, is currently the largest in Europe and aligns with port electrification efforts such as the all-electric berth at London Gateway in the UK. With an output of up to 20 megavolt amperes (MVA), two cruise ships can be supplied with electricity at the same time at berths P7 and P8 in Warnemünde.

In regular passenger operation AIDAsol needs up to 4.5 megawatts per hour (MWh) of electricity.

The use of shore power to supply ships with energy is a decisive step in AIDA Cruises’ plans to reduce local emissions to zero during berthing, complementing recent progress with electric ships on the B.C. coast, as a cruise ship typically stays in port around 40% of its operating time.

As early as 2004, when the order for the construction of AIDAdiva was placed, and for all other ships put into service in subsequent years, the company has considered the use of shore power as an option for environmentally friendly ship operation.

Since 2017, AIDA Cruises has been using Europe’s first shore power plant in Hamburg-Altona, where AIDAsol is in regular operation, while operators like BC Ferries add hybrid ferries to expand low-emission service in Canada. Currently, 10 ships in the AIDA fleet can either use shore power where available or are technically prepared for it.

The aim is to convert all ships built from 2000 onwards, supporting future solutions like offshore charging with wind power.

With AIDA Cruises starting a cruise season from Kiel, Germany, on May 22, AIDAsol will also be the first cruise ship to complete the final tests on a newly built shore power plant there, as innovations such as Berlin’s electric flying ferry highlight the broader shift toward electrified waterways. Construction of that plant is the result of a joint initiative by the state government of Schleswig-Holstein, the city and the port of Kiel and AIDA Cruises. AIDAsol is scheduled to arrive in Kiel on the afternoon of May 13.

As part of its green cruising strategy, AIDA Cruises has been investing in a sustainable cruise operation for many years, paralleling urban shifts toward zero-emission bus fleets in Berlin. Other steps on the path to the zero emission ship of the future are already in preparation. This year, AIDAnova will receive the first fuel cell to be used on an ocean-going cruise ship. In 2022, the largest battery storage system to date in cruise shipping will go into operation on board an AIDA ship, similar to advances in battery-electric ferries in the U.S. In addition, the company is already addressing the question of how renewable fuels can be used on board cruise ships in the future.

 

Related News

View more

Coronavirus impacts dismantling of Germany's Philippsburg nuclear plant

Philippsburg Demolition Delay: EnBW postpones controlled cooling-tower blasts amid the coronavirus pandemic, affecting decommissioning timelines in Baden-Wurttemberg and grid expansion for a transformer station to route renewable power and secure supply in southern Germany.

 

Key Points

EnBW's COVID-19 delay of Philippsburg cooling-tower blasts, affecting decommissioning and grid plans.

✅ Controlled detonation shifted to mid-May at earliest

✅ Demolition links to transformer station for north-south grid

✅ Supports security of supply in southern Germany

 

German energy company EnBW said the coronavirus outbreak has impacted plans to dismantle its Philippsburg nuclear power plant in Baden-Wurttemberg, southwest Germany, amid plans to phase out coal and nuclear nationally.

The controlled detonation of Phillipsburg's cooling towers will now take place in mid-May at the earliest, subject to coordination as Germany debates whether to reconsider its nuclear phaseout in light of supply needs.

However, EnBW said the exact demolition date depends on many factors - including the further development in the coronavirus pandemic and ongoing climate policy debates about energy choices.

Philippsburg 2, a 1402MWe pressurised water reactor unit permanently shut down on 31 December 2019, as part of Germany's broader effort to shut down its remaining reactors over time.

At the end of 2019, the Ministry of the Environment gave basic approval for decommissioning and dismantling of unit 2 of the Philippsburg nuclear power plant, inluding explosive demolition of the colling towers. Since then EnBW has worked intensively on getting all the necessary formal steps on the way and performing technical and logistical preparatory work, even as discussions about a potential nuclear resurgence continue nationwide.

“The demolition of the cooling towers is directly related to future security of supply in southern Germany. We therefore feel obliged to drive this project forward," said Jörg Michels head of the EnBW nuclear power division.

The timely removal of the cooling towers is important as the area currently occupied by nuclear plant components is needed for a transformer station for long-distance power lines, an issue underscored during the energy crisis when Germany temporarily extended nuclear power to bolster supply. These will transport electricity from renewable sources in the north to industrial centres in the south.

As of early 2020, there six nuclear reactors in operation in Germany, even as the country turned its back on nuclear in subsequent years. According to research institute Fraunhofer ISE, nuclear power provided about 14% of Germany's net electricity in 2019, less than half of the figure for 2000.

 

Related News

View more

Sudbury Hydro crews aim to reconnect service after storm

Sudbury Microburst Power Outage strains hydro crews after straight-line winds; New Sudbury faces downed power lines, tree damage, and hazardous access as restoration efforts, mutual aid, and safety protocols aim to reconnect customers by weekend.

 

Key Points

A microburst downed lines in New Sudbury, cutting power as crews tackle hazardous access and complex repairs.

✅ Straight-line winds downed poles, trees, and service lines

✅ Crews face backyard access hazards, complex reconnections

✅ Mutual aid linemen, arborists, and crane work speed restoration

 

About 300 Sudbury Hydro customers are still without power Thursday after Monday's powerful microburst storm, part of a series of damaging storms in Ontario seen across the province.

The utility's spokesperson, Wendy Watson, says the power in the affected New Sudbury neighbourhoods should be back on by the weekend, even as Toronto power outages persisted in a recent storm.

The storm, which Environment Canada said was classified as a microburst or straight line wind damage, similar to a severe windstorm in Quebec, downed a number of power lines in the city.

Now crews are struggling with access to the lines, a challenge that BC Hydro's atypical storm response also highlighted, as they work to reconnect service in the area.

"In some cases, you can't get to someone's back yard, or you have to go through the neighbour's yard," Watson said.

"We have one case where [we had] equipment working over a swimming pool. It's dicey, it's really dirty and it's dangerous."

Monday's storm caused massive property damage across the city, particularly in New Sudbury. (Benjamin Aubé/CBC)

Veteran arborist Jim Allsop told CBC News he hasn't seen damage like this in his 30-plus years in the business.

"I don't know how many we've done up to date, but I have another 35 trees on houses," Allsop said. "We'll be probably another week."

"We've rented a crane to help speed up the process, and increase safety, and we're getting five or six done in our 12-hour days."

Scott Aultman, a lineman with North Bay Hydro, said he has seen a few storms in his career, and isn't usually surprised by extensive damage a storm can cause.

"When you see a trailer on its side, you know, you don't see that every day," Aultman said.

But during the clean up, Aultman said the spirit of camaraderie runs high with crews from different areas, as seen when Canadian crews helped Florida during Hurricane Irma.

"We were pumped. It's part of the trade, everybody gets together," Aultman said. "We had a big storm in 2006 and the Sudbury guys were up helping us, so it's great, it's nice to be able to return the favour and help them out."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.