A bright energy future without coal or nuclear

By Toronto Star


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Our dirty coal-fired power plants were back in the news with electoral candidates arguing the ifs and whens of their necessary shutdown. Shutting down coal plants, our guiltiest climate-change-causing beasts, seems like a no-brainer, but heels keep dragging.

We're told that spending $1.3 billion on scrubbers is the answer. Let's be clear: Scrubbers remove some particulates – pollution that causes smog – but they will do nothing to reduce greenhouse gas emissions that cause global warming. In fact, scrubbers are energy intensive and could lead to more of these emissions, leaving us further unable to meet Kyoto targets.

We're told a nuclear-based energy plan is the answer. The 20-year electricity plan unveiled by the Ontario Power Authority calls for half of Ontario's electricity supply to come from refurbished and new nuclear reactors. Because these reactors take many years to construct, coal plants will need to stay online to fill in the gap. It doesn't have to be this way.

The billions earmarked to build and replace an aging fleet of nuclear reactors or to put scrubbers on outdated coal plants would be better invested in new clean renewable technology of the future. Energy efficiency and renewable energy technologies are fast to deploy and, if done right, can eliminate the need for coal or nuclear to keep the lights on.

Unfortunately, Ontario's energy planners have chosen to lowball the potential for green options in favour of a nuclear-centred future. For example, the OPA plan calls for 200 megawatts of solar energy by 2025. Germany installed five times that much in 2006 alone. Ontario could be harnessing three times the amount of wind power the OPA plan calls for, 10 times the amount of solar the OPA plan calls for, and thousands of megawatts from bio-energy sources, cogeneration and waste heat recycling.

The OPA plan also underestimates energy efficiency and conservation. The plan puts an arbitrary cap on energy savings through conservation and energy efficiency at only 60 per cent of the cost-effective potential identified and recommended by the OPA's own studies. This will cost Ontarians millions of dollars in missed opportunities, higher production costs and higher electricity rates. The Pembina Institute and WWF-Canada's "Renewable is Doable" study shows Ontario could be saving nearly double the amount of energy through energy efficiency and conservation than the OPA plan claims.

More than two-thirds of the renewable energy in the OPA plan is installed and planned large hydro. Hydro is an important energy source and should be in the mix – but in addition to maximizing wind and other renewable sources first, not instead of.

Probably of greatest significance, the OPA plan totally ignores the use of power storage technologies for wind, solar and other renewable sources that would allow renewable energy to be Ontario's primary power source, not subordinate to a nuclear plan.

The OPA marginalizes renewable energy, arguing that large, centralized nuclear megaprojects are needed to supply our "base load" needs. But Ontario's base load power can be met through the right technical, regulatory and policy tools. Ontario could learn from California, one of the leaders in North America in integration of renewable energy into the grid. It has set up a task force to look at what's needed in the way of grid management, transmission optimization and regulatory and policy reform to meet California's lofty renewable energy targets.

For Ontario, a decision to invest billions of dollars in nuclear megaprojects or coal scrubbers is a decision not to invest in clean renewable technology. Every dollar sunk into huge transmission systems to support centralized megaprojects is a dollar not invested in "smart grids" that accommodate local production of renewable energy.

A bright energy future without the need for coal or nuclear is doable. With renewable energy, energy efficiency and co-generation, we can cut our greenhouse gas emissions by half of what's called for in the OPA plan. Ontarians could actually be saving money on their electricity bill rather than deepening our nuclear debt with at least another 40 years of expensive and unreliable power, not to mention generating more long-lived, unsolvable radioactive waste.

Related News

Gas-electric hybrid vehicles get a boost in the US from Ford, others

U.S. Hybrid Vehicle Sales Outlook highlights rising hybrid demand as an EV bridge, driven by emissions rules, range anxiety, charging infrastructure gaps, and automaker strategies from Ford, Toyota, and Stellantis across U.S. markets.

 

Key Points

Forecast of U.S. hybrid sales shaped by EV adoption, emissions rules, charging access, and automaker strategies.

✅ S&P sees hybrids at 24% of U.S. sales by 2028

✅ Bridges ICE to EV amid range and charging concerns

✅ Ford, Toyota, Stellantis expand U.S. hybrid lineups

 

Hybrid gasoline-electric vehicles may not be dying as fast as some predicted in the auto sector’s rush to develop all-electric models.

Ford Motor is the latest of several top automakers, including Toyota and Stellantis, planning to build and sell hundreds of thousands of hybrid vehicles in the U.S. over the next five years, industry forecasters told Reuters.

The companies are pitching hybrids as an alternative for retail and commercial customers who are seeking more sustainable transportation, but may not be ready to make the leap to a full electric vehicle.

"Hybrids really serve a lot of America," said Tim Ghriskey, senior portfolio strategist at New York-based investment manager Ingalls & Snyder. "Hybrid is a great alternative to a pure electric vehicle (and) it's an easier sell to a lot of customers."

Interest in hybrids is rebounding as consumer demand for pure electrics has not accelerated as quickly as expected, with EV market share dipping in Q1 2024 according to some analyses. Surveys cite a variety of reasons for tepid EV demand, from high initial cost and concerns about range to lengthy charging times and a shortage of public charging infrastructure in many regions.

“With the tightening of emissions requirements, hybrids provide a cleaner fleet without requiring buyers to take the leap into pure electrics,” said Sam Fiorani, vice president at AutoForecast Solutions.

S&P Global Mobility estimates hybrids will more than triple over the next five years, accounting for 24% of U.S. new vehicle sales in 2028. Sales of pure electrics will claim about 37%, supported by strong U.S. EV sales into 2024 momentum, leaving combustion vehicles — including so-called “mild” hybrids — with a nearly 40% share.

S&P estimates hybrids will account for just 7% of U.S. sales this year, and pure electrics 9%, underscoring that EV sales still lag gas cars as internal combustion engine (ICE) vehicles take more than 80%.

Historically, hybrids have accounted for less than 10% of total U.S. sales, with Toyota’s long-running Prius among the most popular models. The Japanese automaker has consistently said hybrids will play a key role in the company's long-range electrification plans as it slowly ramps up investment in pure EVs.

Ford is the latest to roll out more aggressive hybrid plans. On its second-quarter earnings call in late July, Chief Executive Jim Farley surprised analysts, saying Ford expects to quadruple its hybrid sales over the next five years after earlier promising an aggressive push into all-electric vehicles.

“This transition to EVs will be dynamic,” Farley told analysts. “We expect the EV market to remain volatile until the winners and losers shake out.”

Among Ford’s competitors, General Motors appears to have little interest in hybrids in the U.S., while Stellantis will follow Toyota and Ford’s hedge by offering U.S. buyers a choice of different powertrains, including hybrids, until sales of pure electric vehicles start to take off after mid-decade, a potential EV inflection point according to forecaster GlobalData.

In a statement, GM said it, echoing leadership's view that EVs won't go mainstream until key issues are addressed, "continues to be committed to its all-electric future ... While we will have hybrid vehicles in our global fleet, our focus remains on transitioning our portfolio to electric by 2030.”

Stellantis said hybrids now account for 36% of Jeep Wrangler sales and 19% of Chrysler Pacifica sales. In addition to new pure electric models coming soon, "we are very bullish on hybrids going forward," a spokesperson said.

This year, manufacturers are marketing more than 60 hybrids in the U.S. Toyota and its premium Lexus brand are selling at least 18 different hybrid models, enabling the Japanese automaker to maintain its stranglehold on the sector.

Hyundai and sister brand Kia offer seven hybrid models, with Ford and Lincoln six. Stellantis offers just three, and GM’s sole entry, due out later this year, is a hybrid version of the Chevrolet Corvette sports car.

But hybrids remain in short supply at many U.S. dealerships.

Andrew DiFeo, dealer principal at Hyundai of St. Augustine, south of Jacksonville, FL, doesn't see EV adoption hitting the levels the Biden administration wants until EV charging networks are as ubiquitous as gas stations.

"Hybrids are a great bridge to whatever the future holds,” said DiFeo, adding, “I've got zero in stock (and) I've got customers that want all of them."

 

Related News

View more

Philippines Ranks Highest in Coal-Generated Power Dependency

Philippines coal dependency underscores energy transition challenges, climate change risks, and air pollution, as rising electricity demand, fossil fuels, and emissions shape policy shifts toward renewable energy, grid reliability, and sustainable development.

 

Key Points

It is rising reliance on coal for power, driven by demand and cost, with climate, air pollution, and policy risks.

✅ Driven by rising demand, affordability, and grid reliability.

✅ Worsens emissions, air pollution, and public health burdens.

✅ Policy shifts aim at renewable energy, efficiency, and standards.

 

In a striking development, the Philippines has surpassed China and Indonesia to become the nation most dependent on coal-generated power in recent years. This shift highlights significant implications for the country's energy strategy, environmental policies, and its commitment to sustainable development, and comes as global power demand continues to surge worldwide.

Rising Dependency on Coal

The Philippines' increasing reliance on coal-generated power is driven by several factors, including rapid economic growth, rising electricity demand, and regional uncertainties in China's electricity sector that influence fuel markets, and the perceived affordability and reliability of coal as an energy source. Coal has historically been a key component of the Philippines' energy mix, providing a stable supply of electricity to support industrialization and urbanization efforts.

Environmental and Health Impacts

Despite its economic benefits, coal-generated power comes with significant environmental and health costs, especially as soaring electricity and coal use amplifies exposure to pollution. Coal combustion releases greenhouse gases such as carbon dioxide, contributing to global warming and climate change. Additionally, coal-fired power plants emit pollutants such as sulfur dioxide, nitrogen oxides, and particulate matter, which pose health risks to nearby communities and degrade air quality.

Policy and Regulatory Landscape

The Philippines' energy policies have evolved to address the challenges posed by coal dependency while promoting sustainable alternatives. The government has introduced initiatives to encourage renewable energy development, improve energy efficiency, and, alongside stricter emissions standards on coal-fired power plants, is evaluating nuclear power for inclusion in the energy mix to meet future demand. However, balancing economic growth with environmental protection remains a complex and ongoing challenge.

International and Domestic Pressures

Internationally, there is growing pressure on countries to reduce reliance on fossil fuels and transition towards cleaner energy sources as part of global climate commitments under the Paris Agreement, illustrated by the United Kingdom's plan to end coal power within its grid. The Philippines' status as the most coal-dependent nation underscores the urgency for policymakers to accelerate the shift towards renewable energy and reduce carbon emissions to mitigate climate impacts.

Challenges and Opportunities

Transitioning away from coal-generated power presents both challenges and opportunities for the Philippines. Challenges include overcoming entrenched interests in the coal industry, addressing energy security concerns, and navigating the economic implications of energy transition, particularly as clean energy investment in developing nations has recently declined, adding financial headwinds. However, embracing renewable energy offers opportunities to diversify the energy mix, reduce dependence on imported fuels, create green jobs, and improve energy access in remote areas.

Community and Stakeholder Engagement

Engaging communities and stakeholders is crucial in shaping the Philippines' energy transition strategy. Local residents, environmental advocates, industry leaders, and policymakers play essential roles in fostering dialogue, raising awareness about the benefits of renewable energy, and advocating for policies that promote sustainable development and protect public health.

Future Outlook

The Philippines' path towards reducing coal dependency and advancing renewable energy is critical to achieving long-term sustainability and resilience against climate change impacts. By investing in renewable energy infrastructure, enhancing energy efficiency measures, and fostering innovation in clean technologies, as renewables poised to eclipse coal indicate broader momentum, the country can mitigate environmental risks, improve energy security, and contribute to global efforts to combat climate change.

Conclusion

As the Philippines surpasses China and Indonesia in coal-generated power dependency, the nation faces pivotal decisions regarding its energy future. Balancing economic growth with environmental stewardship requires strategic investments in renewable energy, robust policy frameworks, and proactive engagement with stakeholders to achieve a sustainable and resilient energy system. By prioritizing clean energy solutions, the Philippines can pave the way towards a greener and more sustainable future for generations to come.

 

Related News

View more

USA: 3 Ways Fossil Energy Ensures U.S. Energy Security

DOE Office of Fossil Energy safeguards energy security via the Strategic Petroleum Reserve, domestic critical minerals from coal byproducts, and carbon capture to curb CO2, strengthening resiliency amid shocks and supporting U.S. manufacturing and defense.

 

Key Points

A DOE program advancing energy security through SPR stewardship, critical minerals R&D, and carbon capture.

✅ Manages the Strategic Petroleum Reserve for emergency crude supply

✅ Develops domestic critical minerals from coal and mining byproducts

✅ Deploys carbon capture, utilization, and storage to cut CO2

 

The global economy has just experienced a period of unique transformation because of COVID-19. The fact that remains constant in this new economic landscape is that our society relies on energy; it’s an integral part of our day-to-day lives, even as U.S. energy use has evolved over time. According to the U.S. Energy Information Administration, approximately 80 percent of energy consumption in the United States comes from fossil fuels, so having access to a secure and reliable supply of those energy resources is more important than ever for national energy security considerations today. Below are three examples that highlight how our work at the U.S. Department of Energy’s Office of Fossil Energy (FE) helps ensure the Nation’s energy security and resiliency.

(1) Open crude oil reserves to respond to crises

FE has overall program responsibility for carrying out the mission of the Strategic Petroleum Reserve (SPR), the world’s largest supply of emergency crude oil. These federally-owned stocks are stored in massive underground salt caverns along the coastline of the Gulf of Mexico. The SPR is a powerful tool U.S. leaders use to respond to a wide range of crises, including energy crisis impacts on electricity and fuels, involving crude oil disruption or demand loss.  When the COVID-19 pandemic hit, the oil markets crashed and crude oil demand dropped drastically across the world. U.S. oil producers turned to the SPR to store their oil while broader energy dominance constraints were becoming evident in practice. This helped alleviate the pressure on producers to shut in oil production and proved to be a critical asset for American energy and national security.

(2) Use the Nation’s abundant coal reserves to produce valuable materials

Critical materials, including rare earth elements, are a group of chemical elements and materials with unique properties that support manufacturing of most modern technologies. They are essential components for critical defense and homeland security applications, green energy technologies, hybrid and electric vehicles, and high-value electronics. While these materials are not rare, they are hard to separate and expensive to extract. The United States relies heavily on imports from China. To reduce U.S. dependence on foreign sources, FE has a research and development program aimed at producing a domestic supply of critical materials from the Nation’s abundant coal resources and associated byproducts from legacy and current mining operations. Many of the technologies being developed can also be used to separate critical minerals from other mining materials and byproducts. Tapping into these resources has the potential to create new industries and revitalize coal communities and the workforce in coal-producing regions.

(3) Decrease carbon emissions for a cleaner energy future

FE is committed to balancing the Nation’s energy use with the need to protect the environment, and has a comprehensive portfolio of technological solutions that help keep carbon dioxide (CO2) emissions out of the atmosphere. For example, amid high natural gas prices that reinforce the case for clean electricity, the Department has been investing in carbon capture, utilization, and storage technologies for over a decade. These technologies capture CO2 emissions from various sources, including coal-fired power plants and manufacturing plants, before they enter the atmosphere. Several of these cutting-edge technologies have been deployed at major demonstration sites, supported by clean energy funding that aims to benefit millions. Three of these projects—Petra Nova, Archer Daniels Midland, and Air Products & Chemicals—have captured and injected over 10.8 million metric tons of CO2. The success of these projects is paving the way toward a cleaner and more sustainable American energy future.

 

Related News

View more

Analysis: Why is Ontario’s electricity about to get dirtier?

Ontario electricity emissions forecast highlights rising grid CO2 as nuclear refurbishments and the Pickering closure drive more natural gas, limited renewables, and delayed Quebec hydro imports, pending advances in storage and transmission upgrades.

 

Key Points

A projection that Ontario's grid CO2 will rise as nuclear units refurbish or retire, increasing natural gas use.

✅ Nuclear refurbs and Pickering shutdown cut zero-carbon baseload

✅ Gas plants fill capacity gaps, boosting GHG emissions

✅ Quebec hydro imports face cost, transmission, and timing limits

 

Ontario's energy grid is among the cleanest in North America — but the province’s nuclear plans mean that some of our progress will be reversed over the next decade.

What was once Canada’s largest single source of greenhouse-gas emissions is now a solar-power plant. The Nanticoke Generating Station, a coal-fired power plant in Haldimand County, was decommissioned in stages from 2010 to 2013 — and even before the last remaining structures were demolished earlier this year, Ontario Power Generation had replaced its nearly 4,000 megawatts with a 44-megawatt solar project in partnership with the Six Nations of the Grand River Development Corporation and the Mississaugas of the Credit First Nation.

But neither wind nor solar has done much to replace coal in Ontario’s hydro sector, a sign of how slowly Ontario is embracing clean power in practice across the province. At Nanticoke, the solar panels make up less than 2 per cent of the capacity that once flowed out to southern Ontario over high-voltage transmission lines. In cleaning up its electricity system, the province relied primarily on nuclear power — but the need to extend the nuclear system’s lifespan will end up making our electricity dirtier again.

“We’ve made some pretty great strides since 2005 with the fuel mix,” says Terry Young, vice-president of corporate communications at the Independent Electricity System Operator, the provincial agency whose job it is to balance supply and demand in Ontario’s electricity sector. “There have been big changes since 2005, but, yes, we will see an increase because of the closure of Pickering and the refurbs coming.”

“The refurbs” is industry-speak for the major rebuilds of both the Darlington and Bruce nuclear-power stations. The two are both in the early stages of major overhauls intended to extend their operating lives into the 2060s: in the coming years, they’ll be taken offline and rebuilt. (The Pickering nuclear plant will not be refurbished and will shut down in 2024.)

The catch is that, as the province loses its nuclear capacity in increments, Ontario will be short of electricity in the coming years and the IESO will need to find capacity elsewhere to make sure the lights stay on. And that could mean burning a lot more natural gas — and creating more greenhouse-gas emissions.

According to the IESO’s planning assumptions, electricity will be responsible for 11 megatonnes of greenhouse-gas emissions annually by 2035 (last year, it was three megatonnes). That’s the “reference case” scenario: if conservation and efficiency policies shave off some electricity demand, we could get it down to something like nine megatonnes. But if demand is higher than expected, it could be as high as 13 megatonnes — more than quadruple Ontario’s 2018 emissions.

Even in the worst-case scenario, the province’s emissions from electricity would still be less than half of what they were in 2005, before the province began phasing out its coal generation. But it’s still a reversal of a trend that both Liberals and Progressive Conservatives have boasted about — the Liberals to justify their energy policies, the PCs to justify their hostility to a federal carbon tax.

Young emphasized that technology can change and that the IESO’s planning assumptions are just that: projections based on the information available today. A revolution in electricity storage could make it possible to store the province’s cleaner power sources overnight for use during the day, but that’s still only in the realm of speculation — and the natural-gas infrastructure exists in the real world, today.

Ontario Power Generation — the Crown corporation that operates many of the province’s power plants, including Pickering and Darlington — recently bought four gas plants, two of them outright (two it already owned in part). All were nearly complete or already operational, so the purchase itself won’t change the province’s emissions prospects. Rather, OPG is simply looking to maintain its share of the electricity market after the Pickering shutdown.

“It will allow us to maintain our scale, with the upcoming end of Pickering’s commercial operations, so that we can continue our role as the driver of Ontario’s lower carbon future,” Neal Kelly, OPG’s director of media, issues, and management, told TVO.org via email. “Further, there is a growing need for flexible gas fired generation to support intermittent wind and solar generation.”

The shift to more gas-fired generation has been coming for a while, and critics say that Ontario has missed an opportunity to replace the lost Pickering capacity with something cleaner. MPP Mike Schreiner, leader of the Green party, has argued for years that Ontario should have pursued an agreement with Quebec to import clean hydroelectricity.

“To me, it’s a cost-effective solution, and it’s a zero-emissions solution,” Schreiner says. “Regardless of your position on sources of electricity, I think everyone could agree that waterpower from Quebec is going to be less expensive.”

Quebec is eager to sell Ontario its surplus hydro power, but not everyone agrees that importing power would be cheaper. A study published by the Ontario Chamber of Commerce (and commissioned by Ontario Power Generation) calls the claim a “myth” and states that upgrading electric-transmission wires between Ontario and Quebec would cost $1.2 billion and take 10 years, while some estimates suggest fully greening Ontario's grid would cost far more overall.

With Quebec imports seemingly a non-starter and major changes to Ontario’s nuclear fleet already underway, there’s only one path left for this province’s greenhouse-gas emissions: upwards.

 

Related News

View more

SDG&E Wants More Money From Customers Who Don’t Buy Much Electricity. A Lot More.

SDG&E Minimum Bill Proposal would impose a $38.40 fixed charge, discouraging rooftop solar, burdening low income households, and shifting grid costs during peak demand, as the CPUC weighs consumer impacts and affordability.

 

Key Points

Sets a $38.40 monthly minimum bill that raises low usage costs, deters rooftop solar, and burdens low income households.

✅ $38.40 fixed charge regardless of usage

✅ Disincentivizes rooftop solar investments

✅ Disproportionate impact on low income customers

 

The utility San Diego Gas & Energy has an aggressive proposal pending before the California Public Utilities Commission, amid recent commission changes in San Diego that highlight how regulatory decisions affect local customers: It wants to charge most residential customers a minimum bill of $38.40 each month, regardless of how much energy they use. The costs of this policy would hit low-income customers and those who generate their own energy with rooftop solar. We’re urging the Commission to oppose this flawed plan—and we need your help.

SDG&E’s proposal is bad news for sustainable energy. About half of the customers whose bills would go up under this proposal have rooftop solar. The policy would deter other customers from investing in rooftop solar by making these investments less economical. Ultimately, lost opportunities for solar would mean burning more gas in polluting power plants. 

The proposal is also bad news for people who already have to scrimp on energy costs. Most customers with big homes and billowing air conditioners won't notice if this policy goes into effect, because they use at least $38 worth of electricity a month anyway. But for households that don’t buy much electricity from the company, including those in small apartments without air conditioning, this proposal would raise the bills. Even for customers on special low-income rates, amid electric bill changes statewide, SDG&E wants a minimum bill of $19.20.

Penalizing customers who don’t use much electricity would disproportionately hurt lower-income customers, raising energy equity concerns across the region, who tend to use less energy than their wealthier neighbors. In the region SDG&E serves, the average family in an apartment uses half as much electricity as a single-family residence. Statewide, low-income households are more than four times as likely to be low-usage electricity customers than high-income households. When it gets hot, residential electricity patterns are often driven by air conditioning. The vast majority of SDG&E's customers live in the coastal climate zone, where access to air conditioning is strongly linked to income: Households with incomes over $150,000 are more than twice as likely to have air conditioning than families making less than $35,000, with significant racial disparities in who has AC.

In its attempt to rationalize its request, SDG&E argues that it should charge everyone for infrastructure costs that do not depend on how much energy they use. But the cost of the grid is driven by how much energy SDG&E delivers on hot summer afternoons, when some customers blast their AC and demand for electricity peaks. If more customers relied on their own solar power or conserved energy, the utility would spend less on its grid and help rein in soaring electricity prices over time.

In the long term, reducing incentives to go solar and conserve energy will strain the grid and drive up costs for everyone, especially as lawmakers may overturn income-based charges and reshape rate design. SDG&E's arguments are part of a standard utility playbook for trying to hike income-based fixed charges, and consumer advocates have repeatedly shut them down.  As far as we know, no regulators in the country have allowed a utility to charge customers over $38 for the “privilege” of accessing electric service. 

 

Related News

View more

Ukraine fights to keep the lights on as Russia hammers power plants

Ukraine Power Grid Attacks disrupt critical infrastructure as missiles and drones strike power plants, substations, and lines, causing blackouts. Emergency repairs, international aid, generators, and renewables bolster resilience and keep hospitals and water running.

 

Key Points

Russian strikes on Ukraine's power infrastructure cause blackouts; repairs and aid sustain hospitals and water.

✅ Missile and drone strikes target plants, substations, and lines.

✅ Crews restore power under fire; air defenses protect sites.

✅ Allies supply equipment, generators, and grid repair expertise.

 

Ukraine is facing an ongoing battle to maintain its electrical grid in the wake of relentless Russian attacks targeting power plants and energy infrastructure. These attacks, which have intensified in the last year, are part of Russia's broader strategy to weaken Ukraine's ability to function amid the ongoing war. Power plants, substations, and energy lines have become prime targets, with Russian forces using missiles and drones to destroy critical infrastructure, as western Ukraine power outages have shown, leaving millions of Ukrainians without electricity and heating during harsh winters.

The Ukrainian government and energy companies are working tirelessly to repair the damage and prevent total blackouts, while also trying to ensure that civilians have access to vital services like hospitals and water supplies. Ukraine has received support from international allies in the form of technical assistance and equipment to help strengthen its power grid, and electricity reserve updates suggest outages can be avoided if no new strikes occur. However, the ongoing nature of the attacks and the complexity of repairing such extensive damage make the situation extraordinarily difficult.

Despite these challenges, Ukraine's resilience is evident, even as winter pressures on the battlefront intensify operations. Energy workers are often working under dangerous conditions, risking their lives to restore power and prevent further devastation. The Ukrainian government has prioritized the protection of energy infrastructure, with military forces being deployed to safeguard workers and critical assets.

Meanwhile, the international community continues to support Ukraine through financial and technical aid, though some U.S. support programs have ended recently, as well as providing temporary power solutions, like generators, to keep essential services running. Some countries have even sent specialized equipment to help repair damaged power lines and energy plants more quickly.

The humanitarian consequences of these attacks are severe, as access to electricity means more than just light—it's crucial for heating, cooking, and powering medical equipment. With winter temperatures often dropping below freezing, plans to keep the lights on are vital to protect vulnerable communities, and the lack of reliable energy has put many lives at risk.

In response to the ongoing crisis, Ukraine has also focused on enhancing its energy independence, seeking alternatives to Russian-supplied energy. This includes exploring renewable energy sources, such as solar and wind power, and new energy solutions adopted by communities to overcome winter blackouts, which could help reduce reliance on traditional energy grids and provide more resilient options in the future.

The battle for energy infrastructure in Ukraine illustrates the broader struggle of the country to maintain its sovereignty and independence in the face of external aggression. The destruction of power plants is not only a military tactic but also a psychological one—meant to instill fear and disrupt daily life. However, the unwavering spirit of the Ukrainian people, alongside international support, including Ukraine's aid to Spain during blackouts as one example, continues to ensure that the fight to "keep the lights on" is far from over.

As Ukraine works tirelessly to repair its energy grid, it also faces the challenge of preparing for the long-term impact of these attacks. The ongoing war has highlighted the importance of securing energy infrastructure in modern conflicts, and the world is watching as Ukraine's resilience in this area could serve as a model for other nations facing similar threats.

Ukraine’s energy struggle is far from over, but its determination to keep the lights on remains a beacon of hope and defiance in the face of ongoing adversity.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.