AEP wants to ask customers to chip in

By The Roanoke Times


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Appalachian Power Co. (AEP) customers may soon be able to write a larger check for the monthly bill to support the generation of electricity with wind, water and other renewable sources.

The utility said the minimum investment will be $1.50 a month. A typical residential customer could elect to fully offset his electrical consumption with green energy by paying about $15 monthly.

The voluntary program, if approved by state regulators, will be open to nonresidential customers, too.

The company applied July 1 for permission to start in September. But the Virginia State Corporation Commission is taking additional time to evaluate public comments, those of its staff and any rebuttal by the company. A staff report is due Oct. 15.

The SCC is also gathering reaction to proposed increases in electrical bills, arising from three rate-increase filings. The proposals, if approved, could mean that by early next year, the typical electrical bill for a modest home could rise from about $70 to $100 a month.

Appalachian said the portion of its electricity derived from renewable sources is 2 percent. Those sources are water and wind as opposed to primarily coal.

The proposed new program, called a Renewable Power Rider, will encourage the utility to go higher, spokesman John Shepelwich said.

"It pushes us," said Shepelwich, who explained the goal is 12 percent by about 2020.

Here's how that push will work: In one of its renewable-power strategies, Appalachian buys electricity from the municipally owned Summersville Dam Hydroelectric Project in West Virginia.

In addition to receiving the energy, the company receives renewable energy credits. If Appalachian becomes subject to mandatory renewable energy standards, it would comply by handing over the credits. Or, it might sell the credits to another utility that needs some. For now, it is hanging onto them.

Under the Renewable Power Rider program, Appalachian will empower Virginia consumers to cancel some of those credits with additional, voluntary payments included in bills.

That, in turn, theoretically leaves the company in need of more credits. Purchases of more renewable energy are the expected result.

"The company recognizes that there is a growing interest in the development of renewable energy resources," the company wrote to regulators.

"It would like to provide its customers the opportunity to support voluntarily the development of renewable resources in a simple, reasonable and prudent manner through their monthly bills."

The caveat is, the company doesn't want to risk all of its Summersville credits.

So it is placing only 10 percent up for cancellation or retirement. If 1 percent of customers participate in the program, the program could hit its target and the utility intends to close it to new participants.

It wants to hang onto the other 90 percent in case they become saleable for an attractive price or essential to meet a government renewable energy mandate.

But this is the first go-around for the program, and the parameters could be changed, Shepelwich said.

Related News

Updated Germany hydrogen strategy sees heavy reliance on imported fuel

Germany Hydrogen Import Strategy outlines reliance on green hydrogen imports, expanded electrolysis capacity, IPCEI-funded pipelines, and industrial decarbonization for steel and chemicals to reach climate-neutral goals by 2045, meeting 2030 demand of 95-130 TWh.

 

Key Points

A plan to import 50-70% of hydrogen by 2030, backing green hydrogen, electrolysis, pipelines, and decarbonization.

✅ Imports cover 50-70% of 2030 hydrogen demand

✅ 10 GW electrolysis target with state aid and IPCEI

✅ 1,800 km H2 pipelines to link hubs by 2030

 

Germany will have to import up to 70% of its hydrogen demand in the future as Europe's largest economy aims to become climate-neutral by 2045, an updated government strategy published on Wednesday showed.

The German cabinet approved a new hydrogen strategy, setting guidelines for hydrogen production, transport infrastructure and market plans.

Germany is seeking to expand reliance on hydrogen as a future energy source to bolster energy resilience and cut greenhouse emissions for highly polluting industrial sectors that cannot be electrified such as steel and chemicals and cut dependency on imported fossil fuel.

Produced using solar and wind power, green hydrogen is a pillar of Berlin's plan to build a sustainable electric planet and transition away from fossil fuels.

But even with doubling the country's domestic electrolysis capacity target for 2030 to at least 10 gigawatts (GW), Germany will need to import around 50% to 70% of its hydrogen demand, forecast at 95 to 130 TWh in 2030, the strategy showed.

"A domestic supply that fully covers demand does not make economic sense or serve the transformation processes resulting from the energy transition and the broader global energy transition overall," the document said.

The strategy underscores the importance of diversifying future hydrogen sources, including potential partners such as Canada's clean hydrogen sector, but the government is working on a separate strategy for hydrogen imports whose exact date is not clear, a spokesperson for the economy ministry said.

"Instead of relying on domestic potential for the production of green hydrogen, the federal government's strategy is primarily aimed at imports by ship," Simone Peter, the head of Germany's renewable energy association, said.

Under the strategy, state aid is expected to be approved for around 2.5 GW of electrolysis projects in Germany this year and the government will earmark 700 million euros ($775 million) for hydrogen research to optimise production methods, research minister Bettina Stark-Watzinger said.

But Germany's limited renewable energy space will make it heavily dependent on imported hydrogen from emerging export hubs such as Abu Dhabi hydrogen exports gaining scale, experts say.

"Germany is a densely populated country. We simply need space for wind and photovoltaic to be able to produce the hydrogen," Philipp Heilmaier, an energy transition researcher at Germany energy agency, told Reuters.

The strategy allows the usage of hydrogen produced through fossil energy sources preferably if the carbon is split off, but said direct government subsidies would be limited to green hydrogen.

Funds for launching a hydrogen network with more than 1,800 km of pipelines in Germany are expected to flow by 2027/2028 through the bloc's Important Projects of Common European Interest (IPCEI) financing scheme, as the EU plans to double electricity use by 2050 could raise future demand, with the goal of connecting all major generation, import and storage centres to customers by 2030.

Transport Minister Volker Wissing said his ministry was working on plans for a network of hydrogen filling stations and for renewable fuel subsidies.

Environmental groups said the strategy lacked binding sustainability criteria and restriction on using hydrogen for sectors that cannot be electrified instead of using it for private heating or in cars, calling for a plan to eventually phase-out blue hydrogen which is produced from natural gas.

Germany has already signed several hydrogen cooperation agreements with countries such as clean energy partnership with Canada and Norway, United Arab Emirates and Australia.

 

Related News

View more

Is The Global Energy Transition On Track?

Global Decarbonization Strategies align renewable energy, electrification, clean air policies, IMO sulfur cap, LNG fuels, and the EU 2050 roadmap to cut carbon intensity and meet Paris Agreement targets via EVs and efficiency.

 

Key Points

Frameworks that cut emissions via renewables, EVs, efficiency, cleaner marine fuels, and EU policy roadmaps.

✅ Renewables scale as wind and solar outcompete new coal and gas.

✅ Electrification of transport grows as EV costs fall and charging expands.

✅ IMO 2020 sulfur cap and LNG shift cut shipping emissions and particulates.

 

Are we doing enough to save the planet? Silly question. The latest prognosis from the United Nations’ Intergovernmental Panel on Climate Change made for gloomy reading. Fundamental to the Paris Agreement is the target of keeping global average temperatures from rising beyond 2°C. The UN argues that radical measures are needed, and investment incentives for clean electricity are seen as critical by many leaders to accelerate progress to meet that target.

Renewable power and electrification of transport are the pillars of decarbonization. It’s well underway in renewables - the collapse in costs make wind and solar generation competitive with new build coal and gas.

Renewables’ share of the global power market will triple by 2040 from its current level of 6% according to our forecasts.

The consumption side is slower, awaiting technological breakthrough and informed by efforts in countries such as New Zealand’s electricity transition to replace fossil fuels with electricity. The lower battery costs needed for electric vehicles (EVs) to compete head on and displace internal combustion engine (ICE)  cars are some years away. These forces only start to have a significant impact on global carbon intensity in the 2030s. Our forecasts fall well short of the 2°C target, as does the IEA’s base case scenario.

Yet we can’t just wait for new technology to come to the rescue. There are encouraging signs that society sees the need to deal with a deteriorating environment. Three areas of focus came out in discussion during Wood Mackenzie’s London Energy Forum - unrelated, different in scope and scale, each pointing the way forward.

First, clean air in cities.  China has shown how to clean up a local environment quickly. The government reacted to poor air quality in Beijing and other major cities by closing older coal power plants and forcing energy intensive industry and the residential sector to shift away from coal. The country’s return on investment will include a substantial future health care dividend.

European cities are introducing restrictions on diesel cars to improve air quality. London’s 2017 “toxicity charge” is a precursor of an Ultra-Low Emission Zone in 2019, and aligns with UK net-zero policy changes that affect transport planning, to be extended across much of the city by 2020. Paris wants to ban diesel cars from the city centre by 2025 and ICE vehicles by 2030. Barcelona, Madrid, Hamburg and Stuttgart are hatching similar plans.

 

College Promise In California: Community-Wide Efforts To Support Student Success

Second, desulphurisation of global shipping. High sulphur fuel oil (HSFO) meets around 3.5 million barrels per day (b/d) of the total marine market of 5 million b/d. A maximum of 3.5% sulphur content is allowed currently. The International Maritime Organisation (IMO) implements a 0.5% limit on all shipping in 2020, dramatically reducing the release of sulphur oxides into the atmosphere.

Some ships will switch to very low sulphur fuel oil, of which only around 1.4 million b/d will be available in 2020. Others will have to choose between investing in scrubbers or buying premium-priced low sulphur marine gas oil.

Longer-term, lower carbon-intensity gas is a winner as liquefied natural gas becomes fuel of choice for many newbuilds. Marine LNG demand climbs from near zero to 50 million tonnes per annum (tpa) by 2040 on our forecasts, behind only China, India and Japan as a demand centre. LNG will displace over 1 million b/d of oil demand in shipping by 2040.

Third, Europe’s radical decarbonisation plans. Already in the vanguard of emissions reductions policy, the European Commission is proposing to reduce carbon emissions for new cars and vans by 30% by 2030 versus 2020. The targets come with incentives for car manufacturers linked to the uptake of EVs.

The 2050 roadmap, presently at the concept stage, envisages a far more demanding regime, with EU electricity plans for 2050 implying a much larger power system. The mooted 80% reduction in emissions compared with 1990 will embrace all sectors. Power and transport are already moving in this direction, but the legacy fuel mix in many other sectors will be disrupted, too.

Near zero-energy buildings and homes might be possible with energy efficiency improvements, renewables and heat pumps. Electrification, recycling and bioenergy could reduce fossil fuel use in energy intensive sectors like steel and aluminium, and Europe’s oil majors going electric illustrates how incumbents are adapting. Some sectors will cite the risk decarbonisation poses to Europe’s global competitiveness. If change is to come, industry will need to build new partnerships with society to meet these targets.

The 2050 roadmap signals the ambition and will be game changing for Europe if it is adopted. It would provide a template for a global roll out that would go a long way toward meeting UN’s concerns.

 

Related News

View more

California Public Utilities Commission sides with community energy program over SDG&E

CPUC Decision on San Diego Community Power directs SDG&E to use updated forecasts, stabilizing electricity rates for CCA customers and supporting clean energy in San Diego with accurate rate forecasting and reduced volatility.

 

Key Points

A CPUC ruling directing SDG&E to use updated forecasts to ensure accurate, stable CCA rates and limit volatility.

✅ Uses 2021 sales forecasts for rate setting

✅ Aims to prevent undercollection and bill spikes

✅ Levels changes across customer classes

 

The California Public Utilities Commission on Thursday sided with the soon-to-launch San Diego community energy program in a dispute it had with San Diego Gas & Electric.

San Diego Community Power — which will begin to purchase power for customers in San Diego, Chula Vista, La Mesa, Encinitas and Imperial Beach later this year — had complained to the commission that data SDG&E intended to use to calculate rates, including community choice exit fees that could make the new energy program less attractive to prospective customers.

SDG&E argued it was using numbers it was authorized to employ as part of a general rate case amid a potential rate structure revamp that is still being considered by the commission.

But in a 4-0 vote, the commission, or CPUC, sided with San Diego Community Power and directed SDG&E to use an updated forecast for energy sales.

"This was not an easy decision," said CPUC president Marybel Batjer at the meeting, held remotely due to COVID-19 restrictions. "In my mind, this outcome best accounts for the shifting realities ... in the San Diego area while minimizing the impact on ratepayers during these difficult financial times."

In filings to the commission, SDG&E predicted a rate decrease of 12.35 percent in the coming year. While that appears to be good news for customers, Californians still face soaring electricity prices statewide, Commissioner Martha Guzman Aceves said the data set SDG&E wanted to use would lead to an undercollection of $150 million to $260 million.

That would result in rates that would be "artificially low," Guzman Aceves said, and rates "would inevitably go up quite a bit after the undercollection was addressed."

San Diego Community Power, or SDCP, said the temporary reduction would make its rates less attractive than SDG&E's, especially amid SDG&E's minimum charge proposal affecting low-usage customers, just as it is about to begin serving customers. SDCP's board members wrote an open letter last month to the commission, accusing the utility of "willful manipulation of data."

Working with an administrative law judge at the CPUC, Guzman Aceves authored a proposal requiring SDG&E to use numbers based on 2021 forecasts, as regulators simultaneously weigh whether the state needs more power plants to ensure reliability. The utility argued that could result in an increase of "roughly 40 percent" for medium and large commercial and industrial customers this year.

To help reduce potential volatility, Guzman Aceves, SDCP and other community energy supporters called for using a formula that would average out changes in rates across customer classes amid debates over income-based utility charges statewide. That's what the commissioners OK'd Thursday.

"It is essential that customer commodity rates be as accurate as we can possibly get them to avoid undercollections," said Commissioner Genevieve Shiroma.

San Diego Community Power is one of 23 community choice aggregation, or CCA, energy programs that have launched in California in the past decade.

CCAs compete with traditional power companies amid California's evolving power competition landscape, in one important role — purchasing power for a given community. They were created to boost the use of cleaner energy sources, such as wind and solar, at rates equal to or lower than investor-owned utilities.

However, CCAs do not replace utilities because the incumbent power companies still perform all of the tasks outside of power purchasing, such as transmission and distribution of energy and customer billing.

When a CCA is formed, California rules stipulate the utility customers in that area are automatically enrolled in the CCA. If customers prefer to stay with their previous power company, they can opt out of joining the CCA.

The shift of customers from SDG&E to San Diego Community Power is expected to be large. The total number of accounts for SDCP is expected to be 770,000, which would make it the second-largest CCA in the state. That's why SDCP considered Thursday's CPUC decision to be so important.

"At a time when customers are choosing between sticking with San Diego Gas & Electric and migrating to a CCA, we want them to have accurate bill information," said Commissioner Clifford Rechtschaffen.

"SDCP is very happy with today's CPUC decision, and that the commissioners shared our goal of limiting rate volatility for businesses and families in the region," said SDCP interim CEO Bill Carnahan. "This is definitely a win for accurate rate forecasting, and our mutual customers, and we look forward to working with SDG&E on next steps."

In an email, SDG&E spokeswoman Helen Gao said, "We are committed to continuing to work collaboratively with local Community Choice Aggregation programs to support their successful launch in 2021 and ensure that our mutual customers receive excellent customer service."

San Diego Community Power's case before the CPUC was joined by the California Community Choice Association, a trade group advocating for CCAs, and the Clean Energy Alliance — the North County-based CCA representing Del Mar, Solana Beach and Carlsbad that is scheduled to launch this summer.

SDCP will begin its rollout this year, folding in about 71,000 municipal, commercial and industrial accounts. The bulk of its roughly 700,000 residential accounts is expected to come in January 2022.

 

Related News

View more

Octopus Energy Makes Inroads into US Renewables

Octopus Energy US Renewables Investment signals expansion into the US clean energy market, partnering with CIP for solar and battery storage projects to decarbonize the grid, boost resilience, and scale smart grid innovation nationwide.

 

Key Points

Octopus Energy's first US stake in solar and battery storage with CIP to expand clean power and grid resilience.

✅ Partnership with Copenhagen Infrastructure Partners

✅ Portfolio of US solar and battery storage assets

✅ Supports decarbonization, jobs, and grid modernization

 

Octopus Energy, a UK-based renewable energy provider known for its innovative approach to clean energy solutions and the rapid UK offshore wind growth shaping its home market, has announced its first investment in the US renewable energy market. This strategic move marks a significant milestone in Octopus Energy's expansion into international markets and underscores its commitment to accelerating the transition towards sustainable energy practices globally.

Investment Details

Octopus Energy has partnered with Copenhagen Infrastructure Partners (CIP) to acquire a stake in a portfolio of solar and battery storage projects located across the United States. This investment reflects Octopus Energy's strategy to diversify its renewable energy portfolio and capitalize on opportunities in the rapidly growing US solar-plus-storage sector, which is attracting record investment.

Strategic Expansion

By entering the US market, Octopus Energy aims to leverage its expertise in renewable energy technologies and innovative energy solutions, as companies like Omnidian expand their global reach in project services. The partnership with CIP enables Octopus Energy to participate in large-scale renewable projects that contribute to decarbonizing the US energy grid and advancing climate goals.

Commitment to Sustainability

Octopus Energy's investment aligns with its overarching commitment to sustainability and reducing carbon emissions. The portfolio of solar and battery storage projects not only enhances energy resilience but also supports local economies through job creation and infrastructure development, bolstered by new US clean energy manufacturing initiatives nationwide.

Market Opportunities

The US renewable energy market presents vast opportunities for growth, driven by favorable regulatory policies, declining technology costs, and increasing demand for clean energy solutions, with US solar and wind growth accelerating under supportive plans. Octopus Energy's entry into this market positions the company to capitalize on these opportunities and establish a foothold in North America's evolving energy landscape.

Innovation and Impact

Octopus Energy is known for its customer-centric approach and technological innovation in energy services. By integrating smart grid technologies, digital platforms, and consumer-friendly tariffs, Octopus Energy aims to empower customers to participate in the energy transition actively.

Future Prospects

Looking ahead, Octopus Energy plans to expand its presence in the US market and explore additional opportunities in renewable energy development and energy storage, including surging US offshore wind potential in the coming years. The company's strategic investments and partnerships are poised to drive continued growth, innovation, and sustainability across global energy markets.

Conclusion

Octopus Energy's inaugural investment in US renewables underscores its strategic vision to lead the transition towards a sustainable energy future. By partnering with CIP and investing in solar and battery storage projects, Octopus Energy not only strengthens its position in the US market but also reinforces its commitment to advancing clean energy solutions worldwide. As the global energy landscape evolves, including trillion-dollar offshore wind outlook, Octopus Energy remains dedicated to driving positive environmental impact and delivering value to stakeholders through renewable energy innovation and investment.

 

Related News

View more

Altmaier's new electricity forecast: the main driver is e-mobility

Germany 2030 Electricity Demand Forecast projects 658 TWh, driven by e-mobility, heat pumps, and green hydrogen. BMWi and BDEW see higher renewables, onshore wind, photovoltaics, and faster grid expansion to meet climate targets.

 

Key Points

A BMWi outlook to 658 TWh by 2030, led by e-mobility, plus demand from heat pumps, green hydrogen, and industry.

✅ Transport adds ~70 TWh; cars take 44 TWh by 2030

✅ Heat pumps add 35 TWh; green hydrogen needs ~20 TWh

✅ BDEW urges 70% renewables and faster grid expansion

 

Gross electricity consumption in Germany will increase from 595 terawatt hours (TWh) in 2018 to 658 TWh in 2030. That is an increase of eleven percent. This emerges from the detailed analysis of the development of electricity demand that the Federal Ministry of Economics (BMWi) published on Tuesday. The main driver of the increase is therefore the transport sector. According to the paper, increased electric mobility in particular contributes 68 TWh to the increase, in line with rising EV power demand trends across markets. Around 44 TWh of this should be for cars, 7 TWh for light commercial vehicles and 17 TWh for heavy trucks. If the electricity consumption for buses and two-wheelers is added, this results in electricity consumption for e-mobility of around 70 TWh.

The number of purely battery-powered vehicles is increasing according to the investigation by the BMWi to 16 million by 2030, reflecting the global electric car market momentum, plus 2.2 million plug-in hybrids. In 2018 there were only around 100,000 electric cars, the associated electricity consumption was an estimated 0.3 TWh, and plug-in mileage in 2021 highlighted the rapid uptake elsewhere. For heat pumps, the researchers predict an increase in demand by 35 TWh to around 42 TWh. They estimate the electricity consumption for the production of around 12.5 TWh of green hydrogen in 2030 to be just under 20 TWh. The demand at battery factories and data centers will increase by 13 TWh compared to 2018 by this point in time. In the data centers, there is no higher consumption due to more efficient hardware despite advancing digitization.

The updated figures are based on ongoing scenario calculations by Prognos, in which the market researchers took into account the goals of the Climate Protection Act for 2030 and the wider European electrification push for decarbonization. In the preliminary estimate presented by Federal Economics Minister Peter Altmaier (CDU) in July, a range of 645 to 665 TWh was determined for gross electricity consumption in 2030. Previously, Altmaier officially said that electricity demand in this country would remain constant for the next ten years. In June, Chancellor Angela Merkel (CDU) called for an expanded forecast that would have to include trends in e-mobility adoption within a decade and the Internet of Things, for example.

Higher electricity demand
The Federal Association of Energy and Water Management (BDEW) is assuming an even higher electricity demand of around 700 TWh in nine years. In any case, a higher share of renewable energies in electricity generation of 70 percent by 2030 is necessary in order to be able to achieve the climate targets and to address electricity price volatility risks. The expansion paths urgently need to be increased and obstacles removed. This could mean around 100 gigawatts (GW) for onshore wind turbines, 11 GW for biomass and at least 150 GW for photovoltaics by 2030. Faster network expansion and renovation will also become even more urgent, as electric cars challenge grids in many regions.
 

 

Related News

View more

Tariffs on Chinese Electric Vehicles

Canada EV Tariffs weigh protectionism, import duties, and trade policy against affordable electric vehicles, climate goals, and consumer costs, balancing domestic manufacturing, critical minerals, battery supply chains, and China relations amid US-EU actions.

 

Key Points

Canada EV Tariffs are proposed duties on Chinese EV imports to protect jobs vs. prices, climate goals, and trade risks.

✅ Shield domestic automakers; counter subsidies

✅ Raise EV prices; slow adoption, climate targets

✅ Spark China retaliation; hit exports, supply chains

 

Canada, a rising star in critical EV battery minerals, finds itself at a crossroads. The question: should they follow the US and EU and impose tariffs on Chinese electric vehicles (EVs), after the U.S. 100% tariff on Chinese EVs set a precedent?

The Allure of Protectionism

Proponents see tariffs as a shield for Canada's auto industry, supported by recent EV assembly deals that put Canada in the race, a vital job creator. They argue that cheaper Chinese EVs, potentially boosted by government subsidies, threaten Canadian manufacturers. Tariffs, they believe, would level the playing field.

Consumer Concerns and Environmental Impact

Opponents fear tariffs will translate to higher prices, deterring Canadians from buying EVs, especially amid EV shortages and wait times already affecting the market. This could slow down Canada's transition to cleaner transportation, crucial for meeting climate goals. A slower EV adoption could also impact Canada's potential as an EV leader.

The Looming Trade War Shadow

Tariffs risk escalating tensions with China, Canada's second-largest trading partner. China might retaliate with tariffs on Canadian exports, jeopardizing sectors like oil and lumber. This could harm the Canadian economy and disrupt critical mineral and battery development, areas where Canada is strategically positioned, even as opportunities to capitalize on the U.S. EV pivot continue to emerge across North America.

Navigating a Charged Path

The Canadian government faces a complex decision. Protecting domestic jobs is important, but so is keeping EVs affordable for a greener future and advancing EV sales regulations that shape the market. Canada must carefully consider the potential benefits of tariffs against the risks of higher consumer costs and a potential trade war.

This path forward could involve exploring alternative solutions. Canada could invest in its domestic EV industry, providing incentives for both consumers and manufacturers. Additionally, collaborating with other countries, including Canada-U.S. collaboration as companies turn to EVs, to address China's alleged unfair trade practices might be a more strategic approach.

Canada's decision on EV tariffs will have far-reaching consequences. Striking a balance between protecting its domestic industry and fostering a robust, environmentally friendly transportation sector, and meeting ambitious EV goals set by policymakers, is crucial. Only time will tell which path Canada chooses, but the stakes are high, impacting not just jobs, but also the environment and Canada's position in the global EV race.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified