Duke Energy Indiana brings in hundreds of line workers

By Webwire


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Duke Energy has expanded its Indiana work force with an additional 500 field employees and contractors from the Carolinas and elsewhere. Another 60 contractors joined the effort September 17.

Most of the additional workers are Duke Energy employees from the companyÂ’s utilities in North Carolina and South Carolina. Contractors who typically work for the company in the Southeast and Midwest are also part of the group.

High winds from Hurricane Ike tore through Indiana and knocked out power to more than 300,000 Duke Energy Indiana customers. The company had approximately 82,000 customers out of service.

High winds caused extensive damage to power infrastructure, resulting in outages in virtually every Duke Energy district in the state. The hardest hit areas were Clarksville, Seymour, Connersville, Corydon, Madison, Bedford and Bloomington. The majority of those customers should be restored to service by September 19. Power restoration in Bloomington and Clarksville may continue into the following day.

Related News

A new nuclear reactor in the U.S. starts up. It's the first in nearly seven years

Vogtle Unit 3 Initial Criticality marks the startup of a new U.S. nuclear reactor, initiating fission to produce heat, steam, and electricity, supporting clean energy goals, grid reliability, and carbon-free baseload power.

 

Key Points

Vogtle Unit 3 Initial Criticality is the first fission startup, launching power generation at a new U.S. reactor.

✅ First new U.S. reactor to reach criticality since 2016

✅ Generates carbon-free baseload power for the grid

✅ Faced cost overruns and delays during construction

 

For the first time in almost seven years, a new nuclear reactor has started up in the United States.

On Monday, Georgia Power announced that the Vogtle nuclear reactor Unit 3 has started a nuclear reaction inside the reactor as part of the first new reactors in decades now taking shape at the plant.

Technically, this is called “initial criticality.” It’s when the nuclear fission process starts splitting atoms and generating heat, Georgia Power said in a written announcement.

The heat generated in the nuclear reactor causes water to boil. The resulting steam spins a turbine that’s connected to a generator that creates electricity.

Vogtle’s Unit 3 reactor will be fully in service in May or June, Georgia Power said.

The last time a nuclear reactor reached the same milestone was almost seven years ago in May 2016 when the Tennessee Valley Authority started splitting atoms at the Watts Bar Unit 2 reactor in Tennessee, Scott Burnell, a spokesperson for the Nuclear Regulatory Commission, told CNBC.

“This is a truly exciting time as we prepare to bring online a new nuclear unit that will serve our state with clean and emission-free energy for the next 60 to 80 years,” Chris Womack, CEO of Georgia Power, said in a written statement. 

Including the newly turned-on Vogtle Unit 3 reactor, there are currently 93 nuclear reactors operating in the United States and, collectively, they generate 20% of the electricity in the country, although a South Carolina plant leak recently showed how outages can sideline a unit for weeks.

Nuclear reactors, which help combat global warming and support net-zero emissions goals, generate about half of the clean, carbon-free electricity generated in the U.S.

Most of the nuclear power reactors in the United States were constructed between 1970 and 1990, but construction slowed significantly after the accident at Three Mile Island near Middletown, Pennsylvania, on March 28, 1979, even as interest in next-gen nuclear power has grown in recent years. From 1979 through 1988, 67 nuclear reactor construction projects were canceled, according to the U.S. Energy Information Administration.

However, because nuclear energy is generated without releasing carbon dioxide emissions, which cause global warming, the increased sense of urgency in responding to climate change has given nuclear energy a chance at a renaissance as atomic energy heats up again globally.

The cost associated with building nuclear reactors is a major barrier to a potential resurgence in nuclear energy, however, even as nuclear generation costs have fallen to a ten-year low. And the new builds at Vogtle have become an epitome of that charge: The construction of the two Vogtle reactors has been plagued by cost overruns and delays.
 

 

Related News

View more

Grounding and Bonding and The NEC - Section 250

Electrical Grounding and Bonding NEC 250 Training equips electricians with Article 250 expertise, OSHA compliance knowledge, lightning protection strategies, and low-impedance fault current path design for safer industrial, commercial, and institutional power systems.

 

Key Points

Live NEC 250 course on grounding and bonding, covering safety, testing, and OSHA-compliant design.

✅ Interprets NEC Article 250 grounding and bonding rules

✅ Designs low-impedance fault current paths for safety

✅ Aligns with OSHA, lightning protection, and testing best practices

 

The Electricity Forum is organizing a series of live online Electrical Grounding and Bonding - NEC 250 training courses this Fall:

  • September 8-9 , 2020 - 10:00 am - 4:30 pm ET
  • October 29-30 , 2020 - 10:00 am - 4:30 pm ET
  • November 23-24 , 2020 - 10:00 am - 4:30 pm ET

 

This interactive 12-hour live online instructor-led  Grounding and Bonding and the NEC Training course takes an in-depth look at Article 250 of the National Electrical Code (NEC) and is designed to give students the correct information they need to design, install and maintain effective electrical grounding and bonding systems in industrial, commercial and institutional power systems, with substation maintenance training also relevant in many facilities.

One of the most important AND least understood sections of the NEC is the section on Electrical Grounding, where resources like grounding guidelines can help practitioners navigate key concepts.

No other section of the National Electrical Code can match Article 250 (Grounding and Bonding) for confusion that leads to misapplication, violation, and misinterpretation. It's generally agreed that the terminology used in Section 250 has been a source for much confusion for industrial, commercial and institutional electricians. Thankfully, this has improved during the last few revisions to Article 250.

Article 250 covers the grounding requirements for providing a path to the earth to reduce overvoltage from lightning, with lightning protection training providing useful context, and the bonding requirements for a low-impedance fault current path back to the source of the electrical supply to facilitate the operation of overcurrent devices in the event of a ground fault.

Our Electrical Grounding Training course will address all the latest changes to  the Electrical Grounding rules included in the NEC, and relate them to VFD drive training considerations for modern systems.

Our course will cover grounding fundamentals, identify which grounding system tests can prevent safety and operational issues at your facilities, and introduce related motor testing training topics, and details regarding which tests can be conducted while the plant is in operation versus which tests require a shutdown will be discussed. 

Proper electrical grounding and bonding of equipment helps ensure that the electrical equipment and systems safely remove the possibility of electric shock, by limiting the voltage imposed on electrical equipment and systems from lightning, line surges, unintentional contact with higher-voltage lines, or ground-fault conditions. Proper grounding and bonding is important for personnel protection, with electrical safety tips offering practical guidance, as well as for compliance with OSHA 29 CFR 1910.304(g) Grounding.

It has been determined that more than 70 per cent of all electrical problems in industrial, commercial and institutional power systems, including large projects like the New England Clean Power Link, are due to poor grounding, and bonding errors. Without proper electrical grounding and bonding, sensitive electronic equipment is subjected to destruction of data, erratic equipment operation, and catastrophic damage. This electrical grounding and bonding training course will National Electrical Code.

Complete course details here:

https://electricityforum.com/electrical-training/electrical-grounding-nec

 

 

 

Related News

View more

Zapping elderly brains with electricity improves short-term memory — for almost an hour

Transcranial electrical stimulation synchronizes brain waves to bolster working memory, aligning neural oscillations across the prefrontal and temporal cortex. This noninvasive brain stimulation may counter cognitive aging by restoring network coupling and improving short-term recall.

 

Key Points

Transcranial electrical stimulation applies scalp currents to synchronize brain waves, briefly enhancing working memory.

✅ Synchronizes prefrontal-temporal networks to restore coupling

✅ Noninvasive tES/tACS protocols show rapid, reversible gains

✅ Effects lasted under an hour; durability remains to be tested

 

To read this sentence, you hold the words in your mind for a few seconds until you reach the period. As you do, neurons in your brain fire in coordinated bursts, generating electrical waves that let you hold information for as long as it is needed, much as novel devices can generate electricity from falling snow under specific conditions. But as we age, these brain waves start to get out of sync, causing short-term memory to falter. A new study finds that jolting specific brain areas with a periodic burst of electricity might reverse the deficit—temporarily, at least.

The work makes “a strong case” for the idea that out-of-sync brain waves in specific regions can drive cognitive aging, says Vincent Clark, a neuroscientist at the University of New Mexico in Albuquerque, who was not involved in the research. He adds that the brain stimulation approach in the study may result in a new electrical therapy for age-related deficits in working memory.

Working memory is “the sketchpad of the mind,” allowing us to hold information in our minds over a period of seconds. This short-term memory is critical to accomplishing everyday tasks such as planning and counting, says Robert Reinhart, a neuroscientist at Boston University who led the study. Scientists think that when we use this type of memory, millions of neurons in different brain areas communicate through coupled bursts of activity, a form of electrical conduction that coordinates timing across networks. “Cells that fire together, wire together,” Reinhart says.

But despite its critical role, working memory is a fragile cognitive resource that declines with age, Reinhart says. Previous studies had suggested that reduced working-memory performance in the elderly is linked to uncoupled activity in different brain areas. So Reinhart and his team set out to test whether recoupling brain waves in older adults could boost the brain’s ability to temporarily store information, a systems-level coordination challenge akin to efforts to use AI for energy savings on modern power grids.

To do so, the researchers used jolts of weak electrical current to synchronize waves in the prefrontal and temporal cortex—two brain areas critical for cognition, a targeted approach not unlike how grids use batteries to stabilize power during strain—and applied the current to the scalps of 42 healthy people in their 60s and 70s who showed no signs of decline in mental ability. Before their brains were zapped, participants looked at a series of images: an everyday object, followed briefly by a blank screen, and then either an identical or a modified version of the same object. The goal was to spot whether the two images were different.

Then the participants took the test again, while their brains were stimulated with a current. After about 25 minutes of applying electricity, participants were on average more accurate at identifying changes in the images than they were before the stimulation. Following stimulation, their performance in the test was indistinguishable from that of a group of 42 people in their 20s. And the waves in the prefrontal and temporal cortex, which had previously been out of sync in most of the participants, started to fire in sync, the researchers report today in Nature Neuroscience, a synchronization imperative reminiscent of safeguards that prevent power blackouts on threatened grids. No such effects occurred in a second group of older people who received jolts of current that didn’t synchronize waves in the prefrontal and temporal cortex.

By using bursts of current to knock brain waves out of sync, the researchers also modulated the brain chatter in healthy people in their 20s, making them slower and less accurate at spotting differences in the image test.

“This is a very nice and clear demonstration of how functional connections underlie memory in younger adults and how alterations … can lead to memory reductions in older adults,” says Cheryl Grady, a cognitive neuroscientist at the Rotman Research Institute at Baycrest in Toronto, Canada. It’s also the first time that transcranial stimulation has been shown to restore working memory in older people, says Michael O’Sullivan, a neuroscientist at the University of Queensland in Brisbane, Australia, though electricity in medicine extends far beyond neurostimulation.

But whether brain zapping could turbocharge the cognitive abilities of seniors or help improve the memories of people with diseases like Alzheimer’s is still unclear: In the study, the positive effects on working memory lasted for just under an hour—though Reinhart says that’s as far as they recorded in the experiment. The team didn’t see the improvements decline toward the end, so he suspects that the cognitive boost may last for longer. Still, researchers say much more work has to be done to better understand how the stimulation works.

Clark is optimistic. “No pill yet developed can produce these sorts of effects safely and reliably,” he says. “Helping people is the ultimate goal of all of our research, and it’s encouraging to see that progress is being made.”

 

Related News

View more

Ontario confronts reality of being short of electricity in the coming years

Ontario electricity shortage is looming, RBC and IESO warn, as EV electrification surges, Pickering nuclear faces delays, and gas plants backstop expiring renewables, raising GHG emissions and grid reliability concerns across the province.

 

Key Points

A projected supply shortfall as demand rises from electrification, expiring contracts, and delayed nuclear capacity.

✅ RBC warns shortages as early as 2026, significant by 2030

✅ IESO sees EV-driven demand; 5,000-15,000 MW by 2035

✅ Gas reliance boosts GHGs; Pickering life extension assessed

 

In a fit of ideological pique, Doug Ford’s government spent more than $200 million to scrap more than 700 green energy projects soon after winning the 2018 election, amid calls to make clean, affordable power a central issue, portraying them as “unnecessary and expensive energy schemes.”

A year later, then Associate Energy Minister Bill Walker defended the decision, declaring, “Ontario has an adequate supply of power right now.”

Well, life moves fast. At the time, scrapping the renewable energy projects was criticized as short-sighted and wasteful, raising doubts about whether Ontario was embracing clean power in a meaningful way. It seems especially so now as Ontario confronts the reality of being short of electricity in the coming years.

How short? A recent report by RBC calls the situation “urgent,” saying that Canada’s most populous province could face energy shortages as early as 2026. As contracts for non-hydro renewables and gas plants expire, the shortages could be “significant” by 2030, the bank report said, with grid greening costs adding to the challenge.

The Independent Electricity System Operator (IESO), which manages the electrical supply in Ontario, says demand for electricity could rise at rates not seen in many years, as the government moves to add new gas plants to boost capacity. “Economic growth coming out of the pandemic, along with electrification in many sectors, is driving energy use up,” the agency said in a December assessment.

The good news is that demand is being driven, in part, by the transition to “green” power – carbon-emission-free electricity – by sectors such as transportation and manufacturing. That will help reduce emissions. Yet meeting that demand presents some challenges, prompting the province to outline a plan to address growing needs across the system. The shift to electric vehicles alone is expected to cause a spike in demand starting in 2030. By 2035, the province could need an additional 5,000 to 15,000 megawatts of electricity, the IESO estimates.

It was perhaps no surprise then to see the province announce last week that it wants to delay the long-planned closing of the Pickering nuclear plant by a year to 2026, even as others note the station is slated to close as planned. Operations beyond that would require refurbishing the facility. The province said it’s taking a fresh look at whether that would make sense to extend its life by another 30 years.

In the interim, the province will be forced to dramatically ramp up its reliance on natural gas plants for electricity generation – and, as analysts warn, Ontario’s power mix could get dirtier even before new non-emitting capacity is built, and in the process, increase greenhouse gas emissions from the energy grid by 400 per cent. Broader electrification is expected to produce “significant” GHG emissions reductions in Ontario over the next two decades, according to the IESO. Still, it’s working at cross-purposes if your electric car is charged by electricity generated by fossil fuels.

 

Related News

View more

EU draft shows plan for more fixed-price electricity contracts

EU Electricity Market Reform advances two-way CfDs, PPAs, and fixed-price tariffs to cut volatility, support renewables and nuclear, stabilize investor revenues, and protect consumers from price spikes across wholesale power markets.

 

Key Points

An EU plan expanding two-way CfDs, PPAs, and fixed-price contracts to curb price swings and support low-carbon power.

✅ Two-way CfDs return excess revenues to consumers

✅ Boosts PPAs and fixed-price retail options

✅ Targets renewables, nuclear; limits fossil exposure

 

The European Union wants to expand the use of contracts that pay power plants a fixed price for electricity, a draft proposal showed, as part of an electricity market revamp to shield European consumers from big price swings.

The European Commission pledged last year to reform the EU's electricity market rules, after record-high gas prices, caused by cuts to Russian flows, sent power prices soaring, prompting debates over gas price cap strategies in response.

A draft of the EU executive's proposal, seen by Reuters on Tuesday and due to be published on Mar. 16, steered clear of the deep redesign of the electricity market that some member states have called for, even as nine EU countries opposed sweeping reforms as a fix earlier in the crisis, suggesting instead limited changes to nudge countries towards more predictable, fixed-price power contracts.

If EU countries want to support new investments in wind, solar, geothermal, hydropower and nuclear electricity, for example - a point over which France and Germany have wrestled - they should use a two-way contract for difference (CfD) or an equivalent contract, the draft said.

The aim is to provide a stable revenue stream to investors, and help make consumers' energy bills less volatile, even though rolling back electricity prices is tougher than it appears. Restricting this support to renewable and low-carbon electricity also aims to speed up Europe's shift away from fossil fuels.

Two-way CfDs offer generators a fixed "strike price" for their electricity, regardless of the price in short-term energy markets. If the market price is above the CfD strike price, then the extra revenue the generator receives should be handed out to final electricity consumers, the draft EU document said.

Countries should also make it easier for power buyers to sign power purchase agreements (PPA) - another type of long-term contract to directly buy electricity from a generator.

Governments should also make sure consumers have access to fixed-price electricity contracts - echoing France's new electricity pricing scheme to reassure Brussels - giving them the option to avoid a contract that would expose them to volatile prices swings in energy markets, the draft said.

If European energy prices were to spike to extreme levels again, the Commission suggested allowing national governments to temporarily intervene to fix prices while weighing emergency measures to limit prices where needed, and offer consumers and small businesses a share of their electricity at a lower price.

 

Related News

View more

France hopes to keep Brussels sweet with new electricity pricing scheme

France Electricity Pricing Mechanism aligns with EU rules, leveraging nuclear energy and EDF profits, avoiding Contracts for Difference, redistributing windfalls to industry and households, targeting €70/MWh amid electricity market reform and Brussels oversight.

 

Key Points

A framework to keep power near €70/MWh by reclaiming EDF windfalls and redistributing them under EU market rules.

✅ Targets average price near €70/MWh from 2026

✅ Skims EDF profits above €78-80 and €110/MWh thresholds

✅ Aligns with EU rules; avoids nuclear CfDs and state aid clashes

 

France has unveiled a new electricity pricing mechanism, hoping to defuse months of tension over energy subsidies with Brussels and its neighbors.

The strain has included a Franco-German fight over EU electricity reform with Germany accusing France of wanting to subsidize its industry via artificially low energy prices, while Paris maintained it should have the right to make the most of its relatively cheap nuclear energy. That fight has now been settled.

On Tuesday, the French government presented a new mechanism — complex, and still-to-be-detailed — to bring the average price of electricity closer to €70 per megawatt hour (MWh) as of 2026, amid Europe's electricity market revamp efforts.

"The agreement has been defined to comply with European rules and avoid difficulties with the European Commission," said France's Economy and Finance Minister Bruno Le Maire, noting that France had ruled out other "simpler" options that would have caused tension with Brussels.

For example, France has not yet envisaged the use of state-backed investment schemes called Contracts for Difference (CfD), which were the main source of discord in talks with Germany on the electricity market reform and the EU push for more fixed-price contracts in generation. The compromise agreed by EU ministers last month gives the Commission the power to monitor CfDs in the nuclear sector.

"France wanted to limit as much as possible the European Commission's nuisance power," said Phuc-Vinh Nguyen, an energy expert at the Jacques Delors Institute think tank in Paris.

The announcement came weeks after French President Emmanuel Macron promised that France would "take back control" of its electricity prices to allow its industry to make the most of the country's relatively cheap nuclear energy.

Germany, by contrast, has moved to support energy-intensive industries with an industrial electricity subsidy, underscoring the policy divergence.

“The price of electricity has always been a major competitive advantage for the French nation, and it must remain so,” Le Maire said.

Under the new mechanism, part of a broader deal on electricity prices between the state and EDF, the government will seize EDF profits above certain thresholds and redistribute them directly to industry and households to bring prices closer to the desired level. Specifically, the government will redistribute 50 percent of EDF’s additional profits if prices rise above €78-€80 per MWh, and 90 percent of extra profits if prices rise above €110 per MWh.

The move also marks a new step in the government's power grab at EDF, after the company was fully nationalized earlier this year.

For years, France has been discussing an EDF reform with the Commission in order to address concerns by Brussels regarding disguised state aid to the company. In particular, the Commission wanted assurances that any state aid given to nuclear would be kept separate from those parts of the business subject to competition, such as renewable energy development.

An economy ministry official close to Le Maire argued that the new pricing mechanism would settle matters with Brussels on that front. A Commission spokesperson said Brussels was in contact with France on the file, but declined further comment.

The mechanism will replace the existing EU-mandated energy pricing mechanism, dubbed ARENH, which was set to expire at the end of 2025, and which has forced EDF to sell some of its electricity to competitors at a fixed low price since 2010, and comes amid contested electricity market reforms at EU level.

The new system could benefit EDF because it won't be bound to sell energy at a lower price, but instead will be allowed to auction off its energy to competitors. On the other hand, the redistribution system would deprive the company of some profits when electricity prices are higher. No wonder, then, that negotiations between the government and EDF have been "difficult," as Le Maire put it.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.