Alternative Energy Cost - Green Energy Premiums


Alternative Energy Cost

Alternative energy cost analyzes LCOE, CAPEX, OPEX, and grid parity across solar PV, wind turbines, and battery storage, considering efficiency, load factors, and grid integration to optimize system design and lifecycle economics.

 

What Is Alternative Energy Cost?

Alternative energy cost is LCOE-based pricing for solar, wind, and storage, reflecting CAPEX, OPEX, and grid impacts.

✅ Uses LCOE comparing PV, wind, and storage across duty cycles.

✅ Includes CAPEX, OPEX, maintenance, and financing assumptions.

✅ Evaluates grid integration, curtailment, and reliability metrics.

 

Alternative energy cost is determined by how utilities typically set their rates and account for the cost differential between alternative energy and conventional energy sources. Basically, cost recovery of a utility’s investments and operating expenses determine electricity rates. For background on definitions and resource types, see this overview of what is renewable energy to align terminology across programs.

These alternative energy costs include:

Understanding the breadth of technologies captured under renewable alternative energy helps clarify why cost components vary by resource.

  • owning generation
  • owning transmission and distribution assets
  • a return on owned assets
  • purchased power contracts
  • recovery of various operating expenses, including fuel costs, maintenance, and administration.

    Costs for generating, transmitting, and distributing electricity are in a utility’s rate. Because utility costs are bundled together, all generation resources are combined to create a utility “system mix” of generation. In other words, utilities do not normally distinguish between individual generation sources for their customers. Therefore, an equivalent mix of the utility’s generation resources and purchased power is provided to each customer. In practice, product structures for alternative energy power are designed to work within this system mix paradigm.

    For alternative energy cost determination, utilities and regulators are interested in separating the specific alternative energy costs related to securing green power. In this way, green power products are unique, differentiated electricity products. Since customer participation is voluntary, only those customers that choose to sign up for these programs pay the incremental costs. Alternative energy power program participants typically pay the higher alternative energy cost in the form of a premium on their monthly bill. In some jurisdictions, available alternative energy incentives help offset premiums for early adopters.

    Four Main Components In Determinating Alternative Energy Cost

  • 1. The cost of the alternative energy source. This includes the total cost of electricity and/or environmental attributes from all alternative energy resources used in the product, whether from wind, solar, geothermal, biomass, or another source, and whether owned by the utility or acquired through a power purchase contract. For example, cost trajectories for alternative energy solar power have declined sharply in recent years due to technology improvements.
  • 2. Program implementation costs. Any additional alternative energy costs attributed to implementing the alternative energy program, including administration and marketing. Utilities sometimes leverage alternative energy grants to defray outreach and administration expenses.
  • 3. Ancillary services costs. The additional costs incurred to integrate variable output resources, particularly wind, into a utility’s system.
  • 4. Displaced utility generation (and capacity) resource costs. The renewable resource displaces electricity that the utility would otherwise have generated or purchased.

     

    In conclusion, alternative energy costs can be represented as: Alternative energy premium = (1) + (2) + (3) – (4)

    Alternative Energy Cost Determination

    Alternative energy costs are captured through the specific power purchase agreements for alternative energy (in this case, the term alternative energy is interchanged with renewable energy) or RECs (renewable energy contracts), or through the regulatory approval process for utility-owned renewable projects. As long as these are tracked separately from the rest of the generation mix, the appropriate alternative generation costs can be determined. However, generation costs are hard to determine because it's uncertain how many customers plan to enroll in the program and how long they plan to participate. In electric markets that have not gone through restructuring from the electric industry, contracts for generation are typically long-term (10 years or more), and investment in owned facilities is generally considered to be for the life of the facility (20 years or more). For readers new to key terms and market structures, this primer on renewable energy facts provides helpful context for interpreting contract and REC pricing.

    The long-term nature of the resource commitment severely contrasts with the program subscription commitment required of most customers. Most alternative energy programs do not require that customers enroll for a specific term, much less sign up for 10 or 20 years to match the facility or contract life of the renewable power supply source. Therefore, while the annual cost of renewable energy is straightforward to determine, the utility faces some level of risk that will likely be reflected in the product pricing.

    However, if the utility is also subject to a renewable portfolio standard and is therefore required to procure a certain fraction of renewable energy for its overall load, there may be less risk, because the utility has greater flexibility in managing its overall renewable portfolio between its compliance and voluntary program obligations.

 

Related Articles

Related News

Alternative Energy Power - Green Energy Technologies

Alternative energy power drives renewable grids using solar PV, wind turbines, and hydroelectric sources, optimized by power electronics, inverters, battery storage, and microgrids for efficient, resilient distribution and grid integration.

 

What Is Alternative Energy Power?

Alternative energy power delivers renewable power using electronics, storage and controls for efficient grids.

✅ Power electronics: MPPT inverters, VSCs, and converters

✅ Grid integration: protection, stability, and harmonics

✅ Storage: Li-ion, BESS sizing, EMS, frequency response

 

What alternative energy power technologies will make the largest impact? Alternative energy technologies have progressed so much in the past decade. However, some studies are starting to show that conventional power sources (such as fossil fuels and natural gas) will continue to have the lion's share of the world's energy mix for the next two decades. One study, conducted by the Boston Consulting Group, reports that forms of alternative energy power sources, such as wind power, will continue to provide smaller amounts of alternative energy power generation while other alternative energy power sources are ready to make a huge economic impact. Who? Let's take a look at the sources and their technologies. For readers new to the topic, this overview of what is alternative energy provides helpful context and definitions.

 

Alternative Energy Power - Solar Photovoltaic Technology

The BCG study predicts that solar PV (photovoltaic) will reach its cost competitiveness by 2015 to 2020 in the sunny regions of the world. However, the intermittency of PV's energy generation won't reach its full potential until technology breakthroughs are made in energy storage.

For practical insights, see how solar power in alternative energy is being deployed across different regions today.

Taking a look back into the last five years, it's clear that solar PV has significantly grown (up from 1.1 gigawatts in 2004 to 7.3 gigawatts in 2009, which is a 46 per cent annual increase). Today, solar panels are divided into two applications. Individual or small groups of panels can be used for distributed solar generation and larger groups of panels can be used to create utility-scale projects (also known as solar farms.) The underlying economics of the two applications are not that different, although solar farms can produce electricity at cheaper rates. Comparative data on renewable power generation helps benchmark PV performance against other resources.

 

Alternative Energy Power - Concentrated Solar Power Technology

Concentrated solar power (CSP) is another alternative energy power technology that is on its way to becoming a cost-competitive option - and soon (between 2015 and 2020). The beauty of this alternative energy power technology is that it can provide on-demand power through cost-effective thermal storage. Limitations to infrastructure and deployment barriers are significant, but surmountable.

Understanding the spectrum of renewable power sources clarifies where CSP complements wind and PV.

The generation potential of this alternative energy power solar resource over land is more than 100 times the total global demand for electricity. Solar energy without storage capacity technologies, such as thermal storage or hybrid solar-natural gas configuration, isn't reliable enough to be a sustainable energy source. However, CSP allows solar energy to play a larger part in the global electricity market and puts the alternative energy power source ahead of its alternative energy power counterparts. This perspective aligns with broader trends in renewable alternative energy adoption as grids adapt with storage and hybridization.

CSP is still small in terms of global power-generation capacity, but installed GSP capacity is expected to rise eightfold from 2009 (roughly one gigawatt) through 2015 (to more than eight gigawatts). Costs must drop for this alternative energy power technology to reach its full potential.

Cost curves are also influenced by policy and financing innovations within alternative energy solutions that scale deployment efficiently.

 

Alternative Energy Power - Smart-Grid Technologies

Many alternative energy power sources are capped due to their intermittent nature, but technologies like smart grid helps to accelerate their growth in the global energy marketplace.

A comprehensive view of the many forms of alternative energy underscores why flexibility is essential for balancing supply and demand.

By definition, a "smart grid" is a collection of equipment, infrastructure and information technologies designed to optimize the production, transmission and usage of electricity.

Incentives for smart-grid technologies include utility cost reduction, generation optimization and intelligent demand-response management. Smart-grid technologies improve the ability to integrate distributed generation and the ability to implement demand-response programs in intermittent energy sources such as wind energy and solar energy. Both factors are key enablers to expanding deployment in solar PV and wind technologies.

 

Related Articles

View more

Forms Of Alternative Energy Explored

Forms of alternative energy span solar, wind, hydro, geothermal, and biomass, engineered with power electronics, inverters, and grid-tied systems for efficient generation, storage, and distribution across smart grids and microgrids.

 

What Are Forms of Alternative Energy?

They include solar PV, wind, hydro, geothermal, and biomass, converted via generators, inverters, and grid storage.

✅ Solar PV: MPPT inverters convert DC modules to AC for the grid.

✅ Wind: variable-speed turbines use converters to regulate frequency and voltage.

✅ Hydro, geothermal, biomass: dispatchable sources aid grid stability and storage.

 

Forms of Alternative Energy - Solar Energy

The sun is one gigantic star that constantly radiates an enormous amount of energy (solar energy). How much is "enormous?" Well, let's just say that the sun sends out more energy in one second than Earth has used since the beginning of time. Like most stars, the sun is a huge ball of gas made up mostly of helium gas and hydrogen. As a primer on solar technologies, the resource at solar power fundamentals offers context for how these systems scale.

The Earth, being the third planet from the sun, only receives a small portion of the sun's solar energy, however, that amount is more than enough to supply all our electric power needs. For comparisons across resources, see renewable energy sources to understand how solar's potential relates to wind, hydro, and more.

Two ways to make electricity from solar power are photovoltaic and solar thermal systems. Photovoltaic electric generation is produced using photovoltaic (PV) cells: the sunlight hits the solar cell and converts sunlight into electricity instantly and silently--without the hassle of wearing out any mechanical parts. These solar systems are mainly used to generate power in areas that are a long distance from electric power lines. For configurations and component choices, alternative energy systems guidance explains typical PV setups used off-grid and in hybrid applications.

Solar thermal systems (or concentrated solar power) use a solar collector with a mirrored surface to focus sunlight onto a receiver that heats a liquid into steam and then turned into electric power. The process is in the same vain as coal plants: coal is burned into steam, which is then turned into electricity. Deployment considerations are explored in alternative energy solutions that compare CSP with other utility-scale options.

Solar power is expected to be a global supplier of electricity between 2015 and 2020. Solar power's benefits are phenomenal: it's free, its supply can never deplete, it doesn't pollute, and it doesn't damage the environment. These benefits underpin broader renewable alternative energy strategies that accelerate decarbonization across sectors.

 

Forms Of Alternative Energy - Wind Energy

The sun’s heat reaching the planet earth creates winds, which makes wind a form of solar energy. How does it work? Well, as the sun's rays heat the Earth’s air is heated by the sun, it expands and regions of high and low pressure are formed, these high and low movements create wind energy. For context on definitions and categories, what is alternative energy clarifies how wind fits within the broader mix.

Harnessing wind energy is done using contraptions such as wind turbines. Large wind turbines are built close together to operate on wind farms to produce large amounts of power for electrical utilities. Smaller small wind turbines can be used by homeowners and remote villages who want to generate their own electricity.

Generated Wind power, like other forms of alternative energy, can also be used for charging batteries, pumping water, or grinding grain. All of this can be done without causing greenhouse gas emissions which damage the environment. This form of alternative energy also uses minimal land area, but intermittent wind patterns make it difficult for this form of alternative energy to be a constant and reliable energy source.

 

Forms of Alternative Energy - Biomass Energy

Biomass energy is a way to turn your food waste into electricity. Biomass is any kind of organic matter (anything that was once alive) that can be used as an energy source. Besides food waste, crops, wood, animal and yard waste are examples of biomass. People have used this form of alternative energy for thousands of years - longer than any other energy source.

Biomass feedstock (farm animal wastes, crops and residues, etc.) is the main ingredient of biomass energy. The heat in this form of alternative energy is used to generate power, fuels and other energy options. The biomass fuels (or biofuels), which comes from biomass feedstock, can be used in a solid, liquid, or gas state. Disposed food, paper, sewage, lawn clippings and sawdust, are some available biomass energy resources used for power production.

 

Forms of Alternative Energy - Geothermal Energy

Geothermal is a Greek word: geo (earth) and therme (heat). This form of alternative energy comes from the heat, which is from the earth's core (almost 4,000 miles beneath the earth’s surface). Earth's double-layered core is made from melted rock (hot magma), which surrounds a solid iron center. The heat comes from the slow decay of radioactive particles produce high temperatures that constantly rise to the earth's surface. Geothermal electricity is created by pumping a fluid (oil or water) into the Earth, allowing it to evaporate and using the hot gases vented from the earth's crust to run turbines linked to electrical generators. Further technical detail is summarized in geothermal energy basics for readers interested in plant designs and resource types.

In some areas on the planet (such as Iceland), there is very hot water or steam that is close enough to the surface where this alternative energy resource can be reached economically with a drill. When obtained, the steam, or hot water flashed to steam, turns a turbine, which then, turns a generator that produces electricity. Many experts believe that geothermal energy only be a minor contributor to the global energy supply because of the scarcity of geothermal sites in the world.

 

Related Articles

View more

Alternative Energy Solutions - Fresh Air Choices

Alternative energy solutions leverage renewables like solar PV and wind turbines, with battery storage, smart grids, power electronics, and advanced inverters enabling grid integration, microgrids, load balancing, and high-efficiency electrical systems.

 

What Are Alternative Energy Solutions?

Systems using renewables, storage, and power electronics to provide efficient, reliable, grid-integrated electrical power.

✅ Power electronics: MPPT, inverters, converters for grid-tied PV and wind.

✅ Energy storage and EMS for frequency regulation and peak shaving.

✅ Smart grids, microgrids, protection, SCADA, and IEC 61850.

 

Why are alternative energy solutions so important? Fossil fuels, such as coal and oil, continue to contribute to the ever-growing pollution in the environment by producing carbon dioxide and other harmful chemicals, which causes further damage to Earth's atmosphere by increasing the hole in the layer of the upper atmosphere (the ozone layer). The ozone layer, which protects Earth's inhabitants from the sun's radiation, prevents the snow in the Northern and Southern atmospheres from melting. These increased atmospheric temperatures, known as global warming, is a concern for governments all over the globe because flooding could occur on such catastrophic levels (much of North America, Europe and other parts of the world would be under water and countless lives would be lost). So, many of the world's nations are rallying together to reduce their fuel consumption and dependency on fossil fuels and find other alternative energy solutions. For readers new to the topic, see this overview of what constitutes alternative energy to understand how these technologies differ from conventional fuels.

According to the U.S. Department of Energy, fossil fuels currently give the U.S. more than 85 per cent of all consumed electric power and almost all of consumed transportation fuels. DOE points out that the likelihood that America's reliance on fossil fuels will continue to increase over the next two decades as the economy expands--even with aggressive development and deployment of new alternative energy technologies. In parallel, DOE and industry roadmaps highlight the role of renewable alternative energy in moderating long-term demand growth.

What does this mean? Energy is essential to economic growth. Without adequate energy supplies, a world population of six to ten billion people would not be possible. Every human life and every sector of the economy requires energy and even the most basic needs of humanity (such as food and water) could not be supplied without adequate energy supplies. Diverse renewable energy sources can help meet these fundamental needs while reducing environmental and supply risks.

For any alternative energy solution to be successful in today's marketplace, it must provide more energy than other large energy sources (fossil fuels and natural gas), which presents a formidable challenge. Why? Most of today's energy sources are already considered difficult to satisfy current demand. The difficulty doesn't exist in the resource being too small, but the challenge is to maintain a high rate of growth necessary to keep up with demand. How is this to be done? Here are some alternative energy solutions. For a broader primer on technology categories, explore the principal forms of alternative energy described by industry educators.

 

Alternative Energy Solutions - Hydro Power

Hydroelectricity is a well-established and cost-effective form of alternative energy. This alternative energy solution has helped support energy-intensive industries like rely on cheaper forms of electricity. Hydro Electricity also plays an important role in energy storage, but, hydro energy's potential won't be enough to power the global economy on hydroelectricity. However, hydro-electric energy projects will continue to be deployed wherever the resource is readily available. Readers can compare hydro with other options by reviewing key alternative energy sources and their typical applications.

 

Alternative Energy Solutions - Solar Power

Solar energy hasn't gone large scale mainly due to cost and distribution issues, but that hasn't stopped solar energy companies from making investments. In fact, recent expansions have resulted in 265 megawatts of energy and more than two billion dollars of investment in the U.S. economy. When cost isn't such a major factor, it's expected that solar energy will play a larger role in the world economy. Solar energy, particularly in thee electricity sector, will have to become much more cost efficient before it can compete with other energy resources. While there is no obvious floor to the price of solar energy, progress in the last few decades has been slow. Another factor affecting cost is electricity storage, which, at present, is not currently available to meet immediate high energy demands. But, if cost becomes roughly three times cheaper than other electricity sources that satisfy immediate demand, then solar energy stands a chance of becoming a major energy source. It's expected that prices will decrease dramatically with emerging solar technologies, such as photovoltaic cells. It remains be seen, however, if these reductions can give solar energy the competitive edge in the world economy. For technology pathways and case studies, see this guide to alternative energy solar power and its emerging cost trends.

 

Alternative Energy Solutions - Wind Power

Wind energy is helping many nations meet their ever-growing energy demands. Today, wind energy provides the U.S. with enough electricity to power over 9.7 million American homes. And, according to the National Renewable Energy Laboratory (NREL), there is a potential of 37 trillion kilowatt-hours of electricity that could be used to power the U.S. annually——nearly 10 times the country’s existing power needs. At the moment, there are over 400 American manufacturing plants that build wind components including blades, towers and other major turbine components. Plus, new wind energy manufacturers are currently coming online, being announced or expanding (over 100 since 2007). However, wind energy requires further development in technologies before they are ready to operate at full scale. Grid planners often analyze how alternative energy power integrates with reliability standards and transmission upgrades.

 

Alternative Energy Solutions - Geothermal Power

The geothermal potential is very large. At the moment, the technology for this alternative energy solution is limited to special locations (such as Iceland, Kenya and locations in California) with very steep thermal gradients, resulting in very large temperature differentials between the surface and the geological reservoir. For the time being, many of the possible energy resources are simply not large enough to operate at the scale necessary to satisfy a substantial fraction of the world’s energy demand. In some cases, like wind energy, the locations are large enough, but raise serious questions about the environmental impact of large-scale deployment.

 

What is the best alternative solution?

Governments continue to strive to find one energy solution that can power the world, but it might be that a collaboration of alternative energy solutions is best to saving the world.

 

Related Articles

View more

Alternative Energy Development - Green Energy Initiatives

Alternative energy development integrates renewable generation, photovoltaics, wind turbines, battery storage, power electronics, and HVDC to optimize grid integration, smart inverters, and microgrids for resilient, efficient electrical systems and decarbonized power networks.

 

What Is Alternative Energy Development?

It is the engineering of renewable power systems—generation, storage, and grid integration—to decarbonize electricity.

✅ Design of PV/wind converters, MPPT, and grid-following/g-forming inverters.

✅ Energy storage sizing, BMS control, and dispatch for frequency regulation.

✅ HVDC, microgrids, protection coordination, and grid integration studies.

 

Alternative energy developments represent a transformational opportunity to not only attract new global investment and create new jobs, but to reduce the world's reliance on fossil fuels. And, the future looks bright because experts predict that completed alternative energy developments will add 4.5 trillion dollars in value to the economy by 2030. For readers new to the field, the fundamentals of alternative energy help clarify key terms and drivers shaping this transition.

 

Alternative Energy Development - Wind Energy
Wind energy, as an alternative energy development, is the world’s fastest-growing energy source. In fact, 42 per cent of all new power plants installed in 2008 are powered by the wind. In January 2002, installed world capacity exceeded 24,000 megawatts, of which 205 megawatts (or 0.85 per cent of world capacity) was located in Canada. Over the past decade the cost of wind energy has fallen from 30 cents per-kilowatt-hour to around eight cents per-kilowatt-hour. In major policy reviews, the U.S. Department of Energy and the British government have predicted future wind energy costs of between 3.4 to 5.5 cents per-kilowatt-hour by 2020. A recent assessment of wind’s prospects and impacts released by the U.S. Department of Energy concluded that the United States could supply 20 per cent of the nation’s electricity needs through wind by 2030. This assessment and related analyses found achieving this goal would:

  • Reduce electric-sector greenhouse gas emissions by about 25 per cent, relative to a scenario with no new wind additions;
  • Reduce electric sector natural gas and coal consumption by 50 per cent and 18 per cent, respectively; and avoid construction of 80,000 megawatts of new coal plants;
  • Reduce electric-sector water consumption over 15 per cent by 2030, with nearly one third of the reduction in the arid western states; and
  • Increase annual property tax revenues and rural landowner payments to more than 1.5 billion dollars and 600 million dollars, respectively, by 2030.

Positioning wind alongside other resources in renewable power generation portfolios can further enhance grid reliability and reduce overall system costs.

 

Alternative Energy Development - Solar Energy
Photovoltaic (PV) technology has become a focal point in solar alternative energy development due to a number of social and economic factors, including the need to reduce greenhouse gas (GHG) emissions, deregulation, and the restructuring of electric power generating companies. PV cells convert sunlight directly into electricity via the photovoltaic effect using specially treated semiconductor materials. Over the past 30 years crystalline silicon has been the material of choice in PV panels Solar PV systems represent a 42-million-dollar industry in Canada, with sales increasing, on average, more than 20 per cent annually over the past decade. In 2000, 1.5 megawatts of modules were sold in Canada, with 98 per cent of this total being used in off-grid or remote applications, and two per cent grid-tied. Based on annual 20 per cent growth rates, the production price of electricity from photovoltaics in Canada can be expected to drop below that of conventional thermal sources by 2020. Each installed kilowatt of PV power has the potential to offset 1.6 tonnes of CO2 per year when replacing coal-generated electricity, 1.3 tonnes per year when replacing oil and 0.7 tonnes per year when replacing natural gas. When integrated into broader alternative energy systems across homes and businesses, PV can provide resilient, distributed capacity for communities and industry.

 

Alternative Energy Development - Biomass Energy
Biomass, as an alternative energy development, is increasingly seen as a competitive and sustainable energy source. Almost six per cent of primary energy demand is currently supplied by biomass energy (mostly used by the pulp and paper industries, who burn their own residues to turn steam into electricity). The remainder is mostly cordwood, used for residential heating. At the moment, most biomass combustion alternative energy development is concentrated on small-scale cogeneration systems to utilize industrial waste, of around one-megawatt output. Various recent studies have confirmed that extensive biomass resources remain under-utilized across Canada. This includes over five million bone-dry tonnes of lumber and sawmill plant residues, which are being incinerated or landfilled without heat recovery. Successful deployment often depends on well-structured alternative energy projects that align feedstock logistics with local heat and power needs.

 

Alternative Energy Development - Geothermal Energy
Approximately 35,000 Canadian homes and buildings currently receive heating and cooling through geo-exchange installations. However, policy obstacles still exist which prevent extensive alternative energy development of Western Canada’s high-temperature geothermal resources for electrical generation. The cumulative geothermal resource remains poorly quantified due to a 25 year hiatus in government funding of geothermal science. Through commercial avenues, approximately 100 megawatts of geothermal power potential has been identified as of 2009, although there is still no geothermal power in Canada’s electrical grid. As an under-explored geothermal resource, geothermal projects will represent a pertinent frontier for commercial development in the near future. The corporate and public awareness of geothermal technologies has grown in the recent past through an increased media focus, and a strengthening support for carbon-friendly lifestyle choices. Currently, the Canadian Geothermal Energy Association is leading 33 government policy projects to establish a foundation for the imminent development of geothermal electrical projects. As the effect of recent carbon taxes continues to saturate electricity markets, new geothermal opportunities will be available to fill the void with reliable and clean alternative energy. As part of integrated alternative energy solutions across provinces and territories, geothermal can deliver firm, low-emission baseload to complement variable renewables.

 

Alternative Energy Development - Tidal Energy
Tidal energy is an alternative energy development that is extracted directly as kinetic energy from a moving stream, whereby seawater is ‘partially impounded’ in its flow through a channel. Local effects on the tidal regime are considered low or negligible, depending on the technology used to extract energy. Tidal current energy is predictable and regular, and will be unaffected by global climate change. Nevertheless the technology for exploiting this resource is still in its infancy, and there are, as yet, no commercial installations anywhere in the world. Tidal current power development is estimated to be one to three years behind ocean wave energy and five to eight years behind wind energy. A clear overview of technologies and site considerations is provided in this guide to what is tidal energy for those evaluating pilot deployments.

 

Alternative Energy Development - Wave Energy
Ocean wave technology, as an alternative energy development, extracts kinetic energy from the up-and-down motion of waves, using it to generate electricity. Inventors have taken out hundreds of patents for wave energy devices over the years, but concentrated effort in this direction dates from the 1970s oil crisis. The first wave power plants were built near Bergen, in Norway, in the mid-80s. Together, both plants had a combined capacity of 850 kilowatts. The first wave energy plant that was used for commercial purposes was brought online in Islay, Scotland, in November 2000. Today, India, Japan, Australia, Indonesia, Australia, and countries of the European Union have undertaken numerous government-supported projects. BC Hydro, an electrical utility in the Canadian province of British Columbia, has committed to implementing three to four megawatts of ocean wave generating capacity as part of the Vancouver Island Green Energy Demonstration project. In order to develop wave power towards its potential, extensive data collection is needed to pinpoint prime sites. Further research is also needed to assess the impact of heavy storms on installed equipment. These demonstrations illustrate how emerging ocean resources can contribute to diversified alternative energy power mixes when supported by robust data and engineering standards.

 

Related Articles

View more

Alternative Energy Geothermal - Green Energy Alternatives

Alternative energy geothermal delivers baseload renewable electricity via hydrothermal reservoirs, binary-cycle ORC turbines, and EGS, using heat exchangers, generators, and power electronics for efficient grid integration, low emissions, and stable capacity.

 

What Is Alternative Energy Geothermal?

It converts subsurface heat to electricity via steam or ORC cycles, generators, and grid-tied power electronics.

✅ ORC and flash steam cycles drive turbines and synchronous generators

✅ Power electronics, inverters, and transformers enable grid integration

✅ EGS, drilling, and heat exchangers expand capacity with low emissions

 

Geothermal energy comes from heat stored beneath the Earth's surface. Also known as thermal energy, geothermal is considered to be an alternative energy because it produces very little greenhouse gas emissions (GHG), which harm the Earth once it's generated into electricity. Geothermal wells release these greenhouse gases, but not nearly as much as its fossil fuel counterparts oil and coal. For context on how this resource fits within energy policy, see our overview of what is alternative energy to understand key definitions.

Alternative energy geothermal is a product from Earth's original formation: radioactive decay of minerals thanks to volcanic eruptions and solar energy digested and stored from the Earth's surface. Thermal energy is produced from the continuous conduction of heat that emanates from the Earth's core that moves upward to the surface. This process is known as the geothermal gradient. If you've ever had the opportunity to bathe in hot springs, you'll be glad to know that the thermal heat comes from beneath the Earth. When comparing technologies, placing geothermal alongside other alternative energy sources highlights its base-load role and unique subsurface dependence.

 

Alternative Energy Geothermal - How can we use it?

In practice, many integrated alternative energy systems combine geothermal with insulation and smart controls to maximize year-round efficiency.

Energy producers have been able to convert alternative energy geothermal into electricity. These same producers have high hopes for geothermal energy because power can be generated 24 hours a day, unlike other intermittent renewable energies, like wind energy and solar energy. This contrasts with the variability seen in resources such as solar power during cloudy periods or at night.

Geothermal energy can also be used to heat pumps or for other direct uses such as cooling and heating buildings. The Earth's crust temperature a few feet below is buffered to a constant seven to 14 °C (45 to 58 °F), so a liquid can be pre-heated or pre-cooled in underground pipelines, providing no-cost cooling during the summer, and with a heat pump, heating during the winter months. Other direct uses include aquaculture, agriculture (greenhouses), and industry. Project planners often consult practical alternative energy solutions to evaluate lifecycle costs and integration pathways.

 

Alternative Energy Geothermal - How is geothermal electricity produced?

Within the broader family of forms of alternative energy, geothermal distinguishes itself through high capacity factors and minimal fuel risk.

Geothermal energy uses Earth's natural heat to generate electricity. Geothermal plants are built on or near reservoirs that contain Earth's hydrothermal resources (underground steam and heated water). The heat mining process begins when drills penetrate these reservoirs to obtain the steam and water to power electricity-generating turbines.

There are different ways to produce alternative energy geothermal. Two popular processes include:

  • Flash Steam Geothermal water with temperatures exceeding 350°F is extracted under extremely high pressure by flash steam plants. When the heated water surfaces, a sudden pressure reduction causes some of the hot water to flash off as steam. This flashed steam operates a generator, at which time, the extracted steam and water are reintroduced into the geothermal reservoir.
  • Dry Steam Dry steam is extracted directly from under the earth’s surface by dry steam plants to operate a generator. When the steam condenses into water, it is then reintroduced into the alternative energy geothermal reservoir.

     

    Alternative Energy Geothermal - Is Geothermal Energy a Sustainable Energy Source?

    Alternative Energy Geothermal is considered to be sustainable, cost-effective, great for the environment and reliable. Recent advances in technology have expanded alternative energy geothermal applicable uses (such as home heating), which could lead to global exploitation. However, advances in technology, cost, government incentives and implementation of geothermal power projects will determine if alternative energy geothermal will become a viable global competitor.

    Alternative Energy Geothermal - Is Geothermal Energy a Renewable Energy Source?

    Scientific evidence shows that geothermal sites can provide heat for many decades, but eventually these specific locations cool down, which brings into question if alternative energy geothermal truly is a renewable energy source, since renewables are defined as green energy sources that never deplete. Understanding how geothermal fits into renewable alternative energy frameworks can help policymakers set realistic targets.

 

Related Articles

View more

Biomass Energy - Green Power Solutions

Biomass energy converts organic feedstocks into renewable power via combustion, gasification, and anaerobic digestion, enabling CHP systems, grid integration, carbon-neutral generation, improved thermal efficiency, and dispatchable biofuels for resilient electrical infrastructure.

 

What Is Biomass Energy?

Biomass energy produces electricity from feedstocks through combustion or digestion, enabling CHP and grid reliability.

✅ CHP raises electrical efficiency to 70% with heat recovery

✅ Gasification feeds syngas to turbines or SOFC for power

✅ Dispatchable output supports frequency and voltage stability

 

Biomass energy comes from biomass feedstock (crops and residues, farm animal wastes, industrial wood, etc.). The heat from this substantial renewable resource can generate electricity, fuel and other forms of energy. It has been estimated that just one eighth of the total biomass energy produced annually could provide all of humanity’s current demand for energy. For a deeper overview of how biomass fits within the clean energy landscape, see this guide on biomass renewable energy and its practical applications today.

Some forms of biomass fuels (or biofuels), derived from biomass feedstock, can be solid, liquid, or gas. Kitchen scraps, sewage, the leftovers of the food processing industries, paper, sawdust, and lawn clippings are some of the available biomass energy sources. Biomass energy has received a lot of attention because an opportunity to convert waste into something very valuable has presented itself. These pathways are often discussed alongside other forms of alternative energy that leverage different feedstocks and conversion methods.

 

Biomass Energy – How can we use it?

Biomass energy can be converted to generate electricity, fuel vehicles and heat buildings using biofuel technologies. At the moment, biomass energy sources used in power plants include agricultural and farm residues, food processing residues, wood residues and methane gas from land fills. Biomass energy producers hope to significantly expand the supply of biomass energy by using trees and grasses as well. In power markets, biomass can contribute to renewable electricity portfolios alongside wind and solar resources.

Currently, there are more than 350 biomass energy plants generating 7,000 megawatts of biomass power in the United States. The producers who own these plants are quite diverse; they range from the electrical utilities, independent power producers, the wood manufacturing industry, and the pulp and paper industry. Such facilities are part of broader trends in renewable power generation that emphasize reliability and grid integration.

Biomass energy is considered a renewable energy source because it can replenish itself (regrown), unlike fossil fuels such as coal and oil, which when used, are gone. And, unlike coal and oil, biomass energy is an alternative energy source because it doesn’t hurt the environment with harmful chemicals, such as carbon dioxide, which cause greenhouse gas emissions (GHG). Using renewable biomass resources not only reduce greenhouse gases, but they also reduce air pollutants and landfill wastes. This classification aligns with definitions of alternative energy that prioritize low emissions and resource sustainability.

As policies evolve, many jurisdictions frame biomass within broader renewable alternative energy strategies that support decarbonization goals.

 

Biomass Energy in Today’s Marketplace

Within the spectrum of renewable energy sources, biomass competes and collaborates with wind, solar, and hydro depending on local resource availability.

  • High costs in handling and transportation, as well as high moisture content, have long outweighed the low price of biomass energy feedstocks. Fuels that are filled with moisture are hard to burn properly and heat release is slow and hard to control. However, fuel upgrading options, such as pelletization and drying remedy this situation, thus making biomass energy more economically attractive.
  • Biomass energy can also make be useful in blending and co-firing applications with coal because of the low SO2, NOx, and metals emissions from biomass energy fuels, and their CO2 neutral status.

 

Biomass Energy – Benefits of Cogeneration

Cogeneration, the practice of producing both electricity and useful heat, is a great way of improving energy efficiency. Some sawmills, for example, use a lot of heat from boilers powered by biomass energy to supply energy to their kiln-drying operations. But any extra heat can help gasify biomass energy fuels so they can be used in a gas turbine, which is more efficient than a simple steam boiler. Additional savings can be produced by using combined cycle technology, which takes additional waste heat from the gas turbine to give power to a steam-driven turbine.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified