Alternative Energy Cost - Green Energy Premiums


Alternative Energy Cost

Alternative energy cost analyzes LCOE, CAPEX, OPEX, and grid parity across solar PV, wind turbines, and battery storage, considering efficiency, load factors, and grid integration to optimize system design and lifecycle economics.

 

What Is Alternative Energy Cost?

Alternative energy cost is LCOE-based pricing for solar, wind, and storage, reflecting CAPEX, OPEX, and grid impacts.

✅ Uses LCOE comparing PV, wind, and storage across duty cycles.

✅ Includes CAPEX, OPEX, maintenance, and financing assumptions.

✅ Evaluates grid integration, curtailment, and reliability metrics.

 

Alternative energy cost is determined by how utilities typically set their rates and account for the cost differential between alternative energy and conventional energy sources. Basically, cost recovery of a utility’s investments and operating expenses determine electricity rates. For background on definitions and resource types, see this overview of what is renewable energy to align terminology across programs.

These alternative energy costs include:

Understanding the breadth of technologies captured under renewable alternative energy helps clarify why cost components vary by resource.

  • owning generation
  • owning transmission and distribution assets
  • a return on owned assets
  • purchased power contracts
  • recovery of various operating expenses, including fuel costs, maintenance, and administration.

    Costs for generating, transmitting, and distributing electricity are in a utility’s rate. Because utility costs are bundled together, all generation resources are combined to create a utility “system mix” of generation. In other words, utilities do not normally distinguish between individual generation sources for their customers. Therefore, an equivalent mix of the utility’s generation resources and purchased power is provided to each customer. In practice, product structures for alternative energy power are designed to work within this system mix paradigm.

    For alternative energy cost determination, utilities and regulators are interested in separating the specific alternative energy costs related to securing green power. In this way, green power products are unique, differentiated electricity products. Since customer participation is voluntary, only those customers that choose to sign up for these programs pay the incremental costs. Alternative energy power program participants typically pay the higher alternative energy cost in the form of a premium on their monthly bill. In some jurisdictions, available alternative energy incentives help offset premiums for early adopters.

    Four Main Components In Determinating Alternative Energy Cost

  • 1. The cost of the alternative energy source. This includes the total cost of electricity and/or environmental attributes from all alternative energy resources used in the product, whether from wind, solar, geothermal, biomass, or another source, and whether owned by the utility or acquired through a power purchase contract. For example, cost trajectories for alternative energy solar power have declined sharply in recent years due to technology improvements.
  • 2. Program implementation costs. Any additional alternative energy costs attributed to implementing the alternative energy program, including administration and marketing. Utilities sometimes leverage alternative energy grants to defray outreach and administration expenses.
  • 3. Ancillary services costs. The additional costs incurred to integrate variable output resources, particularly wind, into a utility’s system.
  • 4. Displaced utility generation (and capacity) resource costs. The renewable resource displaces electricity that the utility would otherwise have generated or purchased.

     

    In conclusion, alternative energy costs can be represented as: Alternative energy premium = (1) + (2) + (3) – (4)

    Alternative Energy Cost Determination

    Alternative energy costs are captured through the specific power purchase agreements for alternative energy (in this case, the term alternative energy is interchanged with renewable energy) or RECs (renewable energy contracts), or through the regulatory approval process for utility-owned renewable projects. As long as these are tracked separately from the rest of the generation mix, the appropriate alternative generation costs can be determined. However, generation costs are hard to determine because it's uncertain how many customers plan to enroll in the program and how long they plan to participate. In electric markets that have not gone through restructuring from the electric industry, contracts for generation are typically long-term (10 years or more), and investment in owned facilities is generally considered to be for the life of the facility (20 years or more). For readers new to key terms and market structures, this primer on renewable energy facts provides helpful context for interpreting contract and REC pricing.

    The long-term nature of the resource commitment severely contrasts with the program subscription commitment required of most customers. Most alternative energy programs do not require that customers enroll for a specific term, much less sign up for 10 or 20 years to match the facility or contract life of the renewable power supply source. Therefore, while the annual cost of renewable energy is straightforward to determine, the utility faces some level of risk that will likely be reflected in the product pricing.

    However, if the utility is also subject to a renewable portfolio standard and is therefore required to procure a certain fraction of renewable energy for its overall load, there may be less risk, because the utility has greater flexibility in managing its overall renewable portfolio between its compliance and voluntary program obligations.

 

Related Articles

Related News

Alternative Energy Power - Green Energy Technologies

Alternative energy power drives renewable grids using solar PV, wind turbines, and hydroelectric sources, optimized by power electronics, inverters, battery storage, and microgrids for efficient, resilient distribution and grid integration.

 

What Is Alternative Energy Power?

Alternative energy power delivers renewable power using electronics, storage and controls for efficient grids.

✅ Power electronics: MPPT inverters, VSCs, and converters

✅ Grid integration: protection, stability, and harmonics

✅ Storage: Li-ion, BESS sizing, EMS, frequency response

 

What alternative energy power technologies will make the largest impact? Alternative energy technologies have progressed so much in the past decade. However, some studies are starting to show that conventional power sources (such as fossil fuels and natural gas) will continue to have the lion's share of the world's energy mix for the next two decades. One study, conducted by the Boston Consulting Group, reports that forms of alternative energy power sources, such as wind power, will continue to provide smaller amounts of alternative energy power generation while other alternative energy power sources are ready to make a huge economic impact. Who? Let's take a look at the sources and their technologies. For readers new to the topic, this overview of what is alternative energy provides helpful context and definitions.

 

Alternative Energy Power - Solar Photovoltaic Technology

The BCG study predicts that solar PV (photovoltaic) will reach its cost competitiveness by 2015 to 2020 in the sunny regions of the world. However, the intermittency of PV's energy generation won't reach its full potential until technology breakthroughs are made in energy storage.

For practical insights, see how solar power in alternative energy is being deployed across different regions today.

Taking a look back into the last five years, it's clear that solar PV has significantly grown (up from 1.1 gigawatts in 2004 to 7.3 gigawatts in 2009, which is a 46 per cent annual increase). Today, solar panels are divided into two applications. Individual or small groups of panels can be used for distributed solar generation and larger groups of panels can be used to create utility-scale projects (also known as solar farms.) The underlying economics of the two applications are not that different, although solar farms can produce electricity at cheaper rates. Comparative data on renewable power generation helps benchmark PV performance against other resources.

 

Alternative Energy Power - Concentrated Solar Power Technology

Concentrated solar power (CSP) is another alternative energy power technology that is on its way to becoming a cost-competitive option - and soon (between 2015 and 2020). The beauty of this alternative energy power technology is that it can provide on-demand power through cost-effective thermal storage. Limitations to infrastructure and deployment barriers are significant, but surmountable.

Understanding the spectrum of renewable power sources clarifies where CSP complements wind and PV.

The generation potential of this alternative energy power solar resource over land is more than 100 times the total global demand for electricity. Solar energy without storage capacity technologies, such as thermal storage or hybrid solar-natural gas configuration, isn't reliable enough to be a sustainable energy source. However, CSP allows solar energy to play a larger part in the global electricity market and puts the alternative energy power source ahead of its alternative energy power counterparts. This perspective aligns with broader trends in renewable alternative energy adoption as grids adapt with storage and hybridization.

CSP is still small in terms of global power-generation capacity, but installed GSP capacity is expected to rise eightfold from 2009 (roughly one gigawatt) through 2015 (to more than eight gigawatts). Costs must drop for this alternative energy power technology to reach its full potential.

Cost curves are also influenced by policy and financing innovations within alternative energy solutions that scale deployment efficiently.

 

Alternative Energy Power - Smart-Grid Technologies

Many alternative energy power sources are capped due to their intermittent nature, but technologies like smart grid helps to accelerate their growth in the global energy marketplace.

A comprehensive view of the many forms of alternative energy underscores why flexibility is essential for balancing supply and demand.

By definition, a "smart grid" is a collection of equipment, infrastructure and information technologies designed to optimize the production, transmission and usage of electricity.

Incentives for smart-grid technologies include utility cost reduction, generation optimization and intelligent demand-response management. Smart-grid technologies improve the ability to integrate distributed generation and the ability to implement demand-response programs in intermittent energy sources such as wind energy and solar energy. Both factors are key enablers to expanding deployment in solar PV and wind technologies.

 

Related Articles

View more

Alternative Energy Grants - Sustainable Energy Development

Alternative energy grants fund renewable energy R&D, power systems upgrades, and grid modernization, supporting solar, wind, microgrids, battery storage, high-efficiency inverters, and electrification projects for utilities, manufacturers, and engineers, focused on decarbonization and smart grid.

 

What Are Alternative Energy Grants?

Grants that fund renewable power systems, grid upgrades, and storage for electrical engineering projects.

✅ Funds power electronics, inverters, and grid-integration R&D

✅ Supports microgrids, DERs, and smart grid reliability projects

✅ Covers feasibility studies, prototypes, and pilot deployments

 

Alternative energy grants - Wind, solar, geothermal and other alternative energy soures are the new "in" to replace forms of energy that harm the environment such as fossil fuels, so both Canadian and the U.S. governments are giving alternative energy grants (free conditional money) to individuals, businesses and local governments to promote the use and development of alternative energy sources. Here are three alternative energy grants currently offered by the U.S. government. For broader context on the field, the overview at what is alternative energy explains key terms and categories clearly.

 

Alternative Energy Grants - Energy Efficiency and Conservation Block Grant (EECBG) Program

These alternative energy grants help eligible entities in beginning their conservation and energy efficiency strategies. For those interested in applying for these alternative energy grants, they must have reduced their fossil fuel emissions, reduced total energy usage and improved energy efficiency within the company. Furthermore, those eligible must develop and implement an energy efficiency and conservation strategy with the assistance of a third-party technical consultant. Also, eligible entities must conduct regular residential and commercial building energy audits to monitor results and financial incentive programs (loan programs, rebate programs, waive permit fees) with the goal of improving energy efficiency must be in place. Other requirements are also required to be eligible for this alternative energy grant. To identify complementary rebates and policy tools, agencies can review alternative energy incentives relevant to their jurisdiction for alignment with EECBG goals.

 

Alternative Energy Grants - State Energy Program

Ultimately, provinces and states are expected to lower their overall fossil fuel carbon emissions so that the use of alternative energy sources can become more prevalent. Financial support, in whole or in part, may be provided for salaries, materials, and supplies, equipment, travel, publication costs, and services required for deployment of alternative energy activities and initiatives. The states energy program goes to competing states for funding to implement activities relating to a number of programmatic areas such as building codes and standards, alternative fuels, industrial efficiency, building efficiency, and alternative energy technologies. Many states layer alternative energy tax credits on top of SEP funds to catalyze private investment.

 

Alternative Energy Grants - Rural Energy for America Program (REAP)

The REAP program provides alternative energy grants to rural small businesses & agricultural producers for the purchase & installation of alternative energy systems in rural areas. Alternative energy grants are limited to 25 per cent of the project cost or $500,000 – whichever is less. Alternative energy grant applications of $20,000 or less are greatly favored in the competitive, selection process. Projects needing larger grants can improve their chances by simultaneously seeking a REAP guaranteed loan. For the loan seekers, the details are the same as the aforementioned alternative energy grant, but provides 60 to 85% per cent loan guarantees to commercial lenders financing such projects. Loans up to $25 million can be guaranteed. Combination grant and guaranteed loan assistance up to 75 per cent of total project cost; such “combo” proposals may improve a project’s access to grant assistance and speed approvals. Prospective applicants can benchmark typical capital and O&M figures using resources on alternative energy cost to prepare stronger pro formas.

Case studies of farm-scale solar, wind, and efficiency upgrades in the alternative energy projects library illustrate successful REAP financing structures.

 

Alternative Energy Grants - State Energy Special Projects

The State Energy Program aims to develop and deploy energy efficiency and alternative energy technologies and practices. The State Energy Program (SEP) makes it possible for states in the U.S. to design and carry out energy efficiency and alternative energy programs tailored to their State-specific needs, while contributing to national energy priorities. The State Energy Program enables the States to address both national energy initiatives and local energy priorities through two funding mechanisms: alterntive energy formula grants and Special Projects grants. States utilize these funds to design and implement energy projects tailored to meet community needs, economic conditions, individual energy situations, and climactic variations. SEP Special Projects funds are awarded on a competitive basis to States from each of the four end-use sectors (buildings, industrial, power technologies, and transportation) and the Federal Energy Management Program (FEMP) for cost-shared technology projects. Special Projects often accelerate alternative energy development by targeting pre-commercial demonstrations and regional testbeds.

For program designers seeking cross-sector approaches, curated alternative energy solutions can inform competitive proposals and stakeholder engagement plans.

 

Related Articles

View more

Alternative Energy Geothermal - Green Energy Alternatives

Alternative energy geothermal delivers baseload renewable electricity via hydrothermal reservoirs, binary-cycle ORC turbines, and EGS, using heat exchangers, generators, and power electronics for efficient grid integration, low emissions, and stable capacity.

 

What Is Alternative Energy Geothermal?

It converts subsurface heat to electricity via steam or ORC cycles, generators, and grid-tied power electronics.

✅ ORC and flash steam cycles drive turbines and synchronous generators

✅ Power electronics, inverters, and transformers enable grid integration

✅ EGS, drilling, and heat exchangers expand capacity with low emissions

 

Geothermal energy comes from heat stored beneath the Earth's surface. Also known as thermal energy, geothermal is considered to be an alternative energy because it produces very little greenhouse gas emissions (GHG), which harm the Earth once it's generated into electricity. Geothermal wells release these greenhouse gases, but not nearly as much as its fossil fuel counterparts oil and coal. For context on how this resource fits within energy policy, see our overview of what is alternative energy to understand key definitions.

Alternative energy geothermal is a product from Earth's original formation: radioactive decay of minerals thanks to volcanic eruptions and solar energy digested and stored from the Earth's surface. Thermal energy is produced from the continuous conduction of heat that emanates from the Earth's core that moves upward to the surface. This process is known as the geothermal gradient. If you've ever had the opportunity to bathe in hot springs, you'll be glad to know that the thermal heat comes from beneath the Earth. When comparing technologies, placing geothermal alongside other alternative energy sources highlights its base-load role and unique subsurface dependence.

 

Alternative Energy Geothermal - How can we use it?

In practice, many integrated alternative energy systems combine geothermal with insulation and smart controls to maximize year-round efficiency.

Energy producers have been able to convert alternative energy geothermal into electricity. These same producers have high hopes for geothermal energy because power can be generated 24 hours a day, unlike other intermittent renewable energies, like wind energy and solar energy. This contrasts with the variability seen in resources such as solar power during cloudy periods or at night.

Geothermal energy can also be used to heat pumps or for other direct uses such as cooling and heating buildings. The Earth's crust temperature a few feet below is buffered to a constant seven to 14 °C (45 to 58 °F), so a liquid can be pre-heated or pre-cooled in underground pipelines, providing no-cost cooling during the summer, and with a heat pump, heating during the winter months. Other direct uses include aquaculture, agriculture (greenhouses), and industry. Project planners often consult practical alternative energy solutions to evaluate lifecycle costs and integration pathways.

 

Alternative Energy Geothermal - How is geothermal electricity produced?

Within the broader family of forms of alternative energy, geothermal distinguishes itself through high capacity factors and minimal fuel risk.

Geothermal energy uses Earth's natural heat to generate electricity. Geothermal plants are built on or near reservoirs that contain Earth's hydrothermal resources (underground steam and heated water). The heat mining process begins when drills penetrate these reservoirs to obtain the steam and water to power electricity-generating turbines.

There are different ways to produce alternative energy geothermal. Two popular processes include:

  • Flash Steam Geothermal water with temperatures exceeding 350°F is extracted under extremely high pressure by flash steam plants. When the heated water surfaces, a sudden pressure reduction causes some of the hot water to flash off as steam. This flashed steam operates a generator, at which time, the extracted steam and water are reintroduced into the geothermal reservoir.
  • Dry Steam Dry steam is extracted directly from under the earth’s surface by dry steam plants to operate a generator. When the steam condenses into water, it is then reintroduced into the alternative energy geothermal reservoir.

     

    Alternative Energy Geothermal - Is Geothermal Energy a Sustainable Energy Source?

    Alternative Energy Geothermal is considered to be sustainable, cost-effective, great for the environment and reliable. Recent advances in technology have expanded alternative energy geothermal applicable uses (such as home heating), which could lead to global exploitation. However, advances in technology, cost, government incentives and implementation of geothermal power projects will determine if alternative energy geothermal will become a viable global competitor.

    Alternative Energy Geothermal - Is Geothermal Energy a Renewable Energy Source?

    Scientific evidence shows that geothermal sites can provide heat for many decades, but eventually these specific locations cool down, which brings into question if alternative energy geothermal truly is a renewable energy source, since renewables are defined as green energy sources that never deplete. Understanding how geothermal fits into renewable alternative energy frameworks can help policymakers set realistic targets.

 

Related Articles

View more

Alternative Energy Cost - Green Energy Premiums

Alternative energy cost analyzes LCOE, CAPEX, OPEX, and grid parity across solar PV, wind turbines, and battery storage, considering efficiency, load factors, and grid integration to optimize system design and lifecycle economics.

 

What Is Alternative Energy Cost?

Alternative energy cost is LCOE-based pricing for solar, wind, and storage, reflecting CAPEX, OPEX, and grid impacts.

✅ Uses LCOE comparing PV, wind, and storage across duty cycles.

✅ Includes CAPEX, OPEX, maintenance, and financing assumptions.

✅ Evaluates grid integration, curtailment, and reliability metrics.

 

Alternative energy cost is determined by how utilities typically set their rates and account for the cost differential between alternative energy and conventional energy sources. Basically, cost recovery of a utility’s investments and operating expenses determine electricity rates. For background on definitions and resource types, see this overview of what is renewable energy to align terminology across programs.

These alternative energy costs include:

Understanding the breadth of technologies captured under renewable alternative energy helps clarify why cost components vary by resource.

  • owning generation
  • owning transmission and distribution assets
  • a return on owned assets
  • purchased power contracts
  • recovery of various operating expenses, including fuel costs, maintenance, and administration.

    Costs for generating, transmitting, and distributing electricity are in a utility’s rate. Because utility costs are bundled together, all generation resources are combined to create a utility “system mix” of generation. In other words, utilities do not normally distinguish between individual generation sources for their customers. Therefore, an equivalent mix of the utility’s generation resources and purchased power is provided to each customer. In practice, product structures for alternative energy power are designed to work within this system mix paradigm.

    For alternative energy cost determination, utilities and regulators are interested in separating the specific alternative energy costs related to securing green power. In this way, green power products are unique, differentiated electricity products. Since customer participation is voluntary, only those customers that choose to sign up for these programs pay the incremental costs. Alternative energy power program participants typically pay the higher alternative energy cost in the form of a premium on their monthly bill. In some jurisdictions, available alternative energy incentives help offset premiums for early adopters.

    Four Main Components In Determinating Alternative Energy Cost

  • 1. The cost of the alternative energy source. This includes the total cost of electricity and/or environmental attributes from all alternative energy resources used in the product, whether from wind, solar, geothermal, biomass, or another source, and whether owned by the utility or acquired through a power purchase contract. For example, cost trajectories for alternative energy solar power have declined sharply in recent years due to technology improvements.
  • 2. Program implementation costs. Any additional alternative energy costs attributed to implementing the alternative energy program, including administration and marketing. Utilities sometimes leverage alternative energy grants to defray outreach and administration expenses.
  • 3. Ancillary services costs. The additional costs incurred to integrate variable output resources, particularly wind, into a utility’s system.
  • 4. Displaced utility generation (and capacity) resource costs. The renewable resource displaces electricity that the utility would otherwise have generated or purchased.

     

    In conclusion, alternative energy costs can be represented as: Alternative energy premium = (1) + (2) + (3) – (4)

    Alternative Energy Cost Determination

    Alternative energy costs are captured through the specific power purchase agreements for alternative energy (in this case, the term alternative energy is interchanged with renewable energy) or RECs (renewable energy contracts), or through the regulatory approval process for utility-owned renewable projects. As long as these are tracked separately from the rest of the generation mix, the appropriate alternative generation costs can be determined. However, generation costs are hard to determine because it's uncertain how many customers plan to enroll in the program and how long they plan to participate. In electric markets that have not gone through restructuring from the electric industry, contracts for generation are typically long-term (10 years or more), and investment in owned facilities is generally considered to be for the life of the facility (20 years or more). For readers new to key terms and market structures, this primer on renewable energy facts provides helpful context for interpreting contract and REC pricing.

    The long-term nature of the resource commitment severely contrasts with the program subscription commitment required of most customers. Most alternative energy programs do not require that customers enroll for a specific term, much less sign up for 10 or 20 years to match the facility or contract life of the renewable power supply source. Therefore, while the annual cost of renewable energy is straightforward to determine, the utility faces some level of risk that will likely be reflected in the product pricing.

    However, if the utility is also subject to a renewable portfolio standard and is therefore required to procure a certain fraction of renewable energy for its overall load, there may be less risk, because the utility has greater flexibility in managing its overall renewable portfolio between its compliance and voluntary program obligations.

 

Related Articles

View more

Alternative Energy Development - Green Energy Initiatives

Alternative energy development integrates renewable generation, photovoltaics, wind turbines, battery storage, power electronics, and HVDC to optimize grid integration, smart inverters, and microgrids for resilient, efficient electrical systems and decarbonized power networks.

 

What Is Alternative Energy Development?

It is the engineering of renewable power systems—generation, storage, and grid integration—to decarbonize electricity.

✅ Design of PV/wind converters, MPPT, and grid-following/g-forming inverters.

✅ Energy storage sizing, BMS control, and dispatch for frequency regulation.

✅ HVDC, microgrids, protection coordination, and grid integration studies.

 

Alternative energy developments represent a transformational opportunity to not only attract new global investment and create new jobs, but to reduce the world's reliance on fossil fuels. And, the future looks bright because experts predict that completed alternative energy developments will add 4.5 trillion dollars in value to the economy by 2030. For readers new to the field, the fundamentals of alternative energy help clarify key terms and drivers shaping this transition.

 

Alternative Energy Development - Wind Energy
Wind energy, as an alternative energy development, is the world’s fastest-growing energy source. In fact, 42 per cent of all new power plants installed in 2008 are powered by the wind. In January 2002, installed world capacity exceeded 24,000 megawatts, of which 205 megawatts (or 0.85 per cent of world capacity) was located in Canada. Over the past decade the cost of wind energy has fallen from 30 cents per-kilowatt-hour to around eight cents per-kilowatt-hour. In major policy reviews, the U.S. Department of Energy and the British government have predicted future wind energy costs of between 3.4 to 5.5 cents per-kilowatt-hour by 2020. A recent assessment of wind’s prospects and impacts released by the U.S. Department of Energy concluded that the United States could supply 20 per cent of the nation’s electricity needs through wind by 2030. This assessment and related analyses found achieving this goal would:

  • Reduce electric-sector greenhouse gas emissions by about 25 per cent, relative to a scenario with no new wind additions;
  • Reduce electric sector natural gas and coal consumption by 50 per cent and 18 per cent, respectively; and avoid construction of 80,000 megawatts of new coal plants;
  • Reduce electric-sector water consumption over 15 per cent by 2030, with nearly one third of the reduction in the arid western states; and
  • Increase annual property tax revenues and rural landowner payments to more than 1.5 billion dollars and 600 million dollars, respectively, by 2030.

Positioning wind alongside other resources in renewable power generation portfolios can further enhance grid reliability and reduce overall system costs.

 

Alternative Energy Development - Solar Energy
Photovoltaic (PV) technology has become a focal point in solar alternative energy development due to a number of social and economic factors, including the need to reduce greenhouse gas (GHG) emissions, deregulation, and the restructuring of electric power generating companies. PV cells convert sunlight directly into electricity via the photovoltaic effect using specially treated semiconductor materials. Over the past 30 years crystalline silicon has been the material of choice in PV panels Solar PV systems represent a 42-million-dollar industry in Canada, with sales increasing, on average, more than 20 per cent annually over the past decade. In 2000, 1.5 megawatts of modules were sold in Canada, with 98 per cent of this total being used in off-grid or remote applications, and two per cent grid-tied. Based on annual 20 per cent growth rates, the production price of electricity from photovoltaics in Canada can be expected to drop below that of conventional thermal sources by 2020. Each installed kilowatt of PV power has the potential to offset 1.6 tonnes of CO2 per year when replacing coal-generated electricity, 1.3 tonnes per year when replacing oil and 0.7 tonnes per year when replacing natural gas. When integrated into broader alternative energy systems across homes and businesses, PV can provide resilient, distributed capacity for communities and industry.

 

Alternative Energy Development - Biomass Energy
Biomass, as an alternative energy development, is increasingly seen as a competitive and sustainable energy source. Almost six per cent of primary energy demand is currently supplied by biomass energy (mostly used by the pulp and paper industries, who burn their own residues to turn steam into electricity). The remainder is mostly cordwood, used for residential heating. At the moment, most biomass combustion alternative energy development is concentrated on small-scale cogeneration systems to utilize industrial waste, of around one-megawatt output. Various recent studies have confirmed that extensive biomass resources remain under-utilized across Canada. This includes over five million bone-dry tonnes of lumber and sawmill plant residues, which are being incinerated or landfilled without heat recovery. Successful deployment often depends on well-structured alternative energy projects that align feedstock logistics with local heat and power needs.

 

Alternative Energy Development - Geothermal Energy
Approximately 35,000 Canadian homes and buildings currently receive heating and cooling through geo-exchange installations. However, policy obstacles still exist which prevent extensive alternative energy development of Western Canada’s high-temperature geothermal resources for electrical generation. The cumulative geothermal resource remains poorly quantified due to a 25 year hiatus in government funding of geothermal science. Through commercial avenues, approximately 100 megawatts of geothermal power potential has been identified as of 2009, although there is still no geothermal power in Canada’s electrical grid. As an under-explored geothermal resource, geothermal projects will represent a pertinent frontier for commercial development in the near future. The corporate and public awareness of geothermal technologies has grown in the recent past through an increased media focus, and a strengthening support for carbon-friendly lifestyle choices. Currently, the Canadian Geothermal Energy Association is leading 33 government policy projects to establish a foundation for the imminent development of geothermal electrical projects. As the effect of recent carbon taxes continues to saturate electricity markets, new geothermal opportunities will be available to fill the void with reliable and clean alternative energy. As part of integrated alternative energy solutions across provinces and territories, geothermal can deliver firm, low-emission baseload to complement variable renewables.

 

Alternative Energy Development - Tidal Energy
Tidal energy is an alternative energy development that is extracted directly as kinetic energy from a moving stream, whereby seawater is ‘partially impounded’ in its flow through a channel. Local effects on the tidal regime are considered low or negligible, depending on the technology used to extract energy. Tidal current energy is predictable and regular, and will be unaffected by global climate change. Nevertheless the technology for exploiting this resource is still in its infancy, and there are, as yet, no commercial installations anywhere in the world. Tidal current power development is estimated to be one to three years behind ocean wave energy and five to eight years behind wind energy. A clear overview of technologies and site considerations is provided in this guide to what is tidal energy for those evaluating pilot deployments.

 

Alternative Energy Development - Wave Energy
Ocean wave technology, as an alternative energy development, extracts kinetic energy from the up-and-down motion of waves, using it to generate electricity. Inventors have taken out hundreds of patents for wave energy devices over the years, but concentrated effort in this direction dates from the 1970s oil crisis. The first wave power plants were built near Bergen, in Norway, in the mid-80s. Together, both plants had a combined capacity of 850 kilowatts. The first wave energy plant that was used for commercial purposes was brought online in Islay, Scotland, in November 2000. Today, India, Japan, Australia, Indonesia, Australia, and countries of the European Union have undertaken numerous government-supported projects. BC Hydro, an electrical utility in the Canadian province of British Columbia, has committed to implementing three to four megawatts of ocean wave generating capacity as part of the Vancouver Island Green Energy Demonstration project. In order to develop wave power towards its potential, extensive data collection is needed to pinpoint prime sites. Further research is also needed to assess the impact of heavy storms on installed equipment. These demonstrations illustrate how emerging ocean resources can contribute to diversified alternative energy power mixes when supported by robust data and engineering standards.

 

Related Articles

View more

Alternative Energy Solar Power Explained

Alternative Energy Solar Power converts sunlight via photovoltaics into electricity using PV modules, inverters, MPPT, and battery storage for grid-tied systems, microgrids, and off-grid resilience, improving efficiency, reliability, and decarbonization.

 

What Is Alternative Energy Solar Power?

A renewable electrical system converting solar irradiance to AC via PV modules, MPPT inverters, and optional storage.

✅ PV arrays generate DC; power electronics regulate voltage and current.

✅ Inverters with MPPT perform DC–AC conversion, grid sync, and protection.

✅ Battery storage and EMS enable peak shaving, backup, and microgrid control.

 

Alternative energy solar power is, perhaps, the first energy source that comes to mind when most people think of alternative energy sources, but — unlike wind — alternative energy solar power is still a long way from being considered a mainstream source of electricity generation. In fact, it accounts for less than one per cent of the world’s electricity production. For readers new to the topic, what is alternative energy clarifies key definitions and the role solar plays among emerging options.

Two main ways to harness the sun's energy to generate alternative energy solar power include: photovoltaic (PV), where solar cells directly convert sunlight into electricity, and solar-thermal power. PV is a proven alternative energy solar power technology that is most appropriate for small-scale applications to provide heat and power to individual houses and businesses. Sunlight falls on a layer of semiconductors, which excites electrons. This, in turn, creates an electrical current that can be transmitted via electrical cables to serve useful applications. Alternative energy solar power solar PV cells are already cost effective for powering houses and businesses in some regions. As with alternative energy wind power, costs have reduced in the past few years thanks to technological developments. But, unlike alternative energy wind power, however, large scale electricity production using alternative energy solar power costs about 22 cents per kilowatt-hour, significantly more expensive than its fossil fuel generation competitors and nuclear power. Comparative cost and performance data across technologies are summarized in alternative energy power, which details where PV is most competitive.

Solar-thermal energy is a completely different technology. It collects and concentrates the sun's rays to heat up fuel such glycol or any other liquid that heats up easily. The heat trapped within this medium is then used transferred through a heat exchanger so that heated water can be used for regular hot water applications like bathing and space heating and heating swimming pools, etc. Fossil fuels are sometimes used as a back-up to heat the water in the boiler if the sun is not shining and cannot heat the system. There are three different methods for concentrating the sun’s rays:

  • Parabolic Trough — This method uses long, parallel rows of glass mirrors in the shape of a trough to concentrate the sun’s rays directly at the “absorber tube," which is often filled with oil, to achieve maximum effect.
  • Power Tower — Similar in principle to parabolic-trough technology, the mirrors are placed in a circular pattern. At the center of the circle is a tower, at the top of which is a receiver filled with water, air, liquid metal or molten salt that moves to a power block and is used to power a steam turbine.
  • Parabolic Disk System — In this system, dishes rather than troughs are used to concentrate the power of the sun.

To see how these concentrating approaches integrate with storage, controls, and grid interconnection, alternative energy systems offers design-level guidance for practitioners.

 

Advantages of Alternative Energy Solar Power

In spite of its cost versus other sources of energy, alternative energy solar power is attracting interest due to the following:

  • Alternative energy solar power makes use of a renewable natural resource that is readily available in many parts of the world.
  • The process used to generate alternative energy solar power is emission-free.
  • Costs have greatly reduced thanks to technological advances in solar power technlogy to a point that it can compete with fossil fuel alternatives in specific circumstances.
  • The technology is scalable in that it can be used for domestic heating purposes or on a larger scale for commercial electricity generation, as solar water heaters are an established technology, widely available and simple to install and maintain.

For a deeper dive into real-world performance benefits, case studies in advantages of solar power highlight emissions reductions and lifecycle savings.

 

Disadvantages of Alternative Energy Solar Power

The biggest barriers to increasing alternative energy solar power generation are the cost, the amount of land required for large-scale electricity production, and the intermittent nature of the energy source. In terms of the latter, thermal systems do not work at night or in inclement weather. Storage of hot water for commercial or domestic use is simple because only insulated tanks are needed, but further technology advancements are required to improve storage for the higher-temperature liquids required to generate electricity on a large scale and storage of the electricity itself. Emerging roadmaps in alternative energy solutions discuss thermal storage media and hybrid configurations that mitigate intermittency challenges.

 

Outlook for Alternative Energy Solar Power

Although alternative energy wind power is more economical and has been more widely adopted for large-scale power production than solar energy, solar energy is the most flexible in scale and application. It also is widely available and an environmentally benign source of alternative energy. Broader market drivers and renewable policy trends are tracked under renewable alternative energy, providing useful context for long-term solar adoption.

It is currently a $7 billion per year business that is growing at 40 per cent per annum. As part of the wider clean-energy portfolio, the taxonomy in forms of alternative energy situates solar alongside complementary technologies.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.