What is Building Automation - Energy Control Explained
By R.W. Hurst, The Electricity Forum
What is building automation? An integrated BAS/BMS using sensors, PLCs, and SCADA to control HVAC, lighting, power distribution, VFDs, and safety systems, improving energy management, demand response, monitoring, reliability, and analytics.
What Is Building Automation?
A BAS/BMS that controls electrical systems for efficiency, safety, and performance.
✅ Controls HVAC, lighting, and power via PLCs, sensors, and actuators
✅ Enables energy management, demand response, and load shedding
✅ Integrates SCADA, metering, and VFDs for reliability and safety
What is Building Automation?
Building automation is crucial in creating sustainable, efficient, and comfortable living and working environments. By incorporating advanced technologies like IoT and data analytics, building automation systems can optimize energy consumption, enhance occupant comfort, and promote cost-effective building management. As technology continues to evolve, building automation's potential benefits and applications are set to expand further, making it an essential aspect of modern building design and operation. For foundational context on how organizations plan, monitor, and optimize consumption, consult this energy management primer that aligns with modern building objectives.
Building automation refers to the centralized building control system for various systems, such as heating, ventilation, air conditioning (HVAC), lighting, security systems, and other related subsystems. The main objective of a building automation system (BAS) is to optimize energy consumption, enhance the comfort of occupants, and ensure that the building operates efficiently and cost-effectively. A concise primer on system architectures and typical functions is provided in the building automation system overview, which clarifies scope and capabilities.
A BAS comprises interconnected components and subsystems, including sensors, controllers, and user interfaces. Sensors measure temperature, humidity, and occupancy, while controllers use this information to regulate various building systems, such as air conditioning and lighting. User interfaces enable facility managers and authorized personnel to monitor and adjust system settings as needed. To understand how setpoints, scheduling, and feedback loops are orchestrated, explore energy management controls guidance that illustrates controller strategies.
FREE EF Electrical Training Catalog
Download our FREE Electrical Training Catalog and explore a full range of expert-led electrical training courses.
- Live online and in-person courses available
- Real-time instruction with Q&A from industry experts
- Flexible scheduling for your convenience
One of the primary benefits of building automation is its ability to reduce energy consumption and enhance energy efficiency for building owners. A BAS can optimize energy usage and minimize waste by continuously monitoring and adjusting building systems based on real-time data. For example, automated control of lighting and HVAC systems can help maintain optimal temperature and lighting levels while conserving energy when spaces are unoccupied. This leads to lower utility bills and a reduced carbon footprint. These practices are often formalized within building energy management systems frameworks that standardize analytics and reporting.
Building automation also promotes cost-effective building management system by reducing maintenance and operational costs. A well-designed BAS can detect and address potential issues before they escalate into expensive problems, allowing facility managers to maintain building systems and extend their life expectancy proactively. Additionally, building automation control can help maximize the productivity and comfort of building occupants by maintaining a consistent and pleasant indoor environment. When aligned with enterprise objectives, broader energy management systems can integrate with BAS workflows to coordinate maintenance and savings.
The Internet of Things (IoT) plays a significant role in the development and advancement of building automation. IoT output devices and sensors provide a wealth of real-time data that can be analyzed and leveraged to enhance building performance further. This integration allows for more precise control and monitoring of building systems and the developing of new, innovative energy management and conservation solutions. This data-driven approach enables advanced energy management techniques that support predictive control and optimization.
What is Building Automation?
Building automation is also closely linked to facility management, as both disciplines aim to optimize the operation and maintenance of building systems. By integrating building automation with facility management software, facility managers can monitor and control various building systems more effectively, streamline maintenance tasks, and make data-driven decisions to optimize building performance. Interoperability relies on reliable industrial automation communication methods that allow platforms to share telemetry securely.
The future of building automation technology holds exciting possibilities, including the development of increasingly intelligent and interconnected systems. In addition, advances in artificial intelligence, machine learning, and data analytics will enable BAS to become even more efficient and responsive to changing conditions, resulting in greater energy savings and reduced environmental impact.