Spain nuclear watchdog sees more safety after leak

By Reuters


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Safety controls could be stepped up at Spain's nuclear power stations following a leak at a plant that will require the screening of hundreds of people, a leading nuclear security official said.

Spain's Nuclear Safety Council (CSN) criticized operators at the Asco I plant for failing to tell it about contamination from a leak which happened last November until April this year.

"I believe citizens have a right to be fully informed," Isabel Mellado, head of nuclear safety at the CSN, told an energy conference in Barcelona.

"So I think this could lead to measures taken in the safety of the installations themselves and in organizations," she added.

Plant operator Endesa said it had replaced the director of the power station and it's head of radiological protection.

Particles of radioactive materials including cobalt-60 were found outside the 1,000 MW reactor the northeast port of Tarragona after a spillage of contaminated cooling water during refueling in November.

The CSN is mulling sanctions against the plant operators but has said that the amount of radioactivity released was within legal limits. The watchdog said on Monday that none of 579 people examined, out of an estimated 700-800 who had passed through the plant since the leak, had been contaminated.

Environmental group Greenpeace has asked for the plant to be closed and protested that a school trip to Asco was allowed to go ahead after the leak. Greenpeace first made the leak public in April and it was confirmed shortly afterwards by the CSN, which sent inspectors to the plant.

News of the leak comes at a delicate time from Spain's nuclear industry. The recently re-elected Socialist government has pledged to phase out the country's eight nuclear plants and get more energy from renewable sources.

Spain is already a leading producer of wind power and solar energy and wind has met up to 24 percent of the country's demand for electricity.

Operating permits for seven of Spain's nuclear plants are due to expire between 2009 and 2011.

Together, Spain's nuclear plants produce about 7,500 MW of power, or some 10 percent of the country's installed capacity. They account for about 20 percent of output, however, as they work steadily through the year if there are no production problems or refueling outages, while wind and hydroelectric power depend on changing weather conditions.

Related News

Hydro One Q2 profit plunges 23% as electricity revenue falls, costs rise

Hydro One Q2 Earnings show lower net income and EPS as mild weather curbed electricity demand; revenue missed Refinitiv estimates, while tree-trimming costs rose and the dividend remained unchanged for Ontario's grid operator.

 

Key Points

Hydro One Q2 earnings fell to $155M, EPS $0.26, revenue $1.41B; costs rose, demand eased, dividend held at $0.2415.

✅ Net income $155M; EPS $0.26 vs $0.34 prior year

✅ Revenue $1.41B; missed $1.44B estimate

✅ Dividend steady at $0.2415 per share

 

Hydro One Ltd.'s (H.TO 0.25%) second-quarter profit fell by nearly 23 per cent from last year to $155 million as the electricity utility reported spending more on tree-trimming work due to milder temperatures that also saw customers using less power, notwithstanding other periods where a one-time court ruling gain shaped quarterly results.

The Toronto-based company - which operates most of Ontario's power grid - and whose regulated rates are subject to an OEB decision, says its net earnings attributable to shareholders dropped to 26 cents per share from 34 cents per share when Hydro One had $200 million in net income.

Adjusted net income was also 26 cents per share, down from 33 cents per diluted share in the second quarter of 2018, while executive pay, including the CEO salary, drew public scrutiny during the period.

Revenue was $1.41 billion, down from $1.48 billion, while revenue net of purchased power was $760 million, down from $803 million, and across the sector, Manitoba Hydro's debt has surged as well.

Separately, Ontario introduced a subsidized hydro plan and tax breaks to support economic recovery from COVID-19, which could influence consumption patterns.

Analysts had estimated $1.44 billion of revenue and 27 cents per share of adjusted income, and some investors cite too many unknowns in evaluating the stock, according to financial markets data firm Refinitiv.

The publicly traded company, which saw a share-price drop after leadership changes and of which the Ontario government is the largest shareholder, says its quarterly dividend will remain at 24.15 cents per share for its next payment to shareholders in September.

 

Related News

View more

Tesla (TSLA) Wants to Become an Electricity Retailer

Tesla Energy Ventures Texas enters the deregulated market as a retail electricity provider, leveraging ERCOT, battery storage, solar, and grid software to enable virtual power plants and customer energy trading with Powerwall and Megapack assets.

 

Key Points

Tesla Energy Ventures Texas is Tesla's retail power unit selling grid and battery energy and enabling solar exports.

✅ ERCOT retail provider; sells grid and battery-stored power

✅ Uses Powerwall/Megapack; supports virtual power plants

✅ Targets Tesla owners; enables solar export and trading

 

Last week, Tesla Energy Ventures, a new subsidiary of electric car maker Tesla Inc. (TSLA), filed an application to become a retail electricity provider in the state of Texas. According to reports, the company plans to sell electricity drawn from the grid to customers and from its battery storage products. Its grid transaction software may also enable customers for its solar panels to sell excess electricity back to the smart grid in Texas.1

For those who have been following Tesla's fortunes in the electric car industry, the Palo Alto, California-based company's filing may seem baffling. But the move dovetails with Tesla's overall ambitions for its renewable energy business, as utilities face federal scrutiny of climate goals and electricity rates.

Why Does Tesla Want to Become an Electricity Provider?
The simple answer to that question is that Tesla already manufactures devices that produce and store power. Examples of such devices are its electric cars, which come equipped with lithium ion batteries, and its suite of battery storage products for homes and enterprises. Selling power generated from these devices to consumers or to the grid is a logical next step.


Tesla's move will benefit its operations. The filing states that it plans to build a massive battery storage plant near its manufacturing facility in Austin. The plant will provide the company with a ready and cheap source of power to make its cars.

Tesla's filing should also be analyzed in the context of the Texas grid. The state's electricity market is fully deregulated, unlike regions debating grid privatization approaches, and generated about a quarter of its overall power from wind and solar in 2020.2 The Biden administration's aggressive push toward clean energy is only expected to increase that share.

After a February fiasco in the state grid resulted in a shutdown of renewable energy sources and skyrocketing natural gas prices, Texas committed to boosting the role of battery storage in its grid. The Electricity Reliability Council of Texas (ERCOT), the state's grid operator, has said it plans to install 3,008 MW of battery storage by the end of 2022, a steep increase from the 225 MW generated at the end of 2020.3 ERCOT's proposed increase in installation represents a massive market for Tesla's battery unit.

Tesla already has considerable experience in this arena. It has built battery storage plants in California and Australia and is building a massive battery storage unit in Houston, according to a June Bloomberg report.4 The unit is expected to service wholesale power producers. Besides this, the company plans to "drum up" business among existing customers for its batteries through an app and a website that will allow them to buy and sell power among themselves, a model also being explored by Octopus Energy in international talks.

Tesla Energy Ventures: A Future Profit Center?
Tesla's foray into becoming a retail electricity provider could boost the top line for its energy services business, even as issues like power theft in India highlight retail market challenges. In its last reported quarter, the company stated that its energy generation and storage business brought in $810 million in revenues.

Analysts have forecast a positive future for its battery storage business. Alex Potter from research firm Piper Sandler wrote last year that battery storage could bring in more than $200 billion per year in revenue and grow up to a third of the company's overall business.5

Immediately after the news was released, Morningstar analyst Travis Miller wrote that Tesla does not represent an immediate threat to other major players in Texas's retail market, where providers face strict notice obligations illustrated when NT Power was penalized for delayed disconnection notices, such as NRG Energy, Inc. (NRG) and Vistra Corp. (VST). According to him, the company will initially target its own customers to "complement" its offerings in electric cars, battery, charging, and solar panels.6

Further down the line, however, Tesla's brand name and resources may work to its advantage. "Tesla's brand name recognition gives it an advantage in a hypercompetitive market," Miller wrote, adding that the car company's entry confirmed the firm's view that consumer technology or telecom companies will try to enter retail energy markets, where policy shifts like Ontario rate reductions can shape customer expectations.

 

Related News

View more

B.C. Hydro misled regulator: report

BC Hydro SAP Oversight Report assesses B.C. Utilities Commission findings on misleading testimony, governance failures, public funds oversight, IT project risk, compliance gaps, audit controls, ratepayer impacts, and regulatory accountability in major enterprise software decisions.

 

Key Points

A summary of BCUC findings on BC Hydro's SAP IT project oversight, governance lapses, and regulatory compliance.

✅ BCUC probed testimony, cost overruns, and governance failures

✅ Project split to avoid scrutiny; incomplete records and late corrections

✅ Reforms pledged: stronger business cases, compliance, audit controls

 

B.C. Hydro misled the province’s independent regulator about an expensive technology program, thereby avoiding scrutiny on how it spent millions of dollars in public money, according to a report by the B.C. Utilities Commission.

The Crown power corporation gave inaccurate testimony to regulators about the software it had chosen, called SAP, for an information technology project that has cost $197 million, said the report.

“The way the SAP decision was made prevented its appropriate scrutiny by B.C. Hydro’s board of directors and the BCUC, reflecting governance risks seen in Manitoba Hydro board changes in other jurisdictions,” the commission found.

“B.C. Hydro’s CEO and CFO and its (audit and risk management board committee) members did not exhibit good business judgment when reviewing and approving the SAP decision without an expenditure approval or business case, highlighting how board upheaval at Hydro One can carry market consequences.”

The report was the result of a complaint made in 2016 by then-opposition NDP MLA Adrian Dix, who alleged B.C. Hydro lied to the regulatory commission to try to get approval for a risky IT project in 2008 that then went over budget and resulted in the firing of Hydro’s chief information officer.

The commission spent two years investigating. Its report outlined how B.C. Hydro split the IT project into smaller components to avoid scrutiny, failed to produce the proper planning document when asked, didn’t disclose cost increases of up to $38 million, reflecting pressures seen at Manitoba Hydro's debt across the sector, gave incomplete testimony and did not quickly correct the record when it realized the mistakes.

“Essentially all of the things I asserted were substantiated, and so I’m pleased,” Dix, who is now minister of health, said on Monday. “I think ratepayers can be pleased with it, because even though it was an elaborate process, it involves hundreds of millions of spending by a public utility and it clearly required oversight.”

The BCUC stopped short of agreeing with Dix’s allegation that the errors were deliberate. Instead it pointed toward a culture at B.C. Hydro of confusion, misunderstanding and fear of dealing with the independent regulatory process.

“Therefore, the panel finds that there was a culture of reticence to inform the BCUC when there was doubt about something, even among individuals that understood or should have understood the role of the BCUC, a pattern that can fuel Hydro One investor concerns in comparable markets,” read the report.

“Because of this doubt and uncertainty among B.C. Hydro staff, the panel finds no evidence to support a finding that the BCUC was intentionally misled. The panel finds B.C. Hydro’s culture of reticence to be inappropriate.”

By law, B.C. Hydro is supposed to get approval by the commission for rate changes and major expenditures. Its officials are often put under oath when providing information.

B.C. Hydro apologized for its conduct in 2016. The Crown corporation said Monday it supports the commission’s findings and has made improvements to management of IT projects, including more rigorous business case analyses.

“We participated fully in the commission’s process and acknowledged throughout the inquiry that we could have performed better during the regulatory hearings in 2008,” said spokesperson Tanya Fish.

“Since then, we have taken steps to ensure we meet the highest standards of openness and transparency during regulatory proceedings, including implementing a (thorough) awareness program to support staff in providing transparent and accurate testimony at all times during a regulatory process.”

The Ministry of Energy, which is responsible for B.C. Hydro, said in a statement it accepts all of the BCUC recommendations and will include the findings as part of a review it is conducting into Hydro’s operations and finances, including its deferred operating costs for context, and regulatory oversight.

Dix, who is now grappling with complex IT project management in his Health Ministry, said the lessons learned by B.C. Hydro and outlined in the report are important.

“I think the report is useful reading on all those scores,” he said. “It’s a case study in what shouldn’t happen in a major IT project.”

 

 

Related News

View more

7 steps to make electricity systems more resilient to climate risks

Electricity System Climate Resilience underpins grid reliability amid heatwaves and drought, integrating solar, wind, hydropower, nuclear, storage, and demand response with efficient transmission, flexibility, and planning to secure power for homes, industry, and services.

 

Key Points

Power systems capacity to endure extreme weather and integrate clean energy, maintaining reliability and flexibility.

✅ Grid hardening, transmission upgrades, and digital forecasting.

✅ Flexible low-carbon supply: hydropower, nuclear, storage.

✅ Demand response, efficient cooling, and regional integration.

 

Summer is just half done in the northern hemisphere and yet we are already seeing electricity systems around the world struggling to cope with the severe strain of heatwaves and low rainfall.

These challenges highlight the urgent need for strong and well-planned policies and investments to improve the security of our electricity systems, which supply power to homes, offices, factories, hospitals, schools and other fundamental parts of our economies and societies. This means making our electricity systems more resilient to the effects of global warming – and more efficient and flexible as they incorporate rising levels of solar and wind power, as solar is now the cheapest electricity in history according to the IEA, which will be critical for reaching net-zero emissions in time to prevent even worse impacts from climate change.

A range of different countries, including the US, Canada and Iraq, have been hard hit by extreme weather recently in the form of unusually high temperatures. In North America, the heat soared to record levels in the Pacific Northwest. An electricity watchdog says that five US regions face elevated risks to the security of their electricity supplies this summer, underscoring US grid climate risks that could worsen, and that California’s risk level is even higher.

Heatwaves put pressure on electricity systems in multiple ways. They increase demand as people turn up air conditioning, driving higher US electricity bills for many households, and as some appliances work harder to maintain cool temperatures. At the same time, higher temperatures can also squeeze electricity supplies by reducing the efficiency and capacity of traditional thermal power plants, such as coal, natural gas and nuclear. Extreme heat can reduce the availability of water for cooling plants or transporting fuel, forcing operators to reduce their output. In some cases, it can result in power plants having to shut down, increasing the risk of outages. If the heat wave is spread over a wide geographic area, it also reduces the scope for one region to draw on spare capacity from its neighbours, since they have to devote their available resources to meeting local demand.

A recent heatwave in Texas forced the grid operator to call for customers to raise their thermostats’ temperatures to conserve energy. Power generating companies suffered outages at much higher rates than expected, providing an unwelcome reminder of February’s brutal cold snap when outages – primarily from natural gas power plants – left up to 5 million customers across the US without power over a period of four days.

At the same time, lower than average rainfall and prolonged dry weather conditions are raising concerns about hydropower’s electricity output in various parts of the world, including Brazil, China, India and North America. The risks that climate change brings in the form of droughts adds to the challenges faced by hydropower, the world’s largest source of clean electricity, highlighting the importance of developing hydropower resources sustainably and ensuring projects are climate resilient.

The recent spate of heatwaves and unusually long dry spells are fresh warnings of what lies ahead as our climate continues to heat up: an increase in the scale and frequency of extreme weather events, which will cause greater impacts and strains on our energy infrastructure.

Heatwaves will increase the challenge of meeting electricity demand while also decarbonizing the electricity supply. Today, the amount of energy used for cooling spaces – such as homes, shops, offices and factories – is responsible for around 1 billion tonnes of global CO2 emissions. In particular, energy for cooling can have a major impact on peak periods of electricity demand, intensifying the stress on the system. Since the energy demand used for air conditioners worldwide could triple by 2050, these strains are set to grow unless governments introduce stronger policy measures to improve the energy efficiency of air conditioning units.

Electricity security is crucial for smooth energy transitions
Many countries around the world have announced ambitious targets for reaching net-zero emissions by the middle of this century and are seeking to step up their clean energy transitions. The IEA’s recent Global Roadmap to Net Zero by 2050 makes it clear that achieving this formidable goal will require much more electricity, much cleaner electricity and for that electricity to be used in far more parts of our economies than it is today. This means electricity reaching much deeper into sectors such as transport (e.g. EVs), buildings (e.g. heat-pumps) and industry (e.g. electric-arc steel furnaces), and in countries like New Zealand's electrification plans it is accelerating broader efforts. As clean electricity’s role in the economy expands and that of fossil fuels declines, secure supplies of electricity become ever-more important. This is why the climate resilience of the electricity sector must be a top priority in governments’ policy agendas.

Changing climate patterns and more frequent extreme weather events can hit all types of power generation sources. Hydropower resources typically suffer in hot and dry conditions, but so do nuclear and fossil fuel power plants. These sources currently help ensure electricity systems have the flexibility and capacity to integrate rising shares of solar and wind power, whose output can vary depending on the weather and the time of day or year.

As governments and utilities pursue the decarbonization of electricity systems, mainly through growing levels of solar and wind, and carbon-free electricity options, they need to ensure they have sufficiently robust and diverse sources of flexibility to ensure secure supplies, including in the event of extreme weather events. This means that the possible decommissioning of existing power generation assets requires careful assessments that take into account the importance of climate resilience.

Ensuring electricity security requires long-term planning and stronger policy action and investment
The IEA is committed to helping governments make well-informed decisions as they seek to build a clean and secure energy future. With this in mind, here are seven areas for action for ensuring electricity systems are as resilient as possible to climate risks:

1. Invest in electricity grids to make them more resilient to extreme weather. Spending today is far below the levels needed to double the investment for cleaner, more electrified energy systems, particularly in emerging and developing economies. Economic recovery plans from the COVID-19 crisis offer clear opportunities for economies that have the resources to invest in enhancing grid infrastructure, but much greater international efforts are required to mobilize and channel the necessary spending in emerging and developing economies.

2. Improve the efficiency of cooling equipment. Cost-effective technology already exists in most markets to double or triple the efficiency of cooling equipment. Investing in higher efficiency could halve future energy demand and reduce investment and operating costs by $3 trillion between now and 2050. In advance of COP26, the Super-Efficient Equipment and Appliance Deployment (SEAD) initiative is encouraging countries to sign up to double the energy efficiency of equipment sold in their countries by 2030.

3. Enable the growth of flexible low-carbon power sources to support more solar and wind. These electricity generation sources include hydropower and nuclear, for countries who see a role for one or both of them in their energy transitions. Guaranteeing hydropower resilience in a warming climate will require sophisticated methods and tools – such as the ones implemented in Brazil – to calculate the necessary level of reserves and optimize management of reservoirs and hydropower output even in exceptional conditions. Batteries and other forms of storage, combined with solar or wind, can also provide important amounts of flexibility by storing power and releasing it when needed.

4. Increase other sources of electricity system flexibility. Demand-response and digital technologies can play an important role. The IEA estimates that only a small fraction of the huge potential for demand response in the buildings sector is actually tapped at the moment. New policies, which associate digitalization and financial behavioural incentives, could unlock more flexibility. Regional integration of electricity systems across national borders can also increase access to flexible resources.

5. Expedite the development and deployment of new technologies for managing extreme weather threats. The capabilities of electricity utilities in forecasting and situation awareness should be enhanced with the support of the latest information and communication technologies.

6. Make climate resilience a central part of policy-making and system planning. The interconnected nature of recent extreme weather events reminds us that we need to account for many contingencies when planning resilient power systems. Climate resilience should be integral to policy-making by governments and power system planning by utilities and relevant industries, and debates over Canadian climate policy underscore how grid implications must be considered. According to the recent IEA report on climate resilience, only nine out of 38 IEA member and association countries include concrete actions on climate adaptation and resilience for every segment of electricity systems.

7. Strengthen international cooperation on electricity security. Electricity underpins vital services and basic needs, such as health systems, water supplies and other energy industries. Maintaining a secure electricity supply is thus of critical importance. The costs of doing nothing in the face of growing climate threats are becoming abundantly clear. The IEA is working with all countries in the IEA family, as well as others around the world, by providing unrivalled data, analysis and policy advice on electricity security issues. It is also bringing governments together at various levels to share experiences and best practices, and identify how to hasten the shift to cleaner and more resilient energy systems.


 

 

Related News

View more

Power bill cut for 22m Thailand houses

Thailand Covid-19 Electricity Bill Relief offers energy subsidies, tariff cuts, and free power for small meters, helping work-from-home users as authorities waive charges and discount kWh rates via EGAT, MEA, PEA for three months.

 

Key Points

Program waiving or cutting household electricity bills for 22 million homes in March-May, easing work-from-home costs.

✅ Free power for meters <= 5 amps; up to 10M homes

✅ Up to 800 kWh: pay February rate; above, 50% discount

✅ >3,000 kWh: 30% discount; program valid March-May

 

The Thailand cabinet has formally approved energy authorities' decision to either waive or cut electricity charges, similar to B.C. electricity relief measures, for 22 million households where people are working at home because of the coronavirus disease.

Energy Minister Sontirat Sontijirawong said after the cabinet meeting on Tuesday that the ministers acknowledged the step taken by from the Energy Regulatory Commission, the Electricity Generating Authority of Thailand, the Metropolitan Electricity Authority and the Provincial Electricity Authority and noted parallels with Ontario's COVID-19 hydro plan rolled out to support ratepayers.

The measure would be valid for three months, from March to May, and cover 22 million households. It would cost the state 23.68 billion baht in lost revenue, he said, a pattern also seen with Ontario rate reductions affecting provincial revenues.


"The measure reduces the electricity charges burden on households. It is the cost of living of the people who are working from home to support the government's control of Covid-19," Mr Sontirat said.

The business sector also wants similar assistance, echoing sentiments from Ontario manufacturers during recent price reduction efforts. He said their requests were being considered.

Free electricity is extended to households with a power meter of no more than 5 amps. Up to 10 million households are expected to benefit, although issues like electricity payment challenges in India highlight different market contexts.

For households with a power meter over 5 amps, if their consumption does not exceed 800 units (kilowat hours), they will pay as much as they did in their February bill. The amount over 800 units will be subject to a 50 per cent discount, while elsewhere B.C. commercial consumption has fallen sharply.

Large houses that consume more than 3,000 units will get a 30 per cent discount, at a time when BC Hydro demand is down 10%.

 

Related News

View more

Opponent of Site C dam sharing concerns with northerners

Site C Dam Controversy highlights Peace River risks, BC Hydro claims, Indigenous rights under Treaty 8, environmental assessment findings, and potential impacts to agriculture and the Peace-Athabasca Delta across Alberta and the Northwest Territories.

 

Key Points

Debate over BC Hydro's Site C dam: clean energy vs Indigenous rights, Peace-Athabasca Delta impacts, and agriculture.

✅ Potential drying of Peace-Athabasca Delta and wildlife habitat

✅ Treaty 8 rights and First Nations legal challenges

✅ Loss of prime Peace Valley farmland; alternatives in renewables

 

One of the leading opponents of the Site C dam in northeastern B.C. is sharing her concerns with northerners this week.

Proponents of the Site C dam say it will be a cost-effective source of clean electricity, even as a major Alberta wind farm was scrapped elsewhere in Canada, and that it will be able to produce enough energy to power the equivalent of 450,000 homes per year in B.C. But a number of Indigenous groups and environmentalists are against the project.

Wendy Holm is an economist and agronomist who did an environmental assessment of the dam focusing on its potential impacts on agriculture.

On Tuesday she spoke at a town hall presentation in Fort Smith, N.W.T., organized by the Slave River Coalition. She is also speaking at an event in Yellowknife on Friday, as small modular reactors in Yukon receive study as a potential long-term option.

 

Worried about downstream impacts, Northern leaders urge action on Site C dam

"I learned that people outside of British Columbia are as concerned with this dam as we are," Holm said.

"There's just a lot of concern with what's happening on the Peace River and this dam and the implications for Alberta, where hydro's share has diminished in recent decades, and the Northwest Territories."

If completed, BC Hydro's Site C energy project will be the third dam on the Peace River in northeast B.C. and the largest public works project in B.C. history. The $10.7-billion project was approved by both the provincial and federal governments as B.C. moves to streamline clean energy permitting for future projects.

Amy Lusk, co-ordinator of the Slave River Coalition, said many issues were discussed at the town hall, but she also left with a sense of hope.

"I think sometimes in our little corner of the world, we are up against so much when it comes to industrial development and threats to our water," she said.

"To kind of take away that message of, this is not a done deal, and that we do have a few options in place to try and stop this and not to lose hope, I think was a very important message for the community."

 

Drying of the Peace-Athabasca Delta

Holm said her main concern for the Northwest Territories is how it could affect the Peace-Athabasca Delta. She said the two dams already on the river are responsible for two-thirds of the drying that's happening in the delta.

"These are very real issues and very present in the minds of northerners who want to stay connected to a traditional lifestyle, want to have access to those wild foods," she said.

Lusk said northerners are fed up with defending waters "time after time after time."

BC Hydro, however, said studies commissioned during the environmental assessment of Site C show the project will have no measurable effect on the delta, which is located 1,100 kilometres away.

Holm said the fight against the Site C dam is also important when it comes to First Nations treaty rights.

The West Moberly and Prophet River First Nations applied for an injunction to halt construction on Site C, as well as a treaty infringement lawsuit against the B.C. government. They argue the dam would cause irreparable harm to their territories and way of life, which are rights protected under Treaty 8.

 

Agricultural land

While the project is located in B.C., Holm said its impacts on prime horticulture land would also affect northerners, something that's important given issues of food security and nutrition.

"This is some of the best agriculture land in all of Canada," she said of the Peace Valley.

According to BC Hydro, around 2.6 million hectares of land in the Peace agricultural region would remain available for agricultural production while 3,800 hectares would be unavailable. It has also proposed a number of mitigation efforts, including a $20-million agricultural compensation fund.

Holm said renewable energy, including tidal energy for remote communities, will be cheaper and less destructive than the dam, and there's a connection between the dams on the Peace River and water sharing with the U.S.

"When you run out of water there's nothing else you can use. You can't use orange juice to irrigate your fields or to run your industries or to power your homes," she said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified