600,000 Ontario homes get solar, wind power

By Globe and Mail


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Ontario is about to rival Prince Edward Island as the province with the highest electricity prices in Canada, and rates will, for the first time, exceed the average cost of keeping the lights on in the United States.

Residential customers in Ontario will pay $300 more a year on average for electricity by the end of 2011, an increase of 25 per cent, according to energy consultants. And the rate increases wont end there. Investments of more than $8billion in green energy projects unveiled by the Ontario government will add another $60 a year to hydro bills by 2012.

The Ontario Power Authority announced that it has approved 185 wind, solar and biomass projects capable of generating 2,500 megawatts of electricity, enough to power 600,000 homes.

This is the most significant climate change initiative in all of North America, Ontario Energy Minister Brad Duguid said at Durham College in Whitby, where the projects were unveiled. It puts us ahead of the game and thats where we fully intend to stay.

Electricity consumers will pay another $5 a month by 2012, when the projects are up and running. The province wants cleaner air and an economic future, and that comes with a cost, Mr. Duguid said. The projects will create 20,000 jobs in Ontarios battered manufacturing heartland and also help the McGuinty government meet its pledge to replace the provinces pollutionspewing, coalfired electricity plants with cleaner sources of power by 2014.

Were very conscious of the impact on the consumer of increasing costs, Mr. Duguid said. This is one of the challenges for our generation.

Historically, Ontarios electricity prices have placed it in the middle of the pack in Canada. Prince Edward Island has the highest prices. Ontario has also enjoyed lower electricity prices than the United States, said energy consultant Tom Adams.

But consumers will pay another 3.04 cents a kilowatt hour for electricity next year, bringing the total cost, including distribution, to 14.54 cents, according to energy consultant Tom Adams. The calculation is based on typical consumption of 800 kilowatt hours a month.

By comparison, the average residential rate in the United States will rise just 2 per cent to 11.74 cents next year, according to a forecast this week by the U.S. Energy Information Administration.

By 2011, we are going to blow past them, Mr. Adams said.

Several factors are responsible for the looming higher prices in Ontario, according to Bruce Sharp at Aegent Energy Advisors Inc. The government is luring greenenergy investors with the promise of generous longterm contracts that include a guaranteed revenue stream. As well, the new harmonized sales tax will add 8 per cent to everyones bill starting July 1, or $98 a year for the average bill. The introduction of timeofuse billing, which charges 9.3 cents a kilowatt during peak periods and 4.4 cents during offpeak periods, will result in a $50 a year increase for the typical residential consumer, Mr. Sharp said.

Environmentalists defended the higher costs associated with green energy projects.

Any new plant you build today is going to be in this kind of a cost range, said Keith Stewart, director of WWFCanadas climate change program. When you look back 100 years, the naysayers were saying, dont build Niagara Falls, its too expensive. But thats what powered our economy for the first half of the 20th century.

But Progressive Conservative energy critic John Yakabuski criticized the government for not being more forthcoming about the impact of these projects on electricity prices.

Theyre not talking about what it is going to do about prices, he said.

Related News

European gas prices fall to pre-Ukraine war level

European Gas Prices hit pre-invasion lows as LNG inflows, EU storage gains, and softer oil markets ease the energy crisis, while recession risks, windfall taxes, and ExxonMobil's challenge shape demand and policy.

 

Key Points

European gas prices reflect supply, LNG inflows, storage, and policy, shaping energy costs for households and industry.

✅ Month-ahead hit €76.78/MWh, rebounding to €85.50/MWh.

✅ EU storage 83.2% filled; autumn peak exceeded 95%.

✅ Demand tempered by recession risks; LNG inflows offset Russian cuts.

 

European gas prices have dipped to a level last seen before Russia launched its invasion of Ukraine in February, after warmer weather across the continent eased concerns over shortages and as coal demand dropped across Europe during winter.

The month-ahead European gas future contract dropped as low as €76.78 per megawatt hour on Wednesday, the lowest level in 10 months, amid EU talks on gas price cap strategies that could shape markets, before closing higher at €83.70, according to Refinitiv, a data company.

The invasion roiled global energy markets, serving as a wake-up call to ditch fossil fuels for policymakers, and forced European countries, including industrial powerhouse Germany, to look for alternative suppliers to those funding the Kremlin. Europe had continued to rely on Russian gas even after its 2014 annexation of Crimea and support for separatists in eastern Ukraine.

On Tuesday 83.2% of EU gas storage was filled, data from industry body Gas Infrastructure Europe showed. The EU in May set a target of filling 80% of its gas storage capacity by the start of November to prepare for winter, and weighed emergency electricity measures to curb prices as needed. It hit that target in August, and by mid-November it had peaked at more than 95%.

Gas prices bounced further off the 10-month low on Thursday to reach €85.50 per megawatt hour.

Europe has several months of domestic heating demand ahead, and some industry bosses believe energy shortages could also be a problem next winter, with a worst energy nightmare still possible if supplies tighten. However, traders have also had to weigh the effects of recessions expected in several big European economies, which could dent energy demand.

UK gas prices have also dropped back from their highs earlier this year, and forecasts suggest UK energy bills to drop in April. The day-ahead gas price closed at 155p per therm on Wednesday, compared with 200p/therm at the start of 2022, and more than 500p/therm in August.

Europe’s response to the prospect of gas shortages also included campaigns to reduce energy use – a strategy belatedly adopted by the UK – and windfall taxes on energy companies to help raise revenues for governments, many of which have started expensive subsidies to cushion the impact of high energy prices for households and consumers. Energy companies have enjoyed huge profits at the expense of businesses and households this year, as EU inflation accelerated, but costs remained much the same.

However, the US oil company ExxonMobil on Wednesday launched a legal challenge against EU plans for a windfall tax on oil companies, according to filings by its German and Dutch subsidiaries at the European general court in Luxembourg. ExxonMobil argued that the windfall tax would be “counter-productive” because it said it would result in lower investment in fossil fuel extraction, and that the EU did not have the legal jurisdiction to impose it.

ExxonMobil’s move has prompted anger among European politicians. A message posted on the Twitter account of Paolo Gentiloni, the EU’s commissioner for the economy, on Thursday stated: “Fairness and solidarity, even for corporate giants. #Exxon.”

Oil prices are significantly lower than they were before the start of Russia’s invasion, and only marginally above where they were at the start of 2022. Brent crude oil futures traded at $100 a barrel on 28 February, but were at $81.84 on Thursday.

Oil prices dropped by 1.7% on Thursday. Prices had risen from 12-month lows in early December as traders hoped for increased demand from China after it relaxed its coronavirus restrictions. However, Covid-19 infection numbers are thought to have surged in the country, prompting the US to require travellers from China to show a negative test for the disease and tempering expectations for a rapid increase in oil demand.

 

Related News

View more

Hydro One, Avista to ask U.S. regulator to reconsider order against acquisition

Hydro One Avista Takeover faces Washington UTC scrutiny as regulators deny approval; companies plan a reconsideration petition, citing acquisition terms, governance concerns, merger risks, EPS dilution, and balance sheet impacts across regulated utility operations.

 

Key Points

A $6.7B bid by Hydro One to buy Avista, denied by Washington UTC on governance risk, under reconsideration petition.

✅ UTC denied over potential provincial interference.

✅ Petition for reconsideration due by Dec. 17.

✅ Deal seen diluting EPS, weakening balance sheet.

 

Hydro One Ltd. and Avista Corp. say they plan to formally request that the Washington Utilities and Transportation Commission reconsider its order last week denying approval of the $6.7-billion takeover, which previously received U.S. antitrust clearance from federal regulators, of the U.S.-based energy utility.

The two companies say they will file a petition no later than Dec. 17 but haven't indicated on what grounds they are making the request, even as investor concerns about Hydro One persist.

Under Washington State law, the UTC has 20 days to consider the petition, otherwise it is deemed to be denied.

If it reconsiders its decision, the UTC can modify the prior order or take any actions it deems appropriate, similar to provincial rulings such as the OEB decision on Hydro One's first combined T&D rates, including extending deliberations.

Washington State regulators said they would not allow Ontario's largest utility to buy Avista for fear the provincial government, which owns 47 per cent of Hydro One's shares and recently prompted a CEO and board exit at the utility, might meddle in Avista's operations.

Hydro One's shares have risen since the order because the deal, announced in July 2017, would have eroded earnings per share and weakened Hydro One's balance sheet, according to analysts, even as the company reported a one-time-boosted Q2 profit earlier this year.

 

Related News

View more

Can Canada actually produce enough clean electricity to power a net-zero grid by 2050?

Canada Clean Electricity drives a net-zero grid by 2035, scaling renewables like wind, solar, and hydro, with storage, smart grids, interprovincial transmission, and electrification of vehicles, buildings, and industry to cut emissions and costs.

 

Key Points

Canada Clean Electricity is a shift to a net-zero grid by 2035 using renewables, storage, and smart grids to decarbonize

✅ Doubles non-emitting generation for electrified transport and heating

✅ Expands wind, solar, hydro with storage and smart-grid balancing

✅ Builds interprovincial lines and faster permitting with Indigenous partners

 

By Merran Smith and Mark Zacharias

Canada is an electricity heavyweight. In addition to being the world’s sixth-largest electricity producer and third-largest electricity exporter in the global electricity market today, Canada can boast an electricity grid that is now 83 per cent emission-free, not to mention residential electricity rates that are the cheapest in the Group of Seven countries.

Indeed, on the face of it, the country’s clean electricity system appears poised for success. With an abundance of sunshine and blustery plains, Alberta and Saskatchewan, the Prairie provinces most often cited for wind and solar, have wind- and solar-power potential that rivals the best on the continent. Meanwhile, British Columbia, Manitoba, Quebec, and Newfoundland and Labrador have long excelled at generating low-cost hydro power.

So it would only be natural to assume that Canada, with this solid head start and its generous geography, is already positioned to provide enough affordable clean electricity to power our much-touted net-zero and economic ambitions.

But the reality is that Canada, like most countries, is not yet prepared for a world increasingly committed to carbon neutrality, in part because demand for solar electricity has lagged, even as overall momentum grows.

The federal government’s forthcoming Clean Electricity Standard – a policy promised by the governing Liberals during the most recent election campaign and restated for an international audience by Prime Minister Justin Trudeau at the United Nations’ COP26 climate summit – would require all electricity in the country to be net zero by 2035 nationwide, setting a new benchmark. But while that’s an encouraging start, it is by no means the end goal. Electrification – that is, hooking up our vehicles, heating systems and industry to a clean electricity grid – will require Canada to produce roughly twice as much non-emitting electricity as it does today in just under three decades.

This massive ramp-up in clean electricity will require significant investment from governments and utilities, along with their co-operation on measures and projects such as interprovincial power lines to build an electric, connected and clean system that can deliver benefits nationwide. It will require energy storage solutions, smart grids to balance supply and demand, and energy-efficient buildings and appliances to cut energy waste.

While Canada has mostly relied on large-scale hydroelectric and nuclear power in the past, newer sources of electricity such as solar, wind, geothermal, and biomass with carbon capture and storage will, in many cases, be the superior option going forward, thanks to the rapidly falling costs of such technology and shorter construction times. And yet Canada added less solar and wind generation in the past five years than all but three G20 countries – Indonesia, Russia and Saudi Arabia, with some experts calling it a solar power laggard in recent years. That will need to change, quickly.

In addition, Canada’s Constitution places electricity policy under provincial jurisdiction, which has produced a patchwork of electricity systems across the country that use different energy sources, regulatory models, and approaches to trade and collaboration. While this model has worked to date, given our low consumer rates and high power reliability, collaborative action and a cohesive vision will be needed – not just for a 100-per-cent clean grid by 2035, but for a net-zero-enabling one by 2050.

Right now, it takes too long to move a clean power project from the proposal stage to operation – and far too long if we hope to attain a clean grid by 2035 and a net-zero-enabling one by 2050. This means that federal, provincial, territorial and Indigenous governments must work with rural communities and industry stakeholders to accelerate the approvals, financing and construction of clean energy projects and provide investor certainty.

In doing so, Canada can set a course to carbon neutrality while driving job creation and economic competitiveness, a transition many analyses deem practical and profitable in the long run. Our closest trading partners and many of the world’s largest companies and investors are demanding cleaner goods. A clean grid underpins clean production, just as it underpins our climate goals.

The International Energy Agency estimates that, for the world to reach net zero by 2050, clean electricity generation worldwide must increase by more than 2.5 times between today and 2050. Countries are already plotting their energy pathways, and there is much to learn from each other.

Consider South Australia. The state currently gets 62 per cent of its electricity from wind and solar and, combined with grid-scale battery storage, has not lost a single hour of electricity in the past five years. South Australia expects 100 per cent of its electricity to come from renewable sources before 2030. An added bonus given today’s high energy prices: Annual household electricity costs have declined there by 303 Australian dollars ($276) since 2018.

The transition to clean energy is not about sacrificing our way of life – it’s about improving it. But we’ll need the power to make it happen. That work needs to start now.

Merran Smith is the executive director of Clean Energy Canada, a program at the Morris J. Wosk Centre for Dialogue at Simon Fraser University in Vancouver. Mark Zacharias is a special adviser at Clean Energy Canada and visiting professor at the Simon Fraser University School of Public Policy.

 

Related News

View more

Is this the start of an aviation revolution?

Harbour Air Electric Seaplanes pioneer sustainable aviation with battery-electric propulsion, zero-emission operations, and retrofitted de Havilland Beavers using magniX motors for regional commuter routes, cutting fuel burn, maintenance, and carbon footprints across British Columbia.

 

Key Points

Retrofitted floatplanes using magniX battery-electric motors to provide zero-emission, short-haul regional flights.

✅ Battery-electric magniX motors retrofit de Havilland DHC-2 Beavers

✅ Zero-emission, low-noise operations on short regional routes

✅ Lower maintenance and operating costs vs combustion engines

 

Aviation is one of the fastest rising sources of carbon emissions from transport, but can a small Canadian airline show the industry a way of flying that is better for the planet?

As air journeys go, it was just a short hop into the early morning sky before the de Havilland seaplane splashed back down on the Fraser River in Richmond, British Columbia. Four minutes earlier it had taken off from the same patch of water. But despite its brief duration, the flight may have marked the start of an aviation revolution.

Those keen of hearing at the riverside on that cold December morning might have been able to pick up something different amid the rumble of the propellers and whoosh of water as the six-passenger de Havilland DHC-2 Beaver took off and landed. What was missing was the throaty growl of the aircraft’s nine-cylinder radial engine.

In its place was an all-electric propulsion engine built by the technology firm magniX that had been installed in the aircraft over the course of several months. The four-minute test flight (the plane was restricted to flying in clear skies, so with fog and rain closing in the team opted for a short trip) was the first time an all-electric commercial passenger aircraft had taken to the skies.

The retrofitted de Havilland DHC-2 Beaver took off from the Fraser River in the early morning light for a four minute test flight (Credit: Diane Selkirk)

“It was the first shot of the electric aviation revolution,” says Roei Ganzarski, chief executive of magniX, which worked with Canadian airline Harbour Air Seaplanes to convert one of the aircraft in their fleet of seaplanes so it could run on battery power rather than fossil fuels.

For Greg McDougall, founder of Harbour Air and pilot during the test flight, it marked the culmination of years of trying to put the environment at the forefront of its operations, backed by research investment across the program.

Harbour Air, which has a fleet of some 40 commuter floatplanes serving the coastal regions around Vancouver, Victoria and Seattle, was the first airline in North America to become carbon-neutral through offsets in 2007. A one-acre green roof on their new Victoria airline terminal followed. Then in 2017, 50 solar panels and four beehives housing 10,000 honeybees were added, but for McDougall, a Tesla owner with an interest in disruptive technology, the big goal was to electrify the fleet, with 2023 electric passenger flights as an early target for service.

McDougall searched for alternative motor options for a couple of years and had put the plan on the backburner when Ganzarski first approached him in February 2019. “He said, ‘We’ve got a motor we want to get certified and we want to fly it before the end of the year,’” McDougall recalls.

The two companies found their environmental values and teams were a good match and quickly formed a partnership. Eleven months later, the modest Canadian airline got what McDougall refers to as their “e-plane” off the ground, pulling ahead of other electric flight projects, including those by big-name companies Airbus, Boeing and Rolls-Royce, and startups such as Eviation that later stumbled.

The test flight was followed years of work by Greg McDougall to make his airline more environmentally friendly (Credit: Diane Selkirk)

The project came together in record time considering how risk-adverse the aviation industry is, says McDougall. “Someone had to take the lead,” he says. “The reason I live in British Columbia is because of the outdoors: protecting it is in our DNA. When it came to getting the benefits from electric flight it made sense for us to step in and pioneer the next step.”

As the threat posed by the climate crisis deepens, there has been renewed interest in developing electric passenger aircraft as a way of reducing emissions
Electric flight has been around since the 1970s, but it’s remained limited to light-weight experimental planes flying short distances and solar-powered aircraft with enormous wingspans yet incapable of carrying passengers. But as the threat posed by the climate crisis deepens, there has been renewed interest in developing electric passenger aircraft as a way of reducing emissions and airline operating costs, aligning with broader Canada-U.S. collaboration on electrification across transport.

Currently there are about 170 electric aircraft projects underway internationally –up by 50% since April 2018, according to the consulting firm Roland Berger. Many of the projects are futuristic designs aimed at developing urban air taxis, private planes or aircraft for package delivery. But major firms such as Airbus have also announced plans to electrify their own aircraft. It plans to send its E-Fan X hybrid prototype of a commercial passenger jet on its maiden flight by 2021. But only one of the aircraft’s four jet engines will be replaced with a 2MW electric motor powered by an onboard battery.

This makes Harbour Air something of an outlier. As a coastal commuter airline, it operates smaller floatplanes that tend to make short trips up and down the coastline of British Columbia and Washington State, which means its aircraft can regularly recharge their batteries after a point-to-point electric flight along these routes. The company sees itself in a position to retrofit its entire fleet of floatplanes and make air travel in the region as green as possible.

This could bring some advantages. The efficiency of a typical combustion engine for a plane like this is fairly low – a large proportion of the energy from the fuel is lost as waste heat as it turns the propeller that drives the aircraft forward. Electrical motors have fewer moving parts, meaning there’s less maintenance and less maintenance cost, and comparable benefits are emerging for electric ships operating on the B.C. coast as well.

Electrical motors have fewer moving parts, meaning there’s less maintenance and less maintenance cost
Erika Holtz, Harbour Air’s engineering and quality manager, sees the move to electric as the next major aviation advancement, but warns that one stumbling block has been the perception of safety. “Mechanical systems are much better known and trusted,” she says. In contrast people see electrical systems as a bit unknown – think of your home computer. “Turning it off and on again isn’t an option in aviation,” she adds.

But it’s the possibility of spurring lasting change in aviation that’s made working on the Harbour Air/magniX project so exciting for Holtz. Aviation technology has stagnated over the past decades, she says. “Although there have been incremental improvements in certain technologies, there hasn't been a major development change in aviation in 50 years.”

 

Related News

View more

Edmonton's 1st electric bus hits city streets

Edmonton Electric Buses usher in zero-emission public transit with Proterra battery-electric vehicles, 350 km range, quiet rides, winter-ready performance, and overhead depot chargers, as ETS rolls out Canada's largest electric fleet across city routes.

 

Key Points

Battery-electric ETS vehicles from Proterra deliver zero-emission service, 350 km range, and winter-capable operation.

✅ Up to 350 km per charge; overhead depot fast chargers

✅ Quiet, smooth rides; zero tailpipe emissions

✅ Winter-tested performance across ETS routes

 

Your next trip on Edmonton transit could be a historical one as the city’s first battery-electric bus is now on city streets, marking a milestone for Edmonton Transit Service, and neighboring St. Albert has also introduced electric buses as part of regional goals.

“Transit has been around since 1908 in Edmonton. We had some really small buses, we had some trolley buses several years later. It’s a special day in history today,” Ryan Birch, acting director of transit operations, said. “It’s a fresh experience… quiet, smooth riding. It’s going to be absolutely wonderful.”

In a news release, Mayor Don Iveson called it the largest purchase of electric buses in Canadian history, while North America's largest electric bus fleet operates in Toronto today, and Metro Vancouver has buses on the road as well this year.

“Electric buses are a major component of the future of public transit in our city and across Canada.”

As of Tuesday, 21 of the 40 electric buses had arrived in the city, and the Toronto Transit Commission has introduced battery-electric buses in Toronto as well this year.

“We’re going to start rolling these out with four or five buses per day until we’ve got all the buses in stock rolled out. On Wednesday we will have three or four buses out,” Birch said.

The remaining 19 are scheduled to arrive in the fall.

The City of Edmonton ordered the battery-electric buses from Proterra, an electric bus supplier, while Montreal's STM has begun rolling out electric buses of its own recently.

The fleet can travel up to 350 kilometres on a single charge and the batteries work in all weather conditions, including Edmonton’s harsh winters, and electric school buses in B.C. have also taken to the roads in cold climates recently.

In 2015, ETS winter tested a few electric buses to see if the technology would be suitable for the city’s climate and geography amid barriers to wider adoption that many agencies consider.

“These buses are designed to handle most of our routes,” Birch said. “We are confident they will be able to stand up to what we expect of them.”

ETS is the first transit agency in North America to have overhead chargers installed inside transit facilities, which helps to save floor space.

 

Related News

View more

Canada's looming power problem is massive but not insurmountable: report

Canada Net-Zero Electricity Buildout will double or triple power capacity, scaling clean energy, renewables, nuclear, hydro, and grid transmission, with faster permitting, Indigenous consultation, and trillions in investment to meet 2035 non-emitting regulations.

 

Key Points

A national plan to rapidly expand clean, non-emitting power and grid capacity to enable a net-zero economy by 2050.

✅ Double to triple generation; all sources non-emitting by 2035

✅ Accelerate permitting, transmission, and Indigenous partnerships

✅ Trillions in investment; cross-jurisdictional coordination

 

Canada must build more electricity generation in the next 25 years than it has over the last century in order to support a net-zero emissions economy by 2050, says a new report from the Public Policy Forum.

Reducing our reliance on fossil fuels and shifting to emissions-free electricity, as provinces such as Ontario pursue new wind and solar to ease a supply crunch, to propel our cars, heat our homes and run our factories will require doubling — possibly tripling — the amount of power we make now, the federal government estimates.

"Imagine every dam, turbine, nuclear plant and solar panel across Canada and then picture a couple more next to them," said the report, which will be published Wednesday.

It's going to cost a lot, and in Ontario, greening the grid could cost $400 billion according to one report. Most estimates are in the trillions.

It's also going to require the kind of cross-jurisdictional co-operation, with lessons from Europe's power crisis underscoring the stakes, Indigenous consultation and swift decision-making and construction that Canada just isn't very good at, the report said.

"We have a date with destiny," said Edward Greenspon, president of the Public Policy Forum. "We need to build, build, build. We're way behind where we need to be and we don't have a lot of a lot of time remaining."

Later this summer, Environment Minister Steven Guilbeault will publish new regulations to require that all power be generated from non-emitting sources by 2035 clean electricity goals, as proposed.

Greenspon said that means there are two major challenges ahead: massively expanding how much power we make and making all of it clean, even though some natural gas generation will be permitted under federal rules.

On average, it takes more than four years just to get a new electricity generating project approved by Ottawa, and more than three years for new transmission lines.

That's before a single shovel touches any dirt.

Building these facilities is another thing, and provinces such as Ontario face looming electricity shortfalls as projects drag on. The Site C dam in British Columbia won't come on line until 2025 and has been under construction since 2015. A new transmission line from northern Manitoba to the south took more than 11 years from the first proposal to operation.

"We need to move very quickly, and probably with a different approach ... no hurdles, no timeouts," Greenspon said.

There are significant unanswered questions about the new power mix, and the pace at which Canada moves away from fossil fuel power is one of the biggest political issues facing the country, with debates over whether scrapping coal-fired electricity is cost-effective still unresolved.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified