Japanese firms examine power-saving plans

By Reuters


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Japan's biggest business lobby has asked its member companies and associations to compile electricity-saving plans for the summer, an industry source with knowledge of the matter said, to help avoid rolling blackouts that could hobble the economy.

The Nippon Keidanren requested that its members come up with the gist of their plans in line with government targets, the source said, as the country grapples with a shortage of power production after last month's massive earthquake and tsunami shut down several big nuclear and thermal stations.

The government recently announced power reduction targets for Tokyo and northern Japan that will require big manufacturers and other large-scale users to cut a day's peak consumption in the summer by one-fourth.

The Nippon Keidanren's members include almost 1,300 major firms.

Related News

Energy crisis is a 'wake up call' for Europe to ditch fossil fuels

EU Clean Energy Transition underscores the shift from fossil fuels to renewable energy, decarbonization, and hydrogen, as soaring gas prices and electricity volatility spur resilience, storage, and joint procurement across the single market.

 

Key Points

EU Clean Energy Transition shifts from fossil fuels to renewables, enhancing resilience and reducing price volatility.

✅ Cuts reliance on Russian gas and fossil imports

✅ Scales renewables, hydrogen, and energy storage

✅ Stabilizes electricity prices via market resilience

 

Soaring energy prices, described as Europe's energy nightmare, are a stark reminder of how dependent Europe is on fossil fuels and should serve to accelerate the shift towards renewable forms of energy.

"This experience today of the rising energy prices is a clear wake up call... that we should accelerate the transition to clean energy, wean ourselves off the fossil fuel dependency," a senior EU official told reporters as the European Commission unveiled a series of emergency electricity measures aimed at tackling the crisis.

The European Union is facing a sharp spike in energy prices, driven by increased global demand as the world recovers from the pandemic and lower-than-expected natural gas deliveries from Russia. Wholesale electricity prices have increased by 200% compared to the 2019 average, underscoring why rolling back electricity prices is tougher than it appears, according to the European Commission.

"Winter is coming and for many electricity costs are larger than they have been for a decade," Energy Commissioner Kadri Simson told reporters on Wednesday.

80 million European households struggle to stay warm
Wholesale gas prices — which have surged to record highs in France, Spain, Germany and Italy, amid reports of Germany's local utilities crying for help — are expected to remain high through the winter.

Prices are expected to fall in the spring, but remain higher than the average of past years, according to the Commission. Most EU countries rely on gas-fired power stations to meet electricity demand, and about 40% of that gas comes from Russia, with the EU outlining a plan to dump Russian energy to reduce this reliance, according to Eurostat.

Simson said that the Commission's initial assessment indicates that Russia's Gazprom has been fulfilling its long-term contracts "while providing little or no additional supply."
Kremlin spokesman Dmitry Peskov told journalists on Wednesday that Russia has increased gas supplies to Europe to the maximum possible level under existing contracts, but could not exceed those thresholds. "We can say that Russia is flawlessly fulfilling all contractual obligations," he said.

Measures EU states can take to help consumers and businesses cope with soaring electricity costs include emergency income support to households to help them pay their energy bills, alongside potential gas price cap strategies, state aid for companies, and targeted tax reductions. Member states can also temporarily delay bill payments and put in place processes to ensure that no one is disconnected from the grid.

Green energy the solution
The Commission also published a series of longer term measures the bloc should consider to reduce its dependence on fossil fuels and tackle energy price volatility, despite opposition from nine countries to electricity market reforms.

"Our immediate priority is to protect Europe's consumers, especially the most vulnerable," Simson said. "Second, we want to make our energy system better prepared and more resilient, so we don't have to face a similar situation in the future," she added.

Energy crisis could force more UK factories to close
This would require speeding up the green energy transition rather than slowing it down, Simson said. "We are not facing an energy price surge because of our climate policy or because renewable energy is expensive. We are facing it because the fossil fuel prices are spiking," she continued.

"The only long term remedy against demand shocks and price volatility is a transition to a green energy system."

Simson said she will propose to EU leaders a package of measures to decarbonize Europe's gas and hydrogen markets by 2050. Other measures to improve energy market stability could include increasing gas storage capacity and buying gas jointly at an EU level.

 

Related News

View more

New Mexico Governor to Sign 100% Clean Electricity Bill ‘As Quickly As Possible’

New Mexico Energy Transition Act advances zero-carbon electricity, mandating public utilities deliver carbon-free electricity by 2045, with renewable targets of 50 percent by 2030 and 80 percent by 2040 to accelerate grid decarbonization.

 

Key Points

A state law requiring utilities to deliver carbon-free electricity by 2045, with 2030 and 2040 renewable targets.

✅ 100 percent carbon-free power from utilities by 2045

✅ Interim renewable targets: 50 percent by 2030, 80 percent by 2040

✅ Aligns with clean energy commitments in HI, CA, and DC

 

The New Mexico House of Representatives passed the Energy Transition Act Tuesday afternoon, sending the carbon-free electricity bill, a move aligned with proposals for a Clean Electricity Standard at the federal level, to Gov. Michelle Lujan Grisham.

Her opinions on it are known: she campaigned on raising the share of renewable energy, a priority echoed in many state renewable ambitions nationwide, and endorsed the ETA in a recent column.

"The governor will sign the bill as quickly as possible — we're hoping it is enrolled and engrossed and sent to her desk by Friday," spokesperson Tripp Stelnicki said in an email Tuesday afternoon.

Once signed, the legislation will commit the state to achieving zero-carbon electricity from public utilities by 2045. The bill also imposes interim renewable energy targets of 50 percent by 2030 and 80 percent by 2040, similar to Minnesota's 2040 carbon-free bill in its timeline.

The Senate passed the bill last week, 32-9. The House passed it 43-22.

The legislation would enter New Mexico into the company of Hawaii, California, where climate risks to grid reliability are shaping policy, and Washington, D.C., which have committed to eliminating carbon emissions from their grids. A dozen other states have proposed similar goals. Meanwhile, the Green New Deal resolution has prompted Congress to discuss the bigger task of decarbonizing the nation overall.

Though grid decarbonization has surged in the news cycle in recent months, even as some states consider moves in the opposite direction, such as a Wyoming bill restricting clean energy that would limit utility choices, New Mexico's bill arose from a years-long effort to rally stakeholders within the state's close-knit political community.

 

Related News

View more

Manchin Calls For Stronger U.S. Canada Energy And Mineral Partnership

U.S.-Canada Energy and Minerals Partnership strengthens energy security, critical minerals supply chains, and climate objectives with clean oil and gas, EV batteries, methane reductions, cross-border grid reliability, and allied trade, countering Russia and China dependencies.

 

Key Points

A North American alliance to secure energy, refine critical minerals, cut emissions, and fortify supply chains.

✅ Integrates oil, gas, and electricity trade for reliability

✅ Builds EV battery and critical minerals processing capacity

✅ Reduces methane, diversifies away from Russia and China

 

Today, U.S. Senator Joe Manchin (D-WV), Chairman of the Senate Energy and Natural Resources Committee, delivered the following remarks during a full committee hearing to examine ways to strengthen the energy and mineral partnership between the U.S. and Canada to address energy security and climate objectives.

The hearing also featured testimony from the Honorable Jason Kenney (Premier, Alberta, Canada), the Honorable Nathalie Camden (Associate Deputy Minister of Mines, Ministry of Energy and Natural Resource, Québec, Canada), the Honorable Jonathan Wilkinson (Minister, Natural Resources Canada) and Mr. Francis Bradley (President and CEO, Electricity Canada). Click here to read their testimony.

Chairman Manchin’s remarks can be viewed as prepared here or read below:

Today we’re welcoming our friends from the North, from Canada, to continue this committee’s very important conversation about how we pursue two critical goals – ensuring energy security and addressing climate change.

These two goals aren’t mutually exclusive, and it’s imperative that we address both.

We all agree that Putin has used Russia’s oil and gas resources as a weapon to inflict terrible pain on the Ukrainian people and on Europe.

And other energy-rich autocracies are taking note. We’d be fools to think Xi Jinping won’t consider using a similar playbook, leveraging China’s control over global critical minerals supply chains.

But Putin’s aggression is bringing the free world closer together, setting the stage for a new alliance around energy, minerals, and climate.
Building this alliance should start here in North America. And that’s why I’m excited to hear today about how we can strengthen the energy and minerals partnership between the U.S. and Canada.

I recently had the privilege of being hosted in Alberta by Premier Kenney, where I spent two days getting a better understanding of our energy, minerals, and manufacturing partnership through meetings with representatives from Alberta, Saskatchewan, the Northwest Territories, the federal government, and tribal and industry partners.

Canadians and Americans share a deep history and are natural partners, sharing the longest land border on the planet.

Our people fought side-by-side in two world wars. In fact, some of the uranium used by the Manhattan Project and broader nuclear innovation was mined in Canada’s Northwest Territories and refined in Ontario.

We have cultivated a strong manufacturing partnership, particularly in the automotive industry, with Canada today being our biggest export market for vehicles. Cars assembled in Canada contain, on average, more than 50% of U.S. value and parts.

Today we also trade over 58 terawatt hours of electricity, including green power from Canada across the border, 2.4 billion barrels of petroleum products, and 3.6 trillion cubic feet of natural gas each year.

In fact, energy alone represents $120 billion of the annual trade between our countries. Across all sectors the U.S. and Canada trade more than $2 billion per day.
There is no better symbol of our energy relationship than our interconnected power grid and evolving clean grids that are seamless and integral for the reliable and affordable electricity citizens and industries in both our countries depend on.

And we’re here for each other during times of need. Electricity workers from both the U.S. and Canada regularly cross the border after extreme weather events to help get the power back on.

Canada has ramped up oil exports to the U.S. to offset Russian crude after members of our committee led legislation to cut off the energy purchases fueling Putin’s war machine.

Canada is also a leading supplier of uranium and critical minerals to the U.S., including those used in advanced batteries—such as cobalt, graphite, and nickel.
The U.S-Canada energy partnership is strong, but also not without its challenges, including tariff threats that affect projects on both sides. I’ve not been shy in expressing my frustration that the Biden administration cancelled the Keystone XL pipeline.

In light of Putin’s war in Ukraine and the global energy price surge, I think a lot of us wish that project had moved forward.

But to be clear, I’m not holding this hearing to re-litigate the past. We are here to advance a stronger and cleaner U.S.-Canada energy partnership for the future.
Our allies and trading partners in Europe are begging for North American oil and gas to offset their reliance on Russia.

There is no reason whatsoever we shouldn’t be able to fill that void, and do it cleaner than the alternatives.

That’s because American oil and gas is cleaner than what is produced in Russia – and certainly in Iran and Venezuela. We can do better, and learn from our Canadian neighbors.

On average, Canada produces oil with 37% lower methane emissions than the U.S., and the Canadian federal government has set even more aggressive methane reduction targets.

That’s what I mean by climate and security not being mutually exclusive – replacing Russian product has the added benefit of reducing the emissions profile of the energy Europe needs today.

According to the International Energy Agency, stationary and electric vehicle batteries will account for about half of the mineral demand growth from clean energy technologies over the next twenty years.

Unfortunately, China controls 80% of the world’s battery material processing, 60% of the world’s cathode production, 80% of the world’s anode production, and 75% of the world’s lithium ion battery cell production. They’ve cornered the market.

I also strongly believe we need to be taking national energy security into account as we invest in climate solutions.

It makes no sense whatsoever for us to so heavily invest in electric vehicles as a climate solution when that means increasing our reliance on China, because right now we’re not simultaneously increasing our mining, processing, and recycling capacity at the same rate in the United States.

The Canadians are ahead of us on critical minerals refining and processing, and we have much to learn from them about how they’re able to responsibly permit these activities in timelines that blow ours out of the water.

I’m sure our Canadian friends are happy to export minerals to us, but let me be clear, the United States also needs to contribute our part to a North American minerals alliance.

So I’m interested in discussing how we can create an integrated network for raw minerals to move across our borders for processing and manufacturing in both of our countries, and how B.C. critical minerals decisions may affect that.

I believe there is much we can collaborate on with Canada to create a powerful North American critical minerals supply chain instead of increasing China’s geopolitical leverage.

During this time when the U.S., Canada, and our allies and friends are threatened both by dictators weaponizing energy and by intense politicization over climate issues, we must work together to chart a responsible path forward that will ensure security and unlock prosperity for our nations.

We are the superpower of the world, and blessed with abundant energy and minerals resources. We cannot just sit back and let other countries fill the void and find ourselves in a more dire situation in the years ahead.

We must be leaning into the responsible production of all the energy sources we’re going to need, and strengthening strategic partnerships – building a North American Energy Alliance.

 

Related News

View more

Fish boom prompts energy conglomerate to spend $14.5M to bury subsea cables

Maritime Link Cable Burial safeguards 200-kV subsea cables in the Cabot Strait as Emera and Nova Scotia Power trench lines to mitigate bottom trawling risks from a redfish boom, ensuring Muskrat Falls hydro delivery.

 

Key Points

Trenching Cabot Strait subsea power cables to prevent redfish-driven bottom trawling and ensure Muskrat Falls power.

✅ $14.492M spent trenching 59 km at 400 m depth

✅ Protects 200-kV, 170-km subsea interconnects from trawls

✅ Driven by Gulf redfish boom; DFO and UARB consultations

 

The parent company of Nova Scotia Power disclosed this week to the Utility and Review Board, amid Site C dam watchdog attention to major hydro projects, that it spent almost $14,492,000 this summer to bury its Maritime Links cables lying on the floor of the Cabot Strait between Newfoundland and Cape Breton.

It's a fish story no one saw coming, at least not Halifax-based energy conglomerate Emera.

The parent company of Nova Scotia Power disclosed this week to the Utility and Review Board that it spent almost $14,492,000 this summer to bury its Maritime Link cables lying on the floor of the Cabot Strait between Newfoundland and Cape Breton.

The cables were protected because an unprecedented explosion in the redfish population in the Gulf of St Lawrence is about to trigger a corresponding boom in bottom trawling in the area.

Also known as ocean perch, redfish were not on anyone's radar when the $1.5-billion Maritime Link was designed and built to carry Muskrat Falls hydroelectricity from Newfoundland to Nova Scotia.

The two 200-kilovolt electrical submarine cables spanning the Cabot Strait are the longest in North America, compared with projects like the New England Clean Power Link planned further south. They are each 170 kilometres long and weigh 5,500 tonnes.

Nova Scotia Power customers are paying for the Maritime Link in return for a minimum of 20 per cent of the electricity generated by Muskrat Falls over 35 years.

The electricity is supposed to start sending first electricity through the Maritime Link in mid-2020.

First time cost disclosed
In August, the company buried 59 kilometres of subsea cables one metre below the bottom at depths of 400 metres.

"These cables had not been previously trenched due to the absence of fishing activities at those depths when the cables were originally installed," spokesperson Jeff Myrick wrote in an email to CBC News in October.

Ratepayers will get the bill next year, as utilities also face risks like copper theft that can drive costs in the region. Until now, the company had declined to release costs relating to protecting the Maritime Link.

The bill will be presented to regulators, a process that has affected projects such as a Manitoba Hydro line to Minnesota, when the company applies to recover Maritime Link costs from Nova Scotia Power ratepayers in 2020.

Myrick said the company was acting after consultation with the Department of Fisheries and Oceans.

Unexpected consequences
After years of overfishing in the 1980s and early 1990s, redfish quotas were slashed and a moratorium imposed on some redfish.

Confusingly, there are actually two redfish species in the Gulf of St. Lawrence.

But very strong recent year classes, that have coincided with warming waters in the gulf, as utilities adapt to climate change considerations grow, have produced redfish in massive numbers.

After years of overfishing, the redfish population is now booming in the Gulf of St. Lawrence. (Submitted by Marine Institute)
There is now believed to be three-million tonnes of redfish in the Gulf of St Lawrence.

The Department of Fisheries and Oceans is expected to increase quotas in the coming years and the fishing industry is gearing up in a big way.

Earlier this month, Scotia Harvest announced it will begin construction of a new $14-million fish plant in Digby next spring in part to process increased redfish catches.

 

Related News

View more

Europe's Thirst for Electricity Spurs Nordic Grid Blockade

Nordic Power Grid Dispute highlights cross-border interconnector congestion, curtailed exports and imports, hydropower priorities, winter demand spikes, rising spot prices, and transmission grid security amid decarbonization efforts across Sweden, Norway, Finland, and Denmark.

 

Key Points

A clash over interconnectors and capacity cuts reshaping trade, prices, and reliability in the Nordic power market.

✅ Sweden cuts interconnector capacity to protect grid stability

✅ Norway prioritizes higher-priced exports via new cables

✅ Finland and Denmark seek EU action on capacity curtailments

 

A spat over electricity supplies is heating up in northern Europe. Sweden is blocking Norway from using its grids to transfer power from producers throughout the region. That’s angered Norway, which in turn has cut flows to its Nordic neighbor.

The dispute has built up around the use of cross-border power cables, which are a key part of Europe’s plans to decarbonize since they give adjacent countries access to low-carbon resources such as wind or hydropower. The electricity flows to wherever prices are higher, informed by how electricity is priced across Europe, without interference from grid operators -- but in the event of a supply squeeze, flows can be stopped.

Sweden moved to safeguard the security of its grid after Norway started increasing electricity exports through huge new cables to Germany and the U.K. Those exports at times have drawn energy away from Sweden, resulting in the country’s system operator cutting capacity at its Nordic borders, preventing exports but also hindering imports, which it relies on to handle demand spikes during winter.

“This is not a good situation in the long run,” Christian Holtz, a energy market consultant for Merlin & Metis AB.

Norway hit back last week by cutting flows to Sweden, this will prioritize better paying customers in Europe, amid Irish price spikes that highlight dispatchable shortages, giving them access to its vast hydro resources at the expense of its Nordic neighbors. 

By partially closing its borders Sweden can’t access imports either, which it relies on to handle demand spikes during the coldest days of the winter. 

In Denmark, unusual summer and autumn winds have at times delivered extraordinarily low electricity prices that ripple through regional markets.

The Swedish grid manager Svenska Kraftnat has reduced export capacity at cables across its borders by as much as half this year to keep operations secure. Finland and Denmark rely on imports too and the cuts will come at a cost for millions of homes and industries across the four nations already contending with record electricity rates this year. 

Finland and Denmark want the European Union to end the exemption to regulations that make such reductions possible in the first place, as Europe is losing nuclear power and facing tighter supply.

“Imports from our neighboring countries ensure adequacy at times of peak consumption,” said Reima Paivinen, head of operation at the Finland’s Fingrid. “The recent surge in electricity prices throughout Europe does not directly affect the adequacy of electricity, but prices may rise dramatically for short periods.”

Svenska Kraftnat says it’s not political -- it has no choice but to cut capacity until its old grids are expanded to handle the new direction of flows, a challenge mirrored by grid expansion woes in Germany that slow integration. That could take at least until 2030 to complete, it said earlier this year. At the same time, Norway halving available export capacity to about 1,200 megawatts will increase risk of shortages. 

“If we need more we will have to count on imports from other countries,” said Erik Ek, head of strategic operation at Svenska Kraftnat. “If that is not available, we will have to disconnect users the day it gets cold.”

 

Related News

View more

18% of electricity generated in Canada in 2019 came from fossil fuels

EV Decarbonization Strategy weighs life-cycle emissions and climate targets, highlighting mode shift to public transit, cycling, and walking, grid decarbonization, renewable energy, and charging infrastructure to cut greenhouse gases while reducing private car dependence.

 

Key Points

A plan to cut transport emissions by pairing EV adoption with mode shift, clean power, and less private car use.

✅ Prioritize mode shift: transit, cycling, and walking.

✅ Electrify remaining vehicles with clean, renewable power.

✅ Expand charging, improve batteries, and manage critical minerals.

 

California recently announced that it plans to ban the sales of gas-powered vehicles by 2035, a move similar to a 2035 electric vehicle mandate seen elsewhere, Ontario has invested $500 million in the production of electric vehicles (EVs) and Tesla is quickly becoming the world's highest-valued car company.

It almost seems like owning an electric vehicle is a silver bullet in the fight against climate change, but it isn't, as a U of T study explains today. What we should also be focused on is whether anyone should use a private vehicle at all.
 
As a researcher in sustainable mobility, I know this answer is unsatisfying. But this is where my latest research has led.

Battery EVs, such as the Tesla Model 3 - the best selling EV in Canada in 2020 - have no tailpipe emissions. But they do have higher production and manufacturing emissions than conventional vehicles, and often run on electricity that comes from fossil fuels.

Almost 18 per cent of the electricity generated in Canada came from fossil fuels in 2019, and even as Canada's EV goals grow more ambitious today, the grid mix varies from zero in Quebec to 90 per cent in Alberta.
 
Researchers like me compare the greenhouse gas emissions of an alternative vehicle, such as an EV, with those of a conventional vehicle over a vehicle lifetime, an exercise known as a life-cycle assessment. For example, a Tesla Model 3 compared with a Toyota Corolla can provide up to 75 per cent reduction in greenhouse gases emitted per kilometre travelled in Quebec, but no reductions in Alberta.

 

Hundreds of millions of new cars

To avoid extreme and irreversible impacts on ecosystems, communities and the overall global economy, we must keep the increase in global average temperatures to less than 2 C - and ideally 1.5 C - above pre-industrial levels by the year 2100.

We can translate these climate change targets into actionable plans. First, we estimate greenhouse gas emissions budgets using energy and climate models for each sector of the economy and for each country. Then we simulate future emissions, taking alternative technologies into account, as well as future potential economic and societal developments.

I looked at the U.S. passenger vehicle fleet, which adds up to about 260 million vehicles, while noting the potential for Canada-U.S. collaboration in this transition, to answer a simple question: Could the greenhouse gas emissions from the sector be brought in line with climate targets by replacing gasoline-powered vehicles with EVs?

The results were shocking. Assuming no changes to travel behaviours and a decarbonization of 80 per cent of electricity, meeting a 2 C target could require up to 300 million EVs, or 90 per cent of the projected U.S. fleet, by 2050. That would require all new purchased vehicles to be electric from 2035 onwards.

To put that into perspective, there are currently 880,000 EVs in the U.S., or 0.3 per cent of the fleet. Even the most optimistic projections, despite hype about an electric-car revolution gaining steam, from the International Energy Agency suggest that the U.S. fleet will only be at about 50 per cent electrified by 2050.

 

Massive and rapid electrification

Still, 90 per cent is theoretically possible, isn't it? Probably, but is it desirable?

In order to hit that target, we'd need to very rapidly overcome all the challenges associated with EV adoption, such as range anxiety, the higher purchase cost and availability of charging infrastructure.
 
A rapid pace of electrification would severely challenge the electricity infrastructure and the supply chain of many critical materials for the batteries, such as lithium, manganese and cobalt. It would require vast capacity of renewable energy sources and transmission lines, widespread charging infrastructure, a co-ordination between two historically distinct sectors (electricity and transportation systems) and rapid innovations in electric battery technologies. I am not saying it's impossible, but I believe it's unlikely.

Read more: There aren't enough batteries to electrify all cars - focus on trucks and buses instead

So what? Shall we give up, accept our collective fate and stop our efforts at electrification?

On the contrary, I think we should re-examine our priorities and dare to ask an even more critical question: Do we need that many vehicles on the road?

 

Buses, trains and bikes

Simply put, there are three ways to reduce greenhouse gas emissions from passenger transport: avoid the need to travel, shift the transportation modes or improve the technologies. EVs only tackle one side of the problem, the technological one.

And while EVs do decrease emissions compared with conventional vehicles, we should be comparing them to buses, including leading electric bus fleets in North America, trains and bikes. When we do, their potential to reduce greenhouse gas emissions disappears because of their life cycle emissions and the limited number of people they carry at one time.

If we truly want to solve our climate problems, we need to deploy EVs along with other measures, such as public transit and active mobility. This fact is critical, especially given the recent decreases in public transit ridership in the U.S., mostly due to increasing vehicle ownership, low gasoline prices and the advent of ride-hailing (Uber, Lyft)

Governments need to massively invest in public transit, cycling and walking infrastructure to make them larger, safer and more reliable, rather than expanding EV subsidies alone. And we need to reassess our transportation needs and priorities.

The road to decarbonization is long and winding. But if we are willing to get out of our cars and take a shortcut through the forest, we might get there a lot faster.

Author: Alexandre Milovanoff - Postdoctoral Researcher, Environmental Engineering, University of Toronto The Conversation

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.