Utilities overpower the little guy

By St. Petersburg Times


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Market forces and competition are favorite conservative watchwords, except when it comes to public utilities. Bills that would give the state's largest electric companies incentives to essentially monopolize the renewable energy market are on the move.

Lawmakers are embracing legislation that is a gift to the utilities, leaving it to the companies to make decisions on their renewable energy commitments while making it harder for the little guy to enter the field.

Twenty-nine states and the District of Columbia have set targets for production of renewable energy, such as solar, wind and biomass. Not Florida. Other states have expanded opportunities for competition by directing public utilities to buy consumer-generated energy at a competitive price. Not Florida. As a result, there is little incentive for big-box retailers to invite solar energy companies to install rooftop solar panels and sell the energy.

If Florida got its rules right, it could drive private investment in clean energy technology to the state, even as it encouraged public utilities to expand their renewable energy portfolio. But the state's lawmakers are too beholden to the monopolistic utilities to listen. Since 2009, Florida Power & Light and its affiliates have spent at least $4 million on campaign contributions to legislators and candidates for governor. The utility gave more than $1 million to the Republican Party.

This has spawned predicable political games. For example, a fleeting attempt in the Senate to include a provision that would open the market to renewable energy competitors was quickly squashed by Senate leaders when FP&L expressed strong opposition. Sen. Lizbeth Benacquisto, R-Wellington, chairwoman of the Senate Committee on Communications, Energy and Public Utilities, said including the provision initially was "a technical glitch" - a Tallahassee euphemism for upsetting a major campaign contributor.

The Senate plan would allow electric companies to increase customer bills $1.40 to $2.60 per month to pay for the construction of solar and biomass energy plants for the next five years. But lawmakers would impose no obligation on the state's utilities to actually develop and build new renewable energy sources or buy renewable energy from the open market for a fair price.

A similar proposal was approved by a House committee recently that would allow utilities to charge customers as much as $2 billion over five years for the costs of producing renewable energy. Mark Bubriski, director of media relations for FP&L, says that public utilities are in the best position to efficiently and cheaply generate renewable energy. That may be true at the moment, but there is an uneven playing field, and the private market should be encouraged to help fill the need.

That won't happen without the state directing utilities to pay more generously for the power produced by others - something FP&L opposes. FP&L pays far less for privately generated energy in many cases than what the company charges its customers, which Bubriski defends as fair since FP&L shoulders the costs of transmission and distribution. It also makes it harder for small producers to exist.

Asking ratepayers to pay a little more for a major expansion of renewable energy is appropriate when there are guaranteed targets and a competitive pricing schedule for all such energy producers. But nothing like that is likely to come from a Legislature addicted to the big campaign dollars doled out by public utilities. That's something to remember come the next election.

Related News

Scientists generate 'electricity from thin air.' Humidity could be a boundless source of energy.

Air Humidity Energy Harvesting converts thin air into clean electricity using air-gen devices with nanopores, delivering continuous renewable energy from ambient moisture, as demonstrated by UMass Amherst researchers in Advanced Materials.

 

Key Points

A method using nanoporous air-gen devices to harvest continuous clean electricity from ambient atmospheric moisture.

✅ Nanopores drive charge separation from ambient water molecules

✅ Works across materials: silicon, wood, bacterial films

✅ Predictable, continuous power unlike intermittent solar or wind

 

Sure, we all complain about the humidity on a sweltering summer day. But it turns out that same humidity could be a source of clean, pollution-free energy, aligning with efforts toward cheap, abundant electricity worldwide, a new study shows.

"Air humidity is a vast, sustainable reservoir of energy that, unlike wind and solar power resources, is continuously available," said the study, which was published recently in the journal Advanced Materials.

While humidity harvesting promises constant output, advances like a new fuel cell could help fix renewable energy storage challenges, researchers suggest.

“This is very exciting,” said Xiaomeng Liu, a graduate student at the University of Massachusetts-Amherst, and the paper’s lead author. “We are opening up a wide door for harvesting clean electricity from thin air.”

In fact, researchers say, nearly any material can be turned into a device that continuously harvests electricity from humidity in the air, a concept echoed by raindrop electricity demonstrations in other contexts.

“The air contains an enormous amount of electricity,” said Jun Yao, assistant professor of electrical and computer engineering at the University of Massachusetts-Amherst and the paper’s senior author. “Think of a cloud, which is nothing more than a mass of water droplets. Each of those droplets contains a charge, and when conditions are right, the cloud can produce a lightning bolt – but we don’t know how to reliably capture electricity from lightning.

"What we’ve done is to create a human-built, small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”

The heart of the human-made cloud depends on what Yao and his colleagues refer to as an air-powered generator, or the "air-gen" effect, which relates to other atmospheric power concepts like night-sky electricity studies in the field.

In broader renewable systems, flexible resources such as West African hydropower can support variable wind and solar output, complementing atmospheric harvesting concepts as they mature.

The study builds on research from a study published in 2020. That year, scientists said this new technology "could have significant implications for the future of renewable energy, climate change and in the future of medicine." That study indicated that energy was able to be pulled from humidity by material that came from bacteria; related bio-inspired fuel cell design research explores better electricity generation, the new study finds that almost any material, such as silicon or wood, also could be used.

The device mentioned in the study is the size of a fingernail and thinner than a single hair. It is dotted with tiny holes known as nanopores, it was reported. "The holes have a diameter smaller than 100 nanometers, or less than a thousandth of the width of a strand of human hair."

 

Related News

View more

Lawmakers question FERC licensing process for dams in West Virginia

FERC Hydropower Licensing Dispute centers on FERC authority, Clean Water Act compliance, state water quality certifications, Federal Power Act timelines, and Army Corps dams on West Virginia's Monongahela River licenses.

 

Key Points

An inquiry into FERC's licensing process and state water quality authority for hydropower at Monongahela River dams.

✅ Questions on omitted state water quality conditions

✅ Debate over starting Clean Water Act certification timelines

✅ Potential impacts on states' rights and licensing schedules

 

As federal lawmakers, including Democrats pressing FERC, plan to consider a bill that would expand Federal Energy Regulatory Commission (FERC) licensing authority, questions emerged on Tuesday about the process used by FERC to issue two hydropower licenses for existing dams in West Virginia.

In a letter to FERC Chairman Neil Chatterjee, Democratic leaders of the House Energy and Commerce Committee, as electricity pricing changes were being debated, raised questions about hydropower licenses issued for two dams operated by the U.S. Army Corps of Engineers on the Monongahela River in West Virginia.

U.S. Reps. Frank Pallone Jr. (D-NJ), the ranking member of the Subcommittee on Energy, Bobby Rush (D-IL), the ranking member of the Subcommittee on Environment, and John Sarbanes (D-MD), amid Maryland clean energy enforcement concerns, questioned why FERC did not incorporate all conditions outlined in a West Virginia Department of Environmental Protection water quality certificate into plans for the projects.

“By denying the state its allotted time to review this application and submit requirements on these licenses, FERC is undermining the state’s authority under the Clean Water Act and Federal Power Act to impose conditions that will ensure water quality standards are met,” the letter stated.

The House of Representatives was slated to consider the Hydropower Policy Modernization Act of 2017, H.R. 3043, later in the week. The measure would expand FERC authority over licensing processes, a theme mirrored in Maine's transmission line debate over interstate energy projects. Opponents of the bill argue that the changes would make it more difficult for states to protect their clean water interests.

West Virginia has announced plans to challenge FERC hydropower licenses for the dams on the Monongahela River, echoing Northern Pass opposition seen in New Hampshire.

 

Related News

View more

Power grab: 5 arrested after Hydro-Québec busts electricity theft ring

Hydro-Qubec Electricity Theft Ring exposed after a utility investigation into identity theft, rental property fraud, and conspiracies using stolen customer data; arrests, charges, and a tip line highlight ongoing enforcement.

 

Key Points

A five-year identity-theft scheme defrauding Hydro-Qubec through utility accounts leading to arrests and fraud charges.

✅ Five arrests; 25 counts: fraud, conspiracy, identity theft

✅ Losses up to $300,000 in electricity, 2014-2019

✅ Tip line: 1-877-816-1212 for suspected Hydro-Qubec fraud

 

Five people have been arrested in connection with an electricity theft ring alleged to have operated for five years, a pattern seen in India electricity theft arrests as well.

The thefts were allegedly committed by the owners of rental properties who used stolen personal information to create accounts with Hydro-Québec, which also recently dealt with a manhole fire outage affecting thousands.

The utility alleges that between 2014 and 2019, Mario Brousseau, Simon Brousseau-Ouellette and their accomplices defrauded Hydro-Québec of up to $300,000 worth of electricity, highlighting concerns about consumption trends as residential electricity use rose during the pandemic. It was impossible for Hydro-Québec’s customer service section to detect the fraud because the information on the accounts, while stolen, was also genuine, even as the utility reported pandemic-related losses later on.

The suspects are expected to face 25 counts of fraud, conspiracy and identity theft, issues that Ontario utilities warn about regularly.

Hydro-Québec noted the thefts were detected through an investigation by the utility into 10 fraud cases, a process that can lead to retroactive charges for affected accounts.

Anyone concerned that a fraud is being committed against Hydro-Québec, or wary of scammers threatening shutoffs, is urged to call 1-877-816-1212.

 

Related News

View more

BC’s Electric Highway

British Columbia Electric Highway connects urban hubs and remote communities with 1,400+ EV charging stations, fast chargers, renewable energy, and clean transportation infrastructure, easing range anxiety and supporting climate goals across the province.

 

Key Points

A province-wide EV charging network for low-carbon travel with fast chargers in urban, rural and remote areas.

✅ 1,400+ stations across urban, rural, and remote B.C.

✅ Fast-charging, renewable-powered sites cut range anxiety

✅ Supports climate goals and boosts local economies

 

British Columbia has taken a significant step toward sustainable transportation with the completion of its Electric Highway, a comprehensive network of electric vehicle (EV) charging stations strategically placed across the province. This ambitious project not only supports the growing number of EV owners as the province expands EV charging across communities but also plays a crucial role in the province’s efforts to combat climate change and promote clean energy.

The Electric Highway spans from the southern reaches of the province to its northern edges, connecting key urban centers and remote communities alike. With over 1,400 charging stations installed at various locations, the network is designed to accommodate the diverse needs of EV drivers, ensuring they can travel confidently without the fear of running out of charge, with B.C. Hydro expansion in southern B.C. further bolstering coverage.

One of the standout features of the Electric Highway is its accessibility. Charging stations are located not only in urban areas but also in rural and remote regions, allowing residents in those communities to embrace electric vehicles, supported by EV charger rebates available provincewide.

The completion of the Electric Highway comes at a time when EV adoption is on the rise. As more consumers recognize the benefits of electric vehicles—including lower operating costs, reduced greenhouse gas emissions, and decreased dependence on fossil fuels—alongside rebates for home and workplace charging that reduce barriers—demand for charging infrastructure has surged. The Electric Highway provides the essential support needed to facilitate this shift, enabling residents and visitors to travel long distances with ease.

Moreover, the Electric Highway aligns with British Columbia’s climate goals. The province has set ambitious targets to reduce greenhouse gas emissions and transition to a low-carbon economy. By promoting electric vehicles and investing in charging infrastructure, British Columbia aims to lower emissions from the transportation sector, which is one of the largest contributors to climate change, with related efforts including electric ferries that complement road decarbonization. The completion of this highway is a significant milestone in the province’s journey toward a greener future.

The project has also garnered attention for its innovative approach to energy sourcing. Many of the charging stations are powered by renewable energy, further reducing their carbon footprint. This commitment to sustainability not only enhances the environmental benefits of electric vehicles but also reinforces British Columbia’s reputation as a leader in clean energy initiatives, including the $900 million hydrogen project advancing alternative fuels.

In addition to its environmental advantages, the Electric Highway has the potential to boost the local economy. As EV travel becomes more commonplace, businesses along the route can capitalize on increased foot traffic from travelers seeking charging options. This economic uplift is especially important for small towns and rural areas, where tourism and local commerce can thrive with the right infrastructure in place.

Furthermore, the completion of the Electric Highway is expected to catalyze further innovation in the EV sector. As charging technology continues to evolve, the province is poised to be at the forefront of advancements that enhance the EV driving experience. Initiatives such as ultra-fast charging and smart charging solutions could soon become the norm, making electric travel even more convenient.

The provincial government is also focusing on public awareness campaigns to educate residents about the benefits of electric vehicles and how to use the new charging infrastructure. By fostering a greater understanding of EV technology and its advantages, the government hopes to inspire more people to make the switch from gasoline-powered vehicles to electric ones.

In conclusion, the completion of the Electric Highway marks a transformative moment for British Columbia and its commitment to sustainable transportation. By providing a reliable network of charging stations, the province is making electric vehicle travel a reality for everyone, promoting environmental responsibility while supporting local economies. As more British Columbians embrace electric mobility, the Electric Highway stands as a testament to the province’s dedication to creating a cleaner, greener future for generations to come. With this essential infrastructure in place, British Columbia is paving the way for a new era of transportation that prioritizes sustainability and accessibility.

 

Related News

View more

New EPA power plant rules will put carbon capture to the test

CCUS in the U.S. Power Sector drives investments as DOE grants, 45Q tax credits, and EPA carbon rules spur carbon capture, geologic storage, and utilization, while debates persist over costs, transparency, reliability, and emissions safeguards.

 

Key Points

CCUS captures CO2 from power plants for storage or use, backed by 45Q tax credits, DOE funding, and EPA carbon rules.

✅ DOE grants and 45Q credits aim to de-risk project economics.

✅ EPA rules may require capture rates to meet emissions limits.

✅ Transparency and MRV guard against tax credit abuse.

 

New public and private funding, including DOE $110M for CCUS announced recently, and expected strong federal power plant emissions reduction standards have accelerated electricity sector investments in carbon capture, utilization and storage,’ or CCUS, projects but some worry it is good money thrown after bad.

CCUS separates carbon from a fossil fuel-burning power plant’s exhaust through carbon capture methods for geologic storage or use in industrial and other applications, according to the Department of Energy. Fossil fuel industry giants like Calpine and Chevron are looking to take advantage of new federal tax credits and grant funding for CCUS to manage potentially high costs in meeting power plant performance requirements, amid growing investor pressure for climate reporting, including new rules, expected from EPA soon, on reducing greenhouse gas emissions from existing power plants.

Power companies have “ambitious plans” to add CCUS to power plants, estimated to cause 25% of U.S. CO2 emissions. As a result, the power sector “needs CCUS in its toolkit,” said DOE Office of Fossil Energy and Carbon Management Assistant Secretary Brad Crabtree. Successful pilots and demonstrations “will add to investor confidence and lead to more deployment” to provide dispatchable clean energy, including emerging CO2-to-electricity approaches for power system reliability after 2030,| he added.

But environmentalists and others insist potentially cost-prohibitive CCUS infrastructure, including CO2 storage hub initiatives, must still prove itself effective under rigorous and transparent federal oversight.

“The vast majority of long-term U.S. power sector needs can be met without fossil generation, and better options are being deployed and in development,” Sierra Club Senior Advisor, Strategic Research and Development, Jeremy Fisher, said, pointing to carbon-free electricity investments gaining momentum in the market. CCUS “may be needed, but without better guardrails, power sector abuses of federal funding could lead to increased emissions and stranded fossil assets,” he added.

New DOE CCUS project grants, an increased $85 per metric ton, or tonne, federal 45Q tax credit, and the forthcoming EPA power plant carbon rules and the federal coal plan will do for CCUS what similar policies did for renewables, advocates and opponents agreed. But controversial past CCUS performance and tax credit abuses must be avoided with transparent reporting requirements for CO2 capture, opponents added.

 

Related News

View more

Solar Plus Battery Storage Cheaper Than Conventional Power in Germany

Germany Solar-Plus-Storage Cost Parity signals grid parity as solar power with battery storage undercuts conventional electricity. Falling LCOE, policy incentives, and economies of scale accelerate the energy transition and decarbonization across Germany's power market.

 

Key Points

The point at which solar power with battery storage is cheaper than conventional grid electricity across Germany.

✅ Lower LCOE from tech advances and economies of scale

✅ EEG incentives and streamlined installs cut total costs

✅ Enhances energy security, reduces fossil fuel dependence

 

Germany, a global leader in renewable energy adoption, with clean energy supplying about half of its electricity in recent years, has reached a significant milestone: the cost of solar power combined with battery storage has now fallen below that of conventional electricity sources. This development marks a transformative shift in the energy landscape, showcasing the increasing affordability and competitiveness of renewable energy technologies and reinforcing Germany’s position as a pioneer in the transition to sustainable energy.

The decline in costs for solar power paired with battery storage represents a breakthrough in Germany’s energy sector, especially amid the recent solar power boost during the energy crisis, where the transition from traditional fossil fuels to cleaner alternatives has been a central focus. Historically, conventional power sources such as coal, natural gas, and nuclear energy have dominated electricity markets due to their established infrastructure and relatively stable pricing. However, the rapid advancements in solar technology and energy storage solutions are altering this dynamic, making renewable energy not only environmentally preferable but also economically advantageous.

Several factors contribute to the cost reduction of solar power with battery storage:

  1. Technological Advancements: The technology behind solar panels and battery storage systems has evolved significantly over recent years. Solar panel efficiency has improved, allowing for greater energy generation from smaller installations. Similarly, cheaper batteries have advanced, with reductions in cost and increases in energy density and lifespan. These improvements mean that solar installations can produce more electricity and store it more effectively, enhancing their economic viability.

  2. Economies of Scale: As demand for solar and battery storage systems has grown, manufacturers have scaled up production, leading to economies of scale. This scaling has driven down the cost of both solar panels and batteries, making them more affordable for consumers. As the market for these technologies expands, prices are expected to continue decreasing, further enhancing their competitiveness.

  3. Government Incentives and Policies: Germany’s commitment to renewable energy has been supported by robust government policies and incentives. The country’s Renewable Energy Sources Act (EEG) and other supportive measures, alongside efforts to remove barriers to PV in Berlin that could accelerate adoption, have provided financial incentives for the adoption of solar power and battery storage. These policies have encouraged investment in renewable technologies and facilitated their integration into the energy market, contributing to the overall reduction in costs.

  4. Falling Installation Costs: The cost of installing solar power systems and battery storage has decreased as the industry has matured. Advances in installation techniques, increased competition among service providers, and streamlined permitting processes have all contributed to lower installation costs. This reduction in upfront expenses has made solar with battery storage more accessible and financially attractive to both residential and commercial consumers.

The economic benefits of solar power with battery storage becoming cheaper than conventional power are substantial. For consumers, this shift translates into lower electricity bills and reduced reliance on fossil fuels. Solar installations with battery storage allow households and businesses to generate their own electricity, store it for use during times of low sunlight, and even sell excess power back to the grid, reflecting how solar is reshaping electricity prices in Northern Europe as markets adapt. This self-sufficiency reduces exposure to fluctuating energy prices and enhances energy security.

For the broader energy market, the decreasing cost of solar power with battery storage challenges the dominance of conventional power sources. As renewable energy becomes more cost-effective, it creates pressure on traditional energy providers to adapt and invest in cleaner technologies, including responses to instances of negative electricity prices during renewable surpluses. This shift can accelerate the transition to a low-carbon energy system and contribute to the reduction of greenhouse gas emissions.

Germany’s achievement also has implications for global energy markets. The country’s success in making solar with battery storage cheaper than conventional power serves as a model for other nations pursuing similar energy transitions. As the cost of renewable technologies continues to decline, other countries can leverage these advancements to enhance their own energy systems, reduce carbon emissions, and achieve energy independence amid over 30% of global electricity now from renewables trends worldwide.

The impact of this development extends beyond economics. It represents a significant step forward in addressing climate change and promoting sustainability. By reducing the cost of renewable energy technologies, Germany is accelerating the shift towards a cleaner and more resilient energy system. This progress aligns with the country’s ambitious climate goals and reinforces its role as a leader in global efforts to combat climate change.

Looking ahead, several challenges remain. The integration of renewable energy into existing energy infrastructure, grid stability, and the management of energy storage are all areas that require continued innovation and investment. However, the decreasing cost of solar power with battery storage provides a strong foundation for addressing these challenges and advancing the transition to a sustainable energy future.

In conclusion, the fact that solar power with battery storage in Germany has become cheaper than conventional power is a groundbreaking development with wide-ranging implications. It underscores the technological advancements, economic benefits, and environmental gains associated with renewable energy technologies. As Germany continues to lead the way in clean energy adoption, this achievement highlights the potential for renewable energy to drive global change and reshape the future of energy.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.