The New York Independent System Operator (NYISO) announced that Christopher Ward has resigned his seat on the Board of Directors.
Shortly after his election to the NYISO Board, Mr. Ward was named by Governor David Paterson to head the Port Authority of New York and New Jersey.
Mr. Ward had been one of the candidates recommended to the NYISO Board of Directors by the NYISO's Market Participants earlier this year and elected to the Board shortly thereafter.
Karen Antion, Chair of the NYISO Board, said that "we regret Chris' departure, will miss his wisdom and guidance and wish him well in his arduous duties at the Port Authority."
Washington Grid Resilience Grant funds DOE-backed modernization to harden Washington's electric grid against extreme weather, advancing clean energy, affordable and reliable electricity, and community resilience under the Bipartisan Infrastructure Law via projects and utility partnerships.
Key Points
A $23.4M DOE grant to modernize Washington's grid, boost weather resilience, and deliver clean, reliable power.
✅ Targets outages, reliability, and community resilience statewide.
✅ Prioritizes disadvantaged areas and quality clean energy jobs.
✅ Backed by Bipartisan Infrastructure Law and DOE funding.
Washington state has received a $23.4 million Grid Resilience State and Tribal Formula Grant from the U.S. Department of Energy (DOE) to modernize the electric grid through smarter electricity infrastructure and reduce impacts due to extreme weather and natural disasters. Grid Resilience State and Tribal Formula Grants aim to ensure the reliability of power sector infrastructure so that communities have access to affordable, reliable, clean electricity.
“Electricity is an essential lifeline for communities. Improving our systems by reducing disruptive events is key as we cross the finish line of a 100% clean electricity grid and ensure equitable benefits from the clean energy economy reach every community,” said Gov. Jay Inslee.
The federal funding for energy resilience will enhance and expand ongoing current grid modernization and resilience efforts throughout the state. For example, working directly with rural and typical end-of-the-line customers to develop resilience plans and collaborating with communities and utilities, including smart city efforts in Spokane as examples, on building resilient and renewable infrastructure for essential services.
“This is a significant opportunity to supplement our state investments in building a robust, resilient electric grid that supports our long-term vision for clean, affordable and reliable electricity – the foundation for economic growth and job creation that strengthens our communities and keeps Washington globally competitive. It shows once again that we are maximizing the federal funding being made available by the Biden-Harris Administration to invest in the country’s infrastructure,” said Washington State Department of Commerce Director Mike Fong.
Reducing the frequency, duration and impact of outages as climate change impacts on the grid intensify while enhancing resiliency in historically disadvantaged communities. Strengthening prosperity by expanding well-paying, safe clean energy jobs accessible to all workers and ensuring investments have a positive effect on quality job creation and equitable economic development.
Building a community of practice and maximizing project scalability by identifying pathways for scaling innovations such as integrating solar into the grid across programs.
“The Grid Resilience Formula Grants will enable communities in Washington to protect households and businesses from blackouts or power shutdowns during extreme weather,” said Maria Robinson, Director, Grid Deployment Office, U.S. Department of Energy. “Projects selected through this program will benefit communities by creating good-paying jobs to deliver clean, affordable, and reliable energy across the country.”
“An innovative, reliable, and efficient power grid is vital to Washington’s continued economic growth and for community resilience especially in disadvantaged areas,” said U.S. Rep. Strickland, Co-Lead of the bipartisan Grid Innovation Caucus. “The funding announced today will invest in our energy grid, support good-paying jobs, and means a cleaner, more energy-efficient future.”
Funded through the Bipartisan Infrastructure Law and administered by DOE’s Grid Deployment Office, with related efforts such as California grid upgrades advancing nationwide, the Grid Resilience State and Tribal Formula Grants distribute funding to states, territories, and federally recognized Indian Tribes, over five years based on a formula that includes factors such as population size, land area, probability and severity of disruptive events, and a locality’s historical expenditures on mitigation efforts. Priority will be given to projects that generate the greatest community benefit providing clean, affordable, and reliable energy.
Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.
Key Points
An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.
✅ VFSGs start engines, then generate 235Vac variable-frequency power
✅ Bleedless pressurization, electric anti-ice improve fuel efficiency
✅ Electric brakes cut hydraulic weight and simplify maintenance
The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.
When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.
What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.
Power sources
The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.
Engine starter/generators
The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.
The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.
APU starter/generators
In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.
The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.
The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.
Battery power
The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.
The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.
Ram air turbine (RAT) generator
When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.
Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.
External power
Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.
The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.
The aft external power is only used when the ground power is required for engine start.
Circuit breakers
Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.
Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.
Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.
A normal flight
While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.
On the ground
When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.
Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.
APU start
As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.
The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.
If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.
Engine start
Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is below 5°C.
On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.
Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.
After start
Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.
As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.
By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.
In-flight
Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.
Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.
Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.
Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.
Shutdown
With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.
However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.
Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.
Bottom line
Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.
The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.
The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.
Germany Energy Price Hikes are driving electricity tariffs, gas prices, and heating costs higher as wholesale markets surge after the Ukraine invasion; households face inflationary pressure despite relief measures and a renewables levy cut.
Key Points
Germany Energy Price Hikes reflect surging power and gas tariffs from wholesale spikes, prompting relief measures.
✅ Electricity tariffs to rise 19.5% in Apr-Jun
✅ Gas tariffs up 42.3%; heating and fuel costs soar
✅ Renewables levy ends July; saves €6.6 billion yearly
Record prices for electricity and gas in Germany will continue to rise in the coming months, the dpa agency, citing estimates from the consumer portal Verivox.
According to him, electricity suppliers and local utilities, in whose area of responsibility there are 13 million households, made an announcement of tariff increases in April, May and June by 19.5%. Gas tariffs increased by an average of 42.3%.
According to Verivox, electricity prices in Germany have approximately doubled over the year - a pattern seen as European electricity prices rose more than double the EU average - if previously a household with a consumption of 4,000 kWh paid 1,171 euros a year, now the amount has risen to 1,737 euros. Gas prices have risen even more, though European gas prices later returned to pre-Ukraine war levels: last year, a household with a consumption of 20,000 kWh paid 1,184 euros in annual terms, and now it is 2,787 euros.
Energy costs for the average German household are 52 percent higher than a year ago, adding to EU inflation pressures, according to energy contract sales website Check24. In a press release, the company said the wholesale electricity price was at €122.93 per megawatt-hour in February 2022, compared to €49 this time last year, while in the United States US electricity prices climbed at the fastest pace in 41 years. In addition, electricity prices on the power exchange haven been rising rapidly since Russian troops invaded Ukraine, comparison portal Strom Report said. Costs for heating rose the most, triggered by the high gas price (105 euros per megawatt-hour on the wholesale market) and around 100 USD per barrel of oil – its highest price since 2014. Driving also became more expensive with costs for petrol up 25 percent and diesel 30 percent, Check24 said.
The German government has decided on relief measures for low-income households, including a 200 billion euro energy shield, in response to high consumer energy costs. In July, it will abolish the renewables levy on the power price, saving consumers around €6.6 billion annually. In a reform proposal released this week, the ministry for economy and climate also detailed how it will legally oblige power suppliers to reduce their power bills when the levy is abolished.
European Electricity Market Trends 2020 highlight decarbonisation, rising renewables, EV adoption, shifting energy mix, COVID-19 impacts, fuel switching, hydro, wind and solar growth, gas price dynamics, and wholesale electricity price increases.
Key Points
EU power in 2020 saw lower emissions, more renewables, EV growth, demand shifts, and higher wholesale prices.
✅ Power sector CO2 down 14% on higher renewables, lower coal
✅ Renewables 39% vs fossil 36%; hydro, wind, solar expanded
✅ EV share hit 17%; wholesale prices rose with gas, ETS costs
According to the Market Observatory for Energy DG Energy report, the COVID-19 pandemic and favorable weather conditions are the two key drivers of the trends experienced within the European electricity market in 2020. However, the two drivers were exceptional or seasonal.
The key trends within Europe’s electricity market include:
1. Decrease in power sector’s carbon emissions
As a result of the increase in renewables generation and decrease in fossil-fueled power generation in 2020, the power sector was able to reduce its carbon footprint by 14% in 2020. The decrease in the sector’s carbon footprint in 2020 is similar to trends witnessed in 2019 when fuel switching was the main factor behind the decarbonisation trend.
However, most of the drivers in 2020 were exceptional or seasonal (the pandemic, warm winter, high hydro generation). However, the opposite is expected in 2021, with the first months of 2021 having relatively cold weather, lower wind speeds and higher gas prices, with stunted hydro and nuclear output also cited, developments which suggest that the carbon emissions and intensity of the power sector could rise.
The European Union is targeting to completely decarbonise its power sector by 2050 through the introduction of supporting policies such as the EU Emissions Trading Scheme, the Renewable Energy Directive and legislation addressing air pollutant emissions from industrial installations, with expectations that low-emissions sources will cover most demand growth in the coming years.
According to the European Environment Agency, Europe halved its power sector’s carbon emissions in 2019 from 1990 levels.
2. Changes in energy consumption
EU consumption of electricity fell by -4% as majority of industries did not operate at full level during the first half of 2020. Although majority of EU residents stayed at home, meaning an increase in residential energy use, rising demand by households could not reverse falls in other sectors of the economy.
However, as countries renewed COVID-19 restrictions, energy consumption during the 4th quarter was closer to the “normal levels” than in the first three quarters of 2020.
The increase in energy consumption in the fourth quarter of 2020 was also partly due to colder temperatures compared to 2019 and signs of surging electricity demand in global markets.
3. Increase in demand for EVs
As the electrification of the transport system intensifies, the demand for electric vehicles increased in 2020 with almost half a million new registrations in the fourth quarter of 2020. This was the highest figure on record and translated into an unprecedented 17% market share, more than two times higher than in China and six times higher than in the United States.
However, the European Environment Agency (EEA)argues that the EV registrations were lower in 2020 compared to 2019. EEA states that in 2019, electric car registrations were close to 550 000 units, having reached 300 000 units in 2018.
4. Changes in the region’s energy mix and increase in renewable energy generation
The structure of the region’s energy mix changed in 2020, according to the report.
Owing to favorable weather conditions, hydro energy generation was very high and Europe was able to expand its portfolio of renewable energy generation such that renewables (39%) exceeded the share of fossil fuels (36%) for the first time ever in the EU energy mix.
Rising renewable generation was greatly assisted by 29 GW of wind and solar capacity additions in 2020, which is comparable to 2019 levels. Despite disrupting the supply chains of wind and solar resulting in project delays, the pandemic did not significantly slow down renewables’ expansion.
In fact, coal and lignite energy generation fell by 22% (-87 TWh) and nuclear output dropped by 11% (-79 TWh). On the other hand, gas energy generation was not significantly impacted owing to favorable prices which intensified coal-to-gas and lignite-to-gas switching, even as renewables crowd out gas in parts of the market.
5. Retirement of coal energy generation intensify
As the outlook for emission-intensive technologies worsens and carbon prices rise, more and more early coal retirements have been announced. Utilities in Europe are expected to continue transitioning from coal energy generation under efforts to meet stringent carbon emissions reduction targets and as they try to prepare themselves for future business models that they anticipate to be entirely low-carbon reliant.
6. Increase in wholesale electricity prices
In recent months, more expensive emission allowances, along with rising gas prices, have driven up wholesale electricity prices on many European markets to levels last seen at the beginning of 2019. The effect was most pronounced in countries that are dependent on coal and lignite. The wholesale electricity prices dynamic is expected to filter through to retail prices.
The rapid sales growth in the EVs sector was accompanied by expanding charging infrastructure. The number of high-power charging points per 100 km of highways rose from 12 to 20 in 2020.
Calgary EV Charging for Apartments and Condos streamlines permitting for multi-unit dwellings, guiding condo boards and property managers to install EV charging stations, expand infrastructure, and advance sustainability with cleaner air and lower emissions.
Key Points
A Calgary program simplifying permits and guidance to add EV charging stations in multi-unit residential buildings.
✅ Streamlined permitting for condo boards and property managers
✅ Technical assistance to install EV charging stations
✅ Boosts property value and reduces emissions citywide
As the demand for electric vehicles (EVs) continues to rise, and as national EV targets gain traction, Calgary is taking significant strides to enhance its charging infrastructure, particularly in apartment and condominium complexes. A recent initiative has been introduced to facilitate the installation of EV charging stations in these residential buildings, addressing a critical barrier for potential EV owners living in multi-unit dwellings.
The Growing EV Market
Electric vehicles are no longer a niche market; they have become a mainstream option for many consumers. As of late 2023, EV sales have surged, with projections indicating that the trend will only continue. However, a significant challenge remains for those who live in apartments and condos, where high-rise charging can be a mixed experience and the lack of accessible charging stations persists. Unlike homeowners with garages, residents of multi-unit dwellings often rely on public charging infrastructure, which can be inconvenient and limiting.
The New Initiative
In response to this growing concern, the City of Calgary has launched a new initiative aimed at easing the process of installing EV chargers in apartment and condo buildings. This program is designed to streamline the permitting process, reduce red tape, and provide clear guidelines for property managers and condo boards, similar to strata installation rules adopted in other jurisdictions to ease installations.
The initiative includes various measures, such as providing technical assistance and resources to building owners and managers. By simplifying the installation process, the city hopes to encourage more residential complexes to adopt EV charging stations. The initiative also emphasizes practical support, such as providing technical assistance, including condo retrofit guidance, and resources to building owners and managers. This is a significant step towards creating an eco-friendly urban environment and meeting the growing demand for sustainable transportation options.
Benefits of the Initiative
The benefits of this initiative are manifold. Firstly, it supports Calgary's broader climate goals by promoting electric vehicle adoption. As more residents gain access to charging stations, the city can expect a corresponding reduction in greenhouse gas emissions, contributing to cleaner air and a healthier urban environment.
Additionally, providing charging infrastructure can enhance property values. Buildings equipped with EV chargers become more attractive to potential tenants and buyers who prioritize sustainability. As the market for electric vehicles expands, properties that offer charging facilities are likely to see increased demand, making them a sound investment for landlords and developers.
Overcoming Challenges
While this initiative marks a positive step forward, there are still challenges to address. Property managers and condo boards may face initial resistance from residents who are uncertain about the costs associated with installing and maintaining EV chargers, though rebates for home and workplace charging can offset upfront expenses and ease adoption. Clear communication about the long-term benefits, including potential energy savings and the value of sustainable living, will be essential in overcoming these hurdles.
Furthermore, the city will need to ensure that the installation of EV chargers is done in a way that is equitable and inclusive. This means considering the needs of all residents, including those who may not own an electric vehicle but would benefit from a greener community.
Looking Ahead
As Calgary moves forward with this initiative, it sets a precedent for other cities, as seen in Vancouver's EV-ready policy, facing similar challenges in promoting electric vehicle adoption. By prioritizing charging infrastructure in multi-unit residential buildings, Calgary is taking important steps towards a more sustainable future.
In conclusion, the push for EV charging stations in apartments and condos is a critical move for Calgary. It reflects a growing recognition of the role that urban planning and infrastructure play in supporting the transition to electric vehicles, which complements corridor networks like the BC Electric Highway for intercity travel. With the right support and resources, Calgary can pave the way for a greener, more sustainable urban landscape that benefits all its residents. As the city embraces this change, it will undoubtedly contribute to a broader shift towards sustainable living, ultimately helping to combat climate change and improve the quality of life for all Calgarians.
MARVEL microreactor debuts at Idaho National Laboratory as a 100 kW, liquid-metal-cooled, zero-emissions generator powering a nuclear microgrid, integrating wind and solar for firm, clean energy in advanced nuclear applications research.
Key Points
A 100 kW, liquid-metal-cooled INL reactor powering a nuclear microgrid and showcasing zero-emissions clean energy.
✅ 100 kW liquid-metal-cooled microreactor at INL
✅ Powers first nuclear microgrid for applications testing
✅ Integrates with wind and solar for firm clean power
Inside the Transient Reactor Test Facility, a towering, windowless gray block surrounded by barbed wire, researchers are about to embark on a mission to solve one of humanity’s greatest problems with a tiny device.
Next year, they will begin construction on the MARVEL reactor. MARVEL stands for Microreactor Applications Research Validation and EvaLuation. It’s a first-of-a-kind nuclear power generator with a mini-reactor design that is cooled with liquid metal and produces 100 kilowatts of energy. By 2024, researchers expect MARVEL to be the zero-emissions engine of the world’s first nuclear microgrid at Idaho National Laboratory (INL).
“Micro” and “tiny,” of course, are relative. MARVEL stands 15 feet tall, weighs 2,000 pounds, and can fit in a semi-truck trailer. But it's minuscule compared to conventional nuclear power plants, which span acres, produces gigawatts of electricity to power whole states, and can take more than a decade to build.
For INL, where scientists have tested dozens of reactors over the decades across an area three-quarters the size of Rhode Island, it’s a radical reimagining of the technology. This advanced reactor design could help overcome the biggest obstacles to nuclear energy: safety, efficiency, scale, cost, and competition. MARVEL is an experiment to see how all these pieces could fit together in the real world.
“It’s an applications test reactor where we’re going to try to figure out how we extract heat and energy from a nuclear reactor and apply it — and combine it with wind, solar, and other energy sources,” said Yasir Arafat, head of the MARVEL program.
The project, however, comes at a time when nuclear power is getting pulled in wildly different directions, from phase-outs to new strategies like the UK’s green industrial revolution that shapes upcoming reactors.
Germany just shut down its last nuclear reactors. The U.S. just started up its first new reactor in 30 years, underscoring a shift. France, the country with the largest share of nuclear energy on its grid, saw its atomic power output decline to its lowest since 1988 last year. Around the world, there are currently 60 nuclear reactors under construction, with 22 in China alone.
But the world is hungrier than ever for energy. Overall electricity demand is growing: Global electricity needs will increase nearly 70 percent by 2050 compared to today’s consumption, according to the Energy Information Administration. At the same time, the constraints are getting tighter. Most countries worldwide, including the U.S., have committed to net-zero goals by the middle of the century, even as demand rises.
To meet this energy demand without worsening climate change, the U.S. Energy Department’s report on advanced nuclear energy released in March said, “the U.S. will need ~550–770 [gigawatts] of additional clean, firm capacity to reach net-zero; nuclear power is one of the few proven options that could deliver this at scale.”
The U.S. government is now renewing its bets on nuclear power to produce steady electricity without emitting greenhouse gases. The Bipartisan Infrastructure Law included $6 billion to keep existing nuclear power plants running. In addition, the Inflation Reduction Act, the U.S. government’s largest investment in countering climate change, includes several provisions to benefit atomic power, including tax credits for zero-emissions energy.
“It’s a game changer,” said John Wagner, director of INL.
The tech sector is jumping in, too, as atomic energy heats up across startups and investors. In 2021, venture capital firms poured $3.4 billion into nuclear energy startups. They’re also pouring money into even more far-out ideas, like nuclear fusion power. Public opinion has also started moving. An April Gallup poll found that 55 percent of Americans favour and 44 percent oppose using atomic energy, the highest levels of support in 10 years.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.