Japan to restart fast breeder reactor in early 2010

TOKAIMURA, JAPAN - The Japan Atomic Energy Agency (JAEA) has announced that the 280-megawatt (MW) Monju fast breeder reactor (FBR) is ready for operations and may be restarted as early as February of next year, or March at the latest.

The FBR had been scheduled for a restart in 2008, but the date had to be rescheduled because of several delays in the final safety checks. Japan has spent more than $9.02 billion on the project so far.

The Monju reactor was developed in 1991 as an experimental FBR at Tsuruga in the Fakui prefecture. Monju is a sodium-cooled, loop type reactor that is fueled by mixed oxide. The reactor was designed to produce more nuclear fuel than it consumed. When restarted, the used nuclear fuel from the light water reactors would be recycled to produce a sustainable form of power. The FBR began operations in April 1994, but the reactor was shut down in December 1995 following a massive sodium leak and fire in a secondary cooling circuit.

Japan has embraced the use of nuclear power as a source of electricity. Nuclear energy from 53 nuclear power plants accounts for close to 30% of Japan's net nuclear power production capacity of about 50,000 MW, out of a total national power generation capacity of more than 250,000 MW. The country's aim is to increase this amount to 41% by 2050. By then, FBRs are expected to be ready for commercial deployment.

Japan is not rich in natural resources and depends on imports to meet almost 80% of its energy requirements. During the early 1970s, the country depended largely on fossil-fuel imports from the Middle East to drive its power industry. Japan gradually developed its nuclear power industry, and the country had five nuclear reactors in operation by the mid-1970s. The country resolved to reduce its dependence on oil imports, and a major nuclear construction program was launched.

In 2007, the government of Japan selected Mitsubishi Heavy Industries Limited (MHI) as the principal company to develop the country's new generation of FBRs. The company has been given the responsibility of developing appropriate designs for the proposed reactors. MHI also will undertake reactor sales in the future. MHI has been involved in the development of FBRs since the 1960s. The company's plans include the construction of an FBR for demonstration purposes by 2025, and for commercial operations by 2050.

FBRs often have been labeled 'dream reactors,' as fuel production is higher than fuel consumption. The reactors produce plutonium by combusting the waste produced by conventional light water reactors. The United States was the first nation to generate nuclear energy with an FBR that was set up in 1946. Since then, all the major economies of the world have attempted to nurture an FBR program, but this breed of reactors has always been afflicted by various technical problems. Several countries already have abandoned their costly FBR programs. The fear that production of plutonium would lead to the manufacture of nuclear weapons was another reason for the western nations to abandon their FBR plans.

Russia is the only nation with two FBRs that supply grid power: the 12-MW unit at Dimitrovgrad and the 560-MW Beloyarsk 3 reactor. An 880-MW unit is being set up at Beloyarsk and is expected to be operational in 2014. There also are plans to develop another 1,200-MW unit at Beloyarsk that is to be completed in the 2020s. France soon will close its last FBR Phoenix. Other nations that have experimented with FBRs in the past are Germany, Kazakhstan and the United Kingdom.

India is constructing a 500-MW prototype FBR at Kalpakkam in Tamil Nadu, which is expected to be ready by 2011. The FBR is being constructed by Bharatiya Nabhikiya Vidyut Nigam Limited, a wholly owned subsidiary of the Government of India. Four more mixed-oxide FBRs have been planned in India: two at Kalpakkam in addition to the upcoming prototype, and two at other sites. China is finalizing plans to launch its FBR program later this year.

Related News

thermal plant

Thermal power plants’ PLF up on rising demand, lower hydro generation

LOS ANGELES - Capacity utilisation levels of coal-based power plants improved in May because of rising demand and lower generation from hydroelectric sources. The plant load factor (PLF) of thermal power plants went up to 65.3% in the month, 1.7 percentage points higher than the year-ago period.

While PLFs of central and state government-owned plants were 75.5% and 64.5%, respectively, the same for independent power producers (IPPs) stood at 57.8%. Though PLFs of IPPs were higher than May 2017 levels, it failed to cross the 60% mark, which eases debt servicing capabilities of power generation assets.

Thermal power plants generated 96,580 million…

READ MORE

5,000 homes would be switched to geothermal energy free of charge

READ MORE

ford transit van

Ford announces an all-electric Transit cargo van

READ MORE

ev-battery-plant-project-montreal

Northvolt Affirms Continuation of EV Battery Plant Project Near Montreal

READ MORE

Federal government spends $11.8M for smart grid technology in Sault Ste. Marie

READ MORE