Hydropower in India – feast or famine?

By Industrial Info Resources


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
India was one of the pioneering countries in Asia to implement hydroelectric power stations. As far back as 1898, one of the first hydropower plants in the region, generating only 130 kilowatts, was established at Darjeeling in West Bengal.

In 1902, a second plant was established on the Shimsha River in Karnataka.

By the middle of this year, India's installed hydroelectric generating capacity had reached almost 37,000 megawatts MW, representing almost 23 of the country's total generating capacity. In comparison, thermal power plants using coal, gas and diesel, contributed a total of 104,400 MW, or more than 64.

In recent years, despite increased hydroelectric schemes, the proportion of electricity generated from hydropower in India has declined. In 1970, for example, the proportion was as high as 44. Now the Indian government is pushing for increased power production from renewable sources, including hydropower schemes, as it strives to cut 2005 carbon-emission levels by between 20 and 25 by 2020.

The potential for hydroelectric power in India is enormous. The Indian Central Electricity Authority CEA New Delhi estimates hydropower potential to be as much as 148,700 MW, or 84,000 MW under a 60 load capacity. Under the 12th Five-Year Plan 2012-17, the Indian government has identified possible hydropower projects totaling more than 38,000 MW.

These projects range from the 25-MW plant at Ganol, on the Barak tributary of the Brahmaputra River in Meghalaya, to the 4,000-MW project at Etalin, on the Dibang tributary of the same river in Arunachal Pradesh. A meeting of the Task Force for Hydro Power Development in April this year determined that a capacity of 20,000 MW should be commissioned during the 12th Five-Year Plan.

For the same period, India's premier hydropower utility, NHPC Limited, has commissioned 1,150 MW of hydropower and has a further 4,172 MW under construction.

Both the state and national governments in India seem to regard hydropower as a potential gold mine to generate not only power, but also wealth. A recent cabinet note from the Arunachal Pradesh state government, for example, discusses the "state floating in hydro-dollars like the Arab countries are floating in petro-dollars."

But despite the enormous potential, hydropower has its problems. While proponents point to the green benefits of hydropower, opponents counter with claims that constructing dams often involves social injustices, such as the necessary relocation of villages. Critics point to the costs involved and the environmental destruction of large tracts of land.

While the International Hydropower Association pushes the environmental aspects of hydropower, a report produced by the World Commission on Dams in 2000 that investigated the environmental impacts of large dams, stated that "a first estimate suggests that the gross emissions from reservoirs may account for between 1 and 2 of the global warming potential of greenhouse gas emissions."

Another problem with hydropower is the inconsistency of water supplies. There seems to be a "feast or famine" scenario, with either floods or droughts. The enormous potential of rivers that begin in Himalayan glaciers is under threat as these glaciers are reportedly receding because of global warming.

According to the Intergovernmental Panel on Climate Change IPCC, rivers depending on flows from the glaciers "such as the Ganga, the Indus and the Brahmaputra and others in northern India may soon become seasonal."

Not only is the volume of available water under threat, but also competition for water resources is increasing from the industrial, agricultural and domestic sectors.

Earlier this month, the Ministry of Environment and Forests commissioned two studies on the impacts of all hydroelectric schemes planned for the Bhagirathi and Alaknanda rivers. The studies are aimed at assessing whether the construction of dams on the rivers will reduce the water available for irrigation and domestic consumption downstream.

Related News

Ontario's Clean Electricity Regulations: Paving the Way for a Greener Future

Ontario Clean Electricity Regulations accelerate renewable energy adoption, drive emissions reduction, and modernize the smart grid with energy storage, efficiency targets, and reliability upgrades to support decarbonization and a stable power system for Ontario.

 

Key Points

Standards to cut emissions, grow renewables, improve efficiency, and modernize the grid with storage and smart systems.

✅ Phases down fossil generation and invests in storage.

✅ Sets utility efficiency targets to curb demand growth.

✅ Upgrades to smart grid for reliability and resiliency.

 

Ontario has taken a significant step forward in its energy transition with the introduction of new clean electricity regulations. These regulations, complementing federal Clean Electricity Regulations, aim to reduce carbon emissions, promote sustainable energy sources, and ensure a cleaner, more reliable electricity grid for future generations. This article explores the motivations behind these regulations, the strategies being implemented, and the expected impacts on Ontario’s energy landscape.

The Need for Clean Electricity

Ontario, like many regions around the world, is grappling with the effects of climate change, including more frequent and severe weather events. In response, the province has set ambitious targets to reduce greenhouse gas emissions and increase the use of renewable energy sources, reflecting trends seen in Alberta’s path to clean electricity across Canada. The electricity sector plays a central role in this transition, as it is responsible for a significant portion of the province’s carbon footprint.

For years, Ontario has been moving away from coal as a source of electricity generation, and now, with the introduction of these new regulations, the province is taking a step further in decarbonizing its grid, including its largest competitive energy procurement to date. By setting clear goals and standards for clean electricity, the province hopes to meet its environmental targets while ensuring a stable and affordable energy supply for all Ontarians.

Key Aspects of the New Regulations

The regulations focus on encouraging the use of renewable energy sources such as wind, solar, hydroelectric, and geothermal power. One of the key elements of the plan is the gradual phase-out of fossil fuel-based energy sources. This shift is expected to be accompanied by greater investments in energy storage solutions, including grid batteries, to address the intermittency issues often associated with renewable energy sources.

Ontario’s new regulations also emphasize the importance of energy efficiency in reducing overall demand. As part of this initiative, utilities and energy providers will be required to meet strict energy-saving targets and participate in new electricity auctions designed to reduce costs, ensuring that both consumers and businesses are incentivized to use energy more efficiently.

In addition, the regulations promote technological innovation in the electricity sector. By supporting the development of smart grids, energy storage technologies, and advanced power management systems, Ontario is positioning itself to become a leader in the global energy transition.

Impact on the Economy and Jobs

One of the anticipated benefits of the clean electricity regulations is their positive impact on Ontario’s economy. As the province invests in renewable energy infrastructure and clean technologies, new job opportunities are expected to arise in industries such as manufacturing, construction, and research and development. These regulations also encourage innovation in energy services, which could lead to the growth of new companies and industries, while easing pressures on industrial ratepayers through complementary measures.

Furthermore, the transition to cleaner energy is expected to reduce the long-term costs associated with climate change. By investing in sustainable energy solutions now, Ontario will help mitigate the financial burdens of environmental damage and extreme weather events in the future.

Challenges and Concerns

While the new regulations have been widely praised for their environmental benefits, they are not without their challenges. One of the primary concerns is the potential cost to consumers, and some Ontario hydro policy critique has called for revisiting legacy pricing approaches to improve affordability. While renewable energy sources have become more affordable over the years, transitioning from fossil fuels could still result in higher electricity prices in the short term. Additionally, the implementation of new technologies, such as smart grids and energy storage, will require substantial upfront investment.

Moreover, the intermittency of renewable energy generation poses a challenge to grid stability. Ontario’s electricity grid must be able to adapt to fluctuations in energy supply as more variable renewable sources come online. This challenge will require significant upgrades to the grid infrastructure and the integration of storage solutions to ensure reliable energy delivery.

The Road Ahead

Ontario’s clean electricity regulations represent an important step in the province’s commitment to combating climate change and transitioning to a sustainable, low-carbon economy. While there are challenges to overcome, the benefits of cleaner air, reduced emissions, and a more resilient energy system will be felt for generations to come. As the province continues to innovate and lead in the energy sector, Ontario is positioning itself to thrive in the green economy of the future.

 

Related News

View more

US Grid Gets an Overhaul for Renewables

FERC Transmission Planning Overhaul streamlines interregional grid buildouts, enabling high-voltage lines, renewable integration, and grid reliability to scale, cutting fossil reliance while boosting decarbonization, climate resilience, and affordability across regions facing demand and extreme weather.

 

Key Points

Federal rule updating interregional grid planning to integrate renewables, share costs, and improve reliability.

✅ Accelerates high-voltage, interregional lines for renewable transfer

✅ Optimizes transmission planning and cost allocation frameworks

✅ Boosts grid reliability, resilience, and emissions reductions

 

The US took a significant step towards a cleaner energy future on May 13th, 2024. The Federal Energy Regulatory Commission (FERC) approved the first major update to the country's electric transmission policy in over a decade, while congressional Democrats continue to push for action on aggregated DERs within FERC's remit today. This overhaul aims to streamline the process of building new power lines, specifically those that connect different regions. This improved connectivity is crucial for integrating more renewable energy sources like wind and solar into the national grid.

The current system faces challenges in handling the influx of renewables, and the aging U.S. grid amplifies those hurdles today. Renewable energy sources are variable by nature – the sun doesn't always shine, and the wind doesn't always blow. Traditionally, power grids have relied on constantly running power plants, like coal or natural gas, to meet electricity demands. These plants can be easily adjusted to produce more or less power as needed. However, renewable energy sources require a different approach.

The new FERC policy focuses on building more interregional transmission lines. These high-voltage power lines would allow electricity generated in regions with abundant solar or wind power, and even enable imports of green power from Canada in certain corridors, to be transmitted to areas with lower renewable energy resources. For example, solar energy produced in sunny states like California could be delivered to meet peak demand on the East Coast during hot summer days.

This improved connectivity offers several advantages. Firstly, it allows for a more efficient use of renewable resources. Secondly, it reduces the need for fossil fuel-based power plants, leading to cleaner air and lower greenhouse gas emissions. Finally, a more robust grid is better equipped to handle extreme weather events, which are becoming increasingly common due to climate change, and while Biden's climate law shows mixed results on decarbonization, stronger transmission supports resilience.

The need for an upgrade is undeniable. The Biden administration has set ambitious goals for decarbonizing the power sector by 2035, including proposals for a clean electricity standard as a pathway to those targets. A study by the US Department of Energy estimates that achieving this target will require more than doubling the country's regional transmission capacity and increasing interregional capacity by more than fivefold. The aging US grid is already struggling to keep up with current demands, and without significant improvements, it could face reliability issues in the future.

The FERC's decision has been met with praise from environmental groups and renewable energy companies. They see it as a critical step towards achieving a clean energy future. However, some stakeholders, including investor-owned utilities, have expressed concerns about the potential costs associated with building new transmission lines, citing persistent barriers to development identified in recent Senate testimony. Finding the right balance between efficiency, affordability, and environmental responsibility will be key to the success of this initiative.

The road ahead won't be easy. Building new power lines is a complex process that can face opposition from local communities, and broader disputes over electricity pricing changes often complicate planning and approvals. However, the potential benefits of a modernized grid are significant. By investing in this overhaul, the US is taking a crucial step towards a more reliable, sustainable, and cleaner energy future.

 

Related News

View more

Here's what we know about the mistaken Pickering nuclear alert one week later

Pickering Nuclear Alert Error prompts Ontario investigation into the Alert Ready emergency alert system, Pelmorex safeguards, and public response at Pickering Nuclear Generating Station, including potassium iodide orders and geo-targeted notification issues.

 

Key Points

A mistaken Ontario emergency alert about the Pickering plant, now under probe for human error and system safeguards.

✅ Investigation led by Emergency Management Ontario

✅ Alert Ready and Pelmorex safeguards under review

✅ KI pill demand surged; geo-targeting questioned

 

A number of questions still remain a week after an emergency alert was mistakenly sent out to people across Ontario warning of an unspecified incident at the Pickering Nuclear Generating Station. 

The province’s solicitor general has stepped in and says an investigation into the incident should be completed fairly quickly according to the minister.

However, the nuclear scare has still left residents on edge with tens of thousands of people ordering potassium iodide, or KI, pills that protect the body from radioactive elements in the days following the incident.

Here’s what we know and still don’t know about the mistaken Pickering nuclear plant alert:

Who sent the alert?

According to the Alert Ready Emergency Alert System website, the agency works with several federal, provincial and territorial emergency management officials, Environment and Climate Change Canada and Pelmorex, a broadcasting industry and wireless service provider, to send the alerts.

Martin Belanger, the director of public alerting for Pelmorex, a company that operates the alert system, said there are a number of safeguards built in, including having two separate platforms for training and live alerts.

"The software has some steps and some features built in to minimize that risk and to make sure that users will be able to know whether or not they're sending an alert through the... training platform or whether they're accessing the live system in the case of a real emergency," he said.

Only authorized users have access to the system and the province manages that, Belanger said. Once in the live system, features make the user aware of which platform they are using, with various prompts and messages requiring the user's confirmation. There is a final step that also requires the user to confirm their intent of issuing an alert to cellphones, radio and TVs, Belanger said.

Last Sunday, a follow-up alert was sent to cellphones nearly two hours after the original notification, and during separate service disruptions such as a power outage in London residents also sought timely information.

What has the investigation revealed?

It’s still unclear as to how exactly the alert was sent in error, but Solicitor General Sylvia Jones has tapped the Chief of Emergency Management Ontario to investigate.

"It's very important for me, for the people of Ontario, to know exactly what happened on Sunday morning," Jones said.

Jones said initial observations suggest human error was responsible for the alert that was sent out during routine tests of the emergency alert.

“I want to know what happened and equally important, I want some recommendations on insurances and changes we can make to the system to make sure it doesn't happen again,” Jones said.

Jones said she expects the results of the probe to be made public.

Can you unsubscribe from emergency alerts?

It’s not possible to opt out of receiving the alerts, according to the Alert Ready Emergency Alert System website, and Ontario utilities warn about scams to help customers distinguish official notices.

“Given the importance of warning Canadians of imminent threats to the safety of life and property, the CRTC requires wireless service providers to distribute alerts on all compatible wireless devices connected to an LTE network in the target area,” the website reads.

The agency explains that unlike radio and TV broadcasting, the wireless public alerting system is geo-targeted and is specific to the a “limited area of coverage”, and examples like an Alberta grid alert have highlighted how jurisdictions tailor notices for their systems.

“As a result, if an emergency alert reaches your wireless device, you are located in an area where there is an imminent danger.”

The Pickering alert, however, was received by people from as far as Ottawa to Windsor.

Is the Pickering Nuclear Generating Station closing?

The Pickering nuclear plant has been operating since 1971, and had been scheduled to be decommissioned this year, but the former Liberal government -- and the current Progressive Conservative government -- committed to keeping it open until 2024. Decommissioning is now set to start in 2028.

It operates six CANDU reactors, and in contingency planning operators have considered locking down key staff to maintain reliability, generates 14 per cent of Ontario's electricity and is responsible for 4,500 jobs across the region, according to OPG, while utilities such as Hydro One's relief programs have supported customers during broader crises.

What should I do if I receive an emergency alert?

Alert Ready says that if you received an alert on your wireless device it’s important to take action “safely”.

“Stop what you are doing when it is safe to do so and read the emergency alert,” the agency says on their website.

“Alerting authorities will include within the emergency alert the information you need and guidance for any action you are required to take, and insights from U.S. grid pandemic response underscore how critical infrastructure plans intersect with public safety.”

“This could include but is not limited to: limit unnecessary travel, evacuate the areas, seek shelter, etc.”

The wording of last Sunday's alert caused much initial confusion, warning residents within 10 kilometres of the plant of "an incident," though there was no "abnormal" release of radioactivity and residents didn't need to take protective steps, but emergency crews were responding.

“In the event of a real emergency, the wording would be different,” Jones said.

 

Related News

View more

Renewable power developers discover more energy sources make better projects

Hybrid renewable energy projects integrate wind, solar, and battery storage to enhance grid reliability, reduce curtailment, and provide dispatchable power in markets like Alberta, leveraging photovoltaic tracking, overbuilt transformers, and improved storage economics.

 

Key Points

Hybrid renewable energy projects combine wind, solar, and storage to deliver reliable, dispatchable clean power.

✅ Combine wind, solar, and batteries for steady, dispatchable output

✅ Lower curtailment by using shared transformers and smart inverters

✅ Boost farm income via leases; diversify risk from oil and gas

 

Third-generation farmer James Praskach has been burned by the oil and gas sector and watched wicked weather pound his crops flat, but he is hoping a new kind of energy -- the renewable kind -- will pay dividends.

The 39-year-old is part of a landowner consortium that is hosting the sprawling 300-megawatt Blackspring Ridge wind power project in southeastern Alberta.

He receives regular lease payments from the $600-million project that came online in 2014, even though none of the 166 towering wind turbines that surround his land are actually on it.

His lease payments stand to rise, however, when and if the proposed 77-MW Vulcan Solar project, which won regulatory approval in 2016, is green-lighted by developer EDF Renewables Inc.

The panels would cover about 400 hectares of his family's land with nearly 300,000 photovoltaic solar panels in Alberta, installed on racks designed to follow the sun. It would stand in the way of traditional grain farming of the land, but that wouldn't have been a problem this year, Praskach says.

"This year we actually had a massive storm roll through. And we had 100 per cent hail damage on all of (the Vulcan Solar lands). We had canola, peas and barley on it this year," he said, adding the crop was covered by insurance.

Meanwhile, poor natural gas prices and a series of oilpatch financial failures mean rents aren't being paid for about half of the handful of gas wells on his land, showing how a province that is a powerhouse for both fossil and green energy can face volatility -- he's appealed to the Alberta surface Rights Board for compensation.

"(Solar power) would definitely add a level of security for our farming operations," said Praskach.

Hybrid power projects that combine energy sources are a growing trend as selling renewable energy gains traction across markets. Solar only works during the day and wind only when it is windy so combining the two -- potentially with battery storage or natural gas or biomass generation -- makes the power profile more reliable and predictable.

Globally, an oft-cited example is on El Hierro, the smallest of the Canary Islands, where wind power is used to pump water uphill to a reservoir in a volcanic crater so that it can be released to provide hydroelectric power when needed. At times, the project has provided 100 per cent of the tiny island's energy needs.

Improvements in technology such as improving solar and wind power and lower costs for storage mean it is being considered as a hybrid add-on for nearly all of its renewable power projects, said Dan Cunningham, manager of business development at Greengate Power Corp. of Calgary.

Grant Arnold, CEO of developer BluEarth Renewables, agreed.

"The barrier to date, I would say, has been cost of storage but that is changing rapidly," he said. "We feel that wind and storage or solar and storage will be a fundamental way we do business within five years. It's changing very, very rapidly and it's the product everybody wants."

Vulcan Solar was proposed after Blackspring Ridge came online, said David Warner, associate director of business development for EDF Renewables, which now co-owns the wind farm with Enbridge Inc.

"Blackspring actually had incremental capacity in the main power transformers," he said. "Essentially, it was capable of delivering more energy than Blackspring was producing. It was overbuilt."

Vulcan Solar has been sized to utilize the shortfall without producing so much energy that either will ever have to be constrained, he said. Much of the required environmental work has already been done for the wind farm.

Storage is being examined as a potential addition to the project but implementing it depends on the regulatory system. At present, Alberta's regulators are still working on how to permit and control what they call "dispatchable renewables and storage" systems.

EDF announced last spring it would proceed with the Arrow Canyon Solar Project in Nevada which is to combine 200 MW of solar with 75 MW of battery storage by 2022 -- the batteries are to soak up the sun's power in the morning and dispatch the electricity in the afternoon when Las Vegas casinos' air conditioning is most needed.

What is clear is that renewable energy will continue to grow, with Alberta renewable jobs expected to follow -- in a recent report, the International Energy Agency said global electricity capacity from renewables is set to rise by 50 per cent over the next five years, an increase equivalent to adding the current total power capacity of the United States.

The share of renewables is expected to rise from 26 per cent now to 30 per cent in 2024 but will remain well short of what is needed to meet long-term climate, air quality and energy access goals, it added.

 

Related News

View more

Questions abound about New Brunswick's embrace of small nuclear reactors

New Brunswick Small Modular Reactors promise clean energy, jobs, and economic growth, say NB Power, ARC Nuclear, and Moltex Energy; critics cite cost overruns, nuclear waste risks, market viability, and reliance on government funding.

 

Key Points

Compact reactors proposed in NB to deliver low-carbon power and jobs; critics warn of costs, waste, and market risks.

✅ Promised jobs, exports, and net-zero support via NB Power partnerships

✅ Critics cite cost overruns, nuclear waste, and weak market demand

✅ Government funding pivotal; ARC and Moltex advance licensing

 

When Mike Holland talks about small modular nuclear reactors, he sees dollar signs.

When the Green Party hears about them, they see danger signs.

The loquacious Progressive Conservative minister of energy development recently quoted NB Power's eye-popping estimates of the potential economic impact of the reactors: thousands of jobs and a $1 billion boost to the provincial economy.

"New Brunswick is positioned to not only participate in this opportunity, but to be a world leader in the SMR field," Holland said in the legislature last month.

'Huge risk' nuclear deal could let Ontario push N.B. aside, says consultant
'Many issues' with modular nuclear reactors says environmental lawyer
Green MLAs David Coon and Kevin Arseneau responded cheekily by ticking off the Financial and Consumer Services Commission's checklist on how to spot a scam.

Is the sales pitch from a credible source? Is the windfall being promised by a reputable institution? Is the risk reasonable?

For small nuclear reactors, they said, the answer to all those questions is no. 

"The last thing we need to do is pour more public money down the nuclear-power drain," Coon said, reminding MLAs of the Point Lepreau refurbishment project that went $1 billion over budget.

The Greens aside, New Brunswick politicians have embraced small modular reactors as part of a broader premiers' nuclear initiative to develop SMR technology, which they say can both create jobs and help solve the climate crisis.

Smaller and cheaper, supporters say
They're "small" because, depending on the design, they would generate from three to 300 megawatts of electricity, less than, for example, Point Lepreau's 660 megawatts.

It's the modular design that is supposed to make them more affordable, as explained in next-gen nuclear guides, with components manufactured elsewhere, sometimes in existing factories, then shipped and assembled. 

Under Brian Gallant, the Liberals handed $10 million to two Saint John companies working on SMRs, ARC Nuclear and Moltex Energy.


Greens point to previous fiascoes
The Greens and other opponents of nuclear power fear SMRS are the latest in a long line of silver-bullet fiascoes, from the $23 million spent on the Bricklin in 1975 to $63.4 million in loans and loan guarantees to the Atcon Group a decade ago.

"It seems that [ARC and Moltex] have been targeting New Brunswick for another big handout ... because it's going to take billions of dollars to build these things, if they ever get off the drawing board," said Susan O'Donnell, a University of New Brunswick researcher.

O'Donnell, who studies technology adoption in communities, is part of a small new group called the Coalition for Responsible Energy Development formed this year to oppose SMRs.

"What we really need here is a reasonable discussion about the pros and cons of it," she said.


Government touts economic spinoffs
According to the Higgs government's throne speech last month, if New Brunswick companies can secure just one per cent of the Canadian market for small reactors, the province would see $190 million in revenue. 

The figures come from a study conducted for NB Power by University of Moncton economist Pierre-Marcel Desjardins.

But a four-page public summary does not include any sales projections and NB Power did not provide them to CBC News. 

"What we didn't see was a market analysis," O'Donnell said. "How viable is the market? … They're all based on a hypothetical market that probably doesn't exist."

O'Donnell said her group asked for the full report but was told it's confidential because it contains sensitive commercial information.

Holland said he's confident there will be buyers. 

"It won't be hard to find communities that will be looking for a cost effective, affordable, safe alternative to generate their electricity and do it in a way that emits zero emissions," he said.

SMRs come in different sizes and while some proponents talk about using "micro" reactors to provide electricity to remote northern First Nations communities, ARC and Moltex plan larger models to sell to power utilities looking to shift away from coal and gas.

"We have utilities and customers across Canada, where Ontario's first SMR groundbreaking has occurred already, across the United States, across Asia and Europe saying they desperately want a technology like this," said Moltex's Saint John-based CEO for North America Rory O'Sullivan. 

"The market is screaming for this product," he said, adding "all of the utilities" in Canada are interested in Moltex's reactors

ARC's CEO Norm Sawyer is more specific, guessing 30 per cent of his SMR sales will be in Atlantic Canada, 30 per cent in Ontario, where Darlington SMR plans are advancing, and 40 per cent in Alberta and Saskatchewan — all provincial power grids.

O'Donnell said it's an important question because without a large number of guaranteed sales, the high cost of manufacturing SMRs would make the initiative a money-loser. 

The cost of building the world's only functioning SMR, in Russia, was four times what was expected. 

An Australian government agency said initial cost estimates for such major projects "are often initially too low" and can "overrun." 


Up-front costs can be huge
University of British Columbia physicist M.V. Ramana, who has authored studies on the economics of nuclear power, said SMRs face the same financial reality as any large-scale manufacturing.

"You're going to spend a huge amount of money on the basic fixed costs" at the outset, he said, with costs per unit becoming more viable only after more units are built and sold. 

He estimates a company would have to build and sell more than 700 SMRs to break even, and said there are not enough buyers for that to happen. 

But Sawyer said those estimates don't take into account technological advances.

"A lot of what's being said ... is really based on old technology," he said, estimating ARC would be viable even if it sold an amount of reactors in the low double digits. 

O'Sullivan agrees.

"In fact, just the first one alone looks like it will still be economical," he said. "In reality, you probably need a few … but you're talking about one or two, maximum three [to make a profit] because you don't need these big factories."

'Paper designs' prove nothing, says expert
Ramana doesn't buy it. 

"These are all companies that have been started by somebody who's been in the nuclear industry for some years, has a bright idea, finds an angel investor who's given them a few million dollars," he said.

"They have a paper design, or a Power Point design. They have not built anything. They have not tested anything. To go from that point … to a design that can actually be constructed on the field is an enormous amount of work." 

Both CEOs acknowledge the skepticism about SMRs.

'The market is screaming for this product,' said Moltex’s Saint John-based CEO for North America, Rory O’Sullivan. (Brian Chisholm, CBC)
"I understand New Brunswick has had its share of good investments and its share of what we consider questionable investments," said Sawyer, who grew up in Rexton.

But he said ARC's SMR is based on a long-proven technology and is far past the on-paper design stage "so you reduce the risk." 

Moltex is now completing the first phase of the Canadian Nuclear Safety Commission's review of its design, a major hurdle. ARC completed that phase last year.

But, Ramana said there are problems with both designs. Moltex's molten salt model has had "huge technical challenges" elsewhere while ARC's sodium-cooled system has encountered "operational difficulties."


Ottawa says nuclear is needed for climate goals
The most compelling argument for looking at SMRs may be Ottawa's climate change goals, and international moves like the U.K.'s green industrial revolution plan point to broader momentum.  

The national climate plan requires NB Power to phase out burning coal at its Belledune generating station by 2030. It's scrambling to find a replacement source of electricity.

The Trudeau government's throne speech in October promised to "support investments in renewable energy and next-generation clean energy and technology solutions."

And federal Natural Resources Minister Seamus O'Regan told CBC earlier this year that he's "very excited" about SMRs and has called nuclear key to climate goals in Canada as well.

"We have not seen a model where we can get to net-zero emissions by 2050 without nuclear,"  he said.

O'Donnell said while nuclear power doesn't emit greenhouse gases, it's hardly a clean technology because of the spent nuclear fuel waste. 


Government support is key 
She also wonders why, if SMRs make so much sense, ARC and Moltex are relying so much on government money rather than private capital.

Holland said "the vast majority" of funding for the two companies "has to come from private sector investments, who will be very careful to make sure they get a return on that investment."

Sawyer said ARC has three dollars for every dollar it has received from the province, and General Electric has a minority ownership stake in its U.S.-based parent company.

O'Sullivan said Moltex has attracted $5 million from a European engineering firm and $6 million from "the first-ever nuclear crowdfunding campaign." 

But he said for new technologies, including nuclear power, "you need government to show policy support.

"Nuclear technology has always been developed by governments around the world. This is a very new change to have an industry come in and lead this, so private investors can't take the risk to do that on their own," he said. 

So far, Ottawa hasn't put up any funding for ARC or Moltex. During the provincial election campaign, Higgs implied federal money was imminent, but there's been no announcement in the almost three months since then.

Last month the federal government announced $20 million for Terrestrial Energy, an Ontario company working on SMRs, alongside OPG's commitment to SMRs in the province, underscoring momentum.

"We know we have the best technology pitch," O'Sullivan said. "There's others that are slightly more advanced than us, but we have the best overall proposition and we think that's going to win out at the end of the day."

But O'Donnell said her group plans to continue asking questions about SMRs. 

"I think what we really need is to have an honest conversation about what these are so that New Brunswickers can have all the facts on the table," she said.

 

Related News

View more

Ontario will refurbish Pickering B NGS

Pickering nuclear refurbishment will modernize Ontario's Candu reactors at Pickering B, sustaining 2,000 MW of clean electricity, aiding net-zero goals, and aligning with Ontario Power Generation plans and Canadian Nuclear Safety Commission reviews.

 

Key Points

An 11-year overhaul of Pickering B Candu reactors to extend life, keep 2,000 MW online, and back Ontario net-zero grid.

✅ 11-year project; 11,000 annual jobs; $19.4B GDP impact.

✅ Refurbishes four Pickering B Candu units; maintains 2,000 MW.

✅ Requires Canadian Nuclear Safety Commission license approvals.

 

The Ontario government has announced its intention to pursue a Pickering refurbishment at the venerable nuclear power station, which has been operational for over fifty years. This move could extend the facility's life by another 30 years.

This decision is timely, as Ontario anticipates a significant surge in electricity demand and a growing electricity supply gap in the forthcoming years. Additionally, all provinces are grappling with new federal mandates for clean electricity, necessitating future power plants to achieve net-zero carbon emissions.

Todd Smith, the Energy Minister, is expected to endorse Ontario Power Generation's proposal for the plant's overhaul, as per a preliminary version of a government press release.

The renovation will focus on four Candu reactors, known collectively as Pickering B, which were originally commissioned in the early 1980s. This upgrade is projected to continue delivering 2,000 megawatts of power, equivalent to the current output of these units.

According to the press release, the project will span 11 years, create approximately 11,000 annual jobs, and contribute $19.4 billion to Ontario's GDP. However, the total budget for the project remains unspecified.

The project follows the ongoing refurbishment of four units at the nearby Darlington nuclear station, which is more than halfway completed with a budget of $12.8 billion.

The proposal awaits the Canadian Nuclear Safety Commission's approval, and officials face extension request timing considerations before key deadlines.

The Commission is also reviewing a prior request from OPG to extend the operational license of the existing Pickering B units until 2026. This extension would allow the plant to safely continue operating until the commencement of its renovation, pending approval.

 

Ontario's Ambitious Nuclear Strategy

The announcement regarding Pickering is part of Ontario's broader clean energy plan for an unprecedented expansion of nuclear power in Canada.

Last summer, the province announced its intention to nearly double the output at Bruce Power, currently the world's largest nuclear generating station.

Additionally, Ontario revealed SMR plans to construct three more alongside the existing project at Darlington. These reactors are expected to supply enough electricity to power around 1.2 million homes.

Discussions about revitalizing the Pickering facility began in 2022, after the station had been slated to close as planned amid debate, with Ontario Power Generation submitting a feasibility report to the government last summer.

The Ford government emphasized the necessity of this nuclear expansion to meet the increasing electricity demands anticipated from the auto sector's shift to electric vehicles, the steel industry's move away from coal-fired furnaces, and the growing population in Ontario.

Ontario's capability to attract major international car manufacturers like Volkswagen and Stellantis to produce electric vehicles and batteries is partly attributed to the fact that 90% of the province's electricity comes from non-fossil fuel sources.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified