Planners downplay new power line for Toronto

By Toronto Star


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Picture a city with one big electric wire coming in from the east, and another from the west. That's Toronto.

For years, planners said it wasn't enough to supply the city core. If one wire went down, the other would have trouble supplying enough power to keep the central city's lights on.

Worse, the city itself was split into an eastern and western zone with almost no connection between them. If one wire failed, power from the other couldn't move across the city to back it up.

A third wire was essential, the planners said – and they mapped out a route for a new line running down the Don Valley, along Pape Ave. and into the Portlands.

The July blackout further underlined the city's power vulnerability. But electricity planners now insist that no third line is needed.

"We're not really contemplating it any more," says Ben Chin, vice president of the OPA. "It's not in the works."

Chin points to two major projects that have lessened the need for a third line. The gas-fired Portlands Energy Centre gives Toronto a significant local source of power, Chin notes. Although Portlands by itself, at 550 megawatts, can supply only a fraction of Toronto's peak demand of up to 5,000 megawatts.

Bolstering the new supply, Hydro One has installed a high capacity power line, burrowing under Front St., that connects the eastern and western halves of the city. If lines go down in one neighbourhood, power can now flow more freely across the city to back it up.

Conservation programs now getting under way should also reduce the need for a third line, Chin says.

The Independent Electricity System Operator, a provincial agency that runs the wholesale electricity market, cautiously agrees.

"We're not seeing the same sort of pressure we saw a couple of years ago," says vice president Terry Young.

But the IESO's latest assessment of reliability hedges its bets on Toronto, carefully outlining some specific conditions that must be met to ensure a reliable supply for Toronto, should the third line not be built.

And the Toronto Board of Trade is apprehensive about the decision to walk away from the third line. Chief executive Carol Wilding said the city is likely to see more outages in the future.

"With aging infrastructure and rising demand, Toronto stands to experience more incidents like the blackout of July 5," Wilding said in an e-mail.

"More frequent and lengthy power outages would damage the Toronto region's reputation as a place to invest, and drive businesses to consider locating in other jurisdictions. The development of a third transmission line ensuring reliable electricity supply to Toronto is a necessary component of the city's future economic growth."

Blair Peberdy, vice president of Toronto Hydro, shares some of Wilding's concerns. "There needs to be a more secure supply in Toronto," says Peberdy.

But city councillors asked Toronto Hydro to come up with other plans after seeing strong local opposition to the proposed high-voltage line along Pape Ave.

The utility responded to the request from its sole shareholder by proposing its "500-500" plan. It wants to slice the city's demand for power by 500 megawatts – about 10 per cent – while building 500 megawatts of generating capacity within the city.

The Ontario Clean Air Alliance has said 300 megawatts could come from small scale "combined heat and power" plants: small natural gas plants, with the heat exhausted by the turbines being captured and used to heat nearby buildings, or supply industries with steam.

Hospitals, schools, shopping malls and condominiums could host the plants, it suggests.

Toronto Hydro had hoped to build a wind farm off the Scarborough Bluffs, but that has run into turbulence: The province has proposed banning near-shore wind developments across the province.

While conservation and generation are Toronto Hydro's first priority, the utility won't categorically reject the need for a third line.

"Should that not be sufficient, then other options would have to be explored," Peberdy said.

Related News

German coalition backs electricity subsidy for industries

Germany Industrial Electricity Price Subsidy weighs subsidies for energy-intensive industries to bolster competitiveness as Germany shifts to renewables, expands grid capacity, and debates free-market tax cuts versus targeted relief and long-term policies.

 

Key Points

Policy to subsidize power for energy-intensive industry, preserving competitiveness during the energy transition.

✅ SPD backs 5-7 cents per kWh for 10-15 years

✅ FDP prefers tax cuts and free-market pricing

✅ Scholz urges cheap renewables and grid expansion first

 

Germany’s three-party coalition is debating whether electricity prices for energy-intensive industries should be subsidised in a market where rolling back European electricity prices can be tougher than it appears, to prevent companies from moving production abroad.

Calls to reduce the electricity bill for big industrial producers are being made by leading politicians, who, like others in Germany, fear the country could lose its position as an industrial powerhouse as it gradually shifts away from fossil fuel-based production, amid historic low energy demand and economic stagnation concerns.

“It is in the interest of all of us that this strong industry, which we undoubtedly have in Germany, is preserved,” Lars Klingbeil, head of Germany’s leading government party SPD (S&D), told Bayrischer Rundfunk on Wednesday.

To achieve this, Klingbeil is advocating a reduced electricity price for the industry of about 5 to 7 cents per Kilowatt hour, which the federal government would subsidise. This should be introduced within the next year and last for about 10 to 15 years, he said.

Under the current support scheme, which was financed as part of the €200 billion “rescue shield” against the energy crisis, energy-intensive industries already pay 13 cents per Kilowatt hour (KWh) for 70% of their previous electricity needs, which is substantially lower than the 30 to 40 cents per KWh that private consumers pay.

“We see that the Americans, for example, are spending $450 billion on the Inflation Reduction Act, and we see what China is doing in terms of economic policy,” Klingbeil said.

“If we find out in 10 years that we have let all the large industrial companies slip away because the investments are not being made here in Germany or Europe, and jobs and prosperity and growth are being lost here, then we will lose as a country,” he added.

However, not everyone in the German coalition favours subsidising electricity prices.

Finance Minister Christian Lindner of the liberal FDP (Renew), for example, has argued against such a step, instead promoting free-market principles and, amid rising household energy costs, reducing taxes on electricity for all.

“Privileging industrial companies would only be feasible at the expense of other electricity consumers and taxpayers, for example, private households or the small trade sector,” Lindner wrote in an op-ed for Handelsblatt on Tuesday.

“Increasing competitiveness for some would mean a loss of competitiveness for others,” he added.

Chancellor Olaf Scholz, himself a member of SPD, was more careful with his words, amid ongoing EU electricity reform debates in Brussels.

Asked about a subsidised electricity price for the industry at a town hall event on Monday, Scholz said he does not “want to make any promises now”.

“First of all, we have to make sure that we have cheap electricity in Germany in the first place,” Scholz said, promoting the expansion of renewable energy such as wind and solar, as local utilities cry for help, as well as more electricity grid infrastructure.

“What we will not be able to do as an economy, even as France’s new electricity pricing scheme advances, is to subsidise everything that takes place in normal economic activity,” Scholz said. “We should not get into the habit of doing that,” he added.

 

Related News

View more

National Grid and SSE to use electrical transformers to heat homes

Grid Transformer Waste Heat Recovery turns substations into neighborhood boilers, supplying district heating via heat networks, helping National Grid and SSE cut emissions, boost energy efficiency, and advance low carbon, net zero decarbonization.

 

Key Points

Grid Transformer Waste Heat Recovery captures substation heat for district heating, cutting emissions and gas use.

✅ Captures waste heat from National Grid transformers

✅ Feeds SSE district heat networks for nearby homes

✅ Cuts carbon, improves efficiency, aligns with net zero

 

Thousands of homes could soon be warmed by the heat from giant electricity grid transformers for the first time as part of new plans to harness “waste heat” and cut carbon emissions from home heating.

Trials are due to begin on how to capture the heat generated by transmission network transformers, owned by National Grid, to provide home heating for households connected to district heating networks operated by SSE.

Currently, hot air is vented from the giant substations to help cool the transformers that help to control the electricity running through National Grid’s high-voltage transmission lines.

However, if the trial succeeds, about 1,300 National Grid substations could soon act as neighbourhood “boilers”, piping water heated by the substations into nearby heating networks, and on into the thousands of homes that use SSE’s services.

“Electric power transformers generate huge amounts of heat as a byproduct when electricity flows through them. At the moment, this heat is just vented directly into the atmosphere and wasted,” said Nathan Sanders, the managing director of SSE Energy Solutions.

“This groundbreaking project aims to capture that waste heat and effectively turn transformers into community ‘boilers’ that serve local heat networks with a low- or even zero-carbon alternative to fossil-fuel-powered heat sources such as gas boilers, a shift akin to a gas-for-electricity swap in heating markets,” Sanders added.

Alexander Yanushkevich, National Grid’s innovation manager, said the scheme was “essential to achieve net zero” and a “great example of how, taking a whole-system approach, including power-to-gas in Europe precedents, the UK can lead the way in helping accelerate decarbonisation”.

The energy companies believe the scheme could initially reduce heat network carbon emissions by more than 40% compared with fossil gas systems. Once the UK’s electricity system is zero carbon, and with recent milestones where wind was the main source of UK electricity on the grid, the heating solution could play a big role in helping the UK meet its climate targets.

The first trials have begun at National Grid’s specially designed testing site at Deeside in Wales to establish how the waste heat could be used in district heating networks. Once complete, the intellectual property will be shared with smaller regional electricity network owners, which may choose to roll out schemes in their areas.

Tim O’Reilly, the head of strategy at National Grid, said: “We have 1,300 transmission transformers, but there’s no reason why you couldn’t apply this technology to smaller electricity network transformers, too, echoing moves to use more electricity for heat in colder regions.”

Once the trials are complete, National Grid and SSE will have a better idea of how many homes could be warmed using the heat generated by electricity network substations, O’Reilly said, and how the heat can be used in ways that complement virtual power plants for grid resilience.

“The heavier the [electricity] load, which typically reaches a peak at around teatime, the more heat energy the transformer will be able to produce, aligning with times when wind leads the power mix nationally. So it fits quite nicely to when people require heat in the evenings,” he added.

Other projects designed to capture waste heat to use in district heating schemes include trapping the heat generated on the Northern line of London’s tube network to warm homes in Islington, and harnessing the geothermal heat from disused mines for district heating networks in Durham.

Only between 2% and 3% of the UK is connected to a district heating network, but more networks are expected to emerge in the years ahead as the UK tries to reduce the carbon emissions from homes, alongside its nuclear power plans in the wider energy strategy.

 

Related News

View more

Hydro One shares jump 5.7 per cent after U.S. regulators reject $6.7B takeover

Hydro One Avista takeover rejection signals Washington regulators blocking a utility acquisition over governance risk, EPS dilution, and balance sheet impact, as investors applaud share price gains and a potential US$103M break fee.

 

Key Points

A regulator-led block of Hydro One's Avista bid, citing EPS dilution, balance sheet risk, and governance concerns.

✅ Washington denies approval; Idaho, Oregon decisions pending.

✅ EPS dilution avoided; balance sheet strength preserved.

✅ Shares rise 5.7%; US$103M break fee if deal collapses.

 

Opposition politicians may not like it but investors are applauding the rejection of Hydro One Ltd.'s $6.7-billion Avista takeover of U.S.-based utility Avista Corp.

Shares in the power company controlled by the Ontario government, which has also proposed a bill redesign to simplify statements, closed at $21.53, up $1.16 or 5.7 per cent, on the Toronto Stock Exchange on Thursday.

On Wednesday, Washington State regulators said they would not allow Ontario's largest utility to buy Avista over concerns about political risk that the provincial government, which owns 47 per cent of Hydro One's shares, might meddle in Avista's operations.

Financial analysts had predicted investors would welcome the news because the deal, announced in July 2017, would have eroded earnings per share and weakened Hydro One's balance sheet.

"The Washington regulator's denial of Avista is a positive development for the shares, in our opinion," said analyst Ben Pham of BMO Capital Markets in a report on Wednesday.

"While this may sound odd, we note that the Avista deal is expected to be EPS dilutive and result in a weaker balance sheet for (Hydro One). Not acquiring Avista and refocusing its attention on its core Ontario franchise ... along with related interprovincial arrangements such as the Ontario-Quebec electricity deal under discussion would likely be viewed positively if the deal ultimately breaks."

Decisions are yet to come from Idaho and Oregon state regulators, but Washington was probably the most important as the state contains customers making up about 60 per cent of Avista's rate base, Pham said.

He pointed out that a US$103-million break fee is to be paid to Avista if the deal collapses due to a failure to obtain regulatory approval.

CIBC analyst Robert Catellier raised his 12-month Hydro One target price by 25 cents and said many shareholders will feel "relieved" that the deal had failed.

He warned that the company's earnings power could deteriorate as the province seeks to reduce power bills by 12 per cent, despite an Ontario-Quebec hydro deal that may not lower costs.

 

Related News

View more

Europe's Renewables Are Crowding Out Gas as Coal Phase-Out Slows

EU Renewable Energy Shift is cutting gas dependence as wind and solar expand, reshaping Europe's power mix, curbing emissions, and pressuring coal use amid a supply crisis and rising natural gas prices.

 

Key Points

An EU trend where wind and solar growth reduce gas reliance, curb coal, and lower power-sector emissions.

✅ Wind and solar displace gas in EU power mix

✅ Coal use rises as gas prices surge

✅ Emissions fall, but not fast enough for 1.5 C target

 

The European Union’s renewable energy sources are helping reduce its dependence on natural gas, under the current European electricity pricing framework, that’s still costing the region dearly.

Renewables growth has helped reduce the EU’s dependence on gas, as wind and solar outpaced gas across the bloc last year, which has soared in price since the middle of last year as the region grapples with a supply crisis that’s dealt blows to industries as well as ordinary consumers’ pockets. More than half of new renewable generation since 2019 has replaced gas power, according to a study by London-based climate think tank Ember, with the rest replacing mainly nuclear and coal sources.

“These are moments and paradigm shifts when governments and businesses start taking this much more seriously,” said Charles Moore, the lead author on the study, amid Covid-19 responses accelerating the transition across Europe. “The alternatives are available, they are cheaper, and they are likely to get even cheaper and more competitive. Renewables are now an opportunity, not a cost.”

The high price of gas relative to coal has meant utilities are leaning more on coal as a back-up for renewable generation, as stunted hydro and nuclear output has constrained low-carbon alternatives in parts of Europe, which risks the trajectory of Europe’s phase-out of the dirtiest fossil fuel. Last year, the EU’s coal use jumped disproportionately high relative to the rise in power generation as high gas prices boosted the relative profitability of burning coal instead.


Europe Coal Use Jumps as Costly Gas Turns Firms to Dirty Fuel
EU power generation from renewables reached a record high in 2021 of 547 terawatt-hours last year, accounting for an 11% increase compared to two years before, according to Ember’s Europe Electricity Review. It’s more than doubled in a decade, representing a 157% increase since 2011. 

Gas use declined last year for the second year in a row, as Europe explores storing electricity in gas pipelines to leverage existing infrastructure, reaching a level 8.1% lower than 2019. By contrast, coal use fell just 3.3% in the same period. Put simply, wind and solar did a great job of replacing coal during 2011-2019 but since then renewables have mostly been nudging out gas-fired power stations.

Ember’s Moore warned that the slowing phase-out of coal might require legislation to accelerate. The International Energy Agency recommends OECD countries cease using coal by the end of the decade to ensure alignment with the Paris Agreement target of keeping the world’s temperature increase below 1.5 Celsius, with renewables poised to eclipse coal globally by the mid-2020s lending momentum. 

“Europe can accelerate the phasing out of coal by building more renewable energy and faster,” said Felicia Aminoff,  an energy-transition analyst at BloombergNEF. “Wind and solar have no fuel costs, so as soon as you have made the initial investments to build wind and solar capacity it will start replacing generation that uses any kind of fuel, whether it is coal or gas.”

Overall, EU power sector emissions fell at less than half the rate required to hit that target, Ember’s report said. Spain produced the largest emissions reduction in the last two years, with renewables adding about 25 TWh and gas falling 15 TWh, and in Germany renewables topped coal and nuclear for the first time to support the shift. In contrast, heavy use of coal dragged down the bloc’s climate progress in Poland, where coal use rose about 8 TWh and renewables gained only 4 TWh.

 

Related News

View more

Australia PM rules out taxpayer funded power plants amid energy battle

ACCC energy underwriting guarantee proposes government-backed certainty for new generation, cutting electricity prices and supporting gas, pumped hydro, renewables, batteries, and potentially coal-fired power, addressing market failure without direct subsidies.

 

Key Points

A tech-neutral, government-backed plan underwriting new generation revenue to increase certainty and cut power prices.

✅ Government guarantee provides a revenue floor for new generators.

✅ Technology neutral: coal, gas, renewables, pumped hydro, batteries.

✅ Intended to reduce bills by up to $400 and address market failure.

 

Australian Taxpayers won't directly fund any new power plants despite some Coalition MPs seizing on a new report to call for a coal-fired power station.

The Australian Competition and Consumer Commission recommended the government give financial certainty to new power plants, guaranteeing energy will be bought at a cheap price if it can't be sold, as part of an electricity market plan to avoid threats to supply.

It's part of a bid to cut up to $400 a year from average household power prices.

Prime Minister Malcolm Turnbull said the finance proposal had merit, but he ruled out directly funding specific types of power generation.

"We are not in the business of subsidising one technology or another," he told reporters in Queensland today.

"We've done enough of that. Frankly, there's been too much of that."

Renewable subsidies, designed in the 1990s to make solar and wind technology more affordable, have worked and will end in 2020.

Some Coalition MPs claim the ACCC's recommendation to underwrite power generation is vindication for their push to build new coal-fired power plants.

But ACCC chair Rod Sims said no companies had proposed building new coal plants - instead they're trying to build new gas projects, pumped hydro or renewable projects.

Opposition Leader Bill Shorten said Mr Turnbull was offering solutions years away, having overseen a rise in power prices over the past year.

"You don't just go down to K-Mart and get a coal-fired power station off the shelf," Mr Shorten told reporters, admitting he had not read the ACCC report.

Energy Minister Josh Frydenberg said the recommendation to underwrite new power generators had a lot of merit, as it would address a market failure highlighted by AEMO warnings about reduced reserves.

"What they're saying is the government needs to step in here to provide some sort of assurance," Mr Frydenberg told 9NEWS today.

He said that could include coal, gas, renewable energy or battery storage.

Deputy Nationals leader Bridget McKenzie said science should determine which technology would get the best outcomes for power bills, with a scrapping coal report suggesting it can be costly.

Mr Turnbull said there was strong support for the vast majority of the ACCC's 56 recommendations, but the government would carefully consider the report, which sets out a blueprint to cut electricity bills by 25 percent.

Acting Greens leader Adam Bandt said Australia should exit coal-fired power in favour of renewable energy to cut pollution.

In contrast, Canada has seen the Stop the Shock campaign advocate a return to coal power in some provinces.

The Australian Energy Council, which represents 21 major energy companies, said the government should consult on changes to avoid "unintended consequences".

 

Related News

View more

Opinion: Nuclear Beyond Electricity

Nuclear decarbonization leverages low-carbon electricity, process heat, and hydrogen from advanced reactors and SMRs to electrify industry, buildings, and transport, supporting net-zero strategies and grid flexibility alongside renewables with dispatchable baseload capacity.

 

Key Points

Nuclear decarbonization uses reactors to supply low-carbon power, heat, and hydrogen, cutting emissions across industry.

✅ Advanced reactors and SMRs enable high-temperature process heat

✅ Nuclear-powered electrolysis and HTSE produce low-carbon hydrogen

✅ District heating from reactors reduces pollution and coal use

 

By Dr Henri Paillere, Head of the Planning and Economics Studies Section of the IAEA

Decarbonising the power sector will not be sufficient to achieving net-zero emissions, with assessments indicating nuclear may be essential across sectors. We also need to decarbonise the non-power sectors - transport, buildings and industry - which represent 60% of emissions from the energy sector today. The way to do that is: electrification with low-carbon electricity as much as possible; using low-carbon heat sources; and using low-carbon fuels, including hydrogen, produced from clean electricity.
The International Energy Agency (IEA) says that: 'Almost half of the emissions reductions needed to reach net zero by 2050 will need to come from technologies that have not reached the market today.' So there is a need to innovate and push the research, development and deployment of technologies. That includes nuclear beyond electricity.

Today, most of the scenario projections see nuclear's role ONLY in the power sector, despite ongoing debates over whether nuclear power is in decline globally, but increased electrification will require more low-carbon electricity, so potentially more nuclear. Nuclear energy is also a source of low-carbon heat, and could also be used to produce low-carbon fuels such as hydrogen. This is a virtually untapped potential.

There is an opportunity for the nuclear energy sector - from advanced reactors, next-gen nuclear small modular reactors, and non-power applications - but it requires a level playing field, not only in terms of financing today's technologies, but also in terms of promoting innovation and supporting research up to market deployment. And of course technology readiness and economics will be key to their success.

On process heat and district heating, I would draw attention to the fact there have been decades of experience in nuclear district heating. Not well spread, but experience nonetheless, in Russia, Hungary and Switzerland. Last year, we had two new projects. One floating nuclear power plant in Russia (Akademik Lomonosov), which provides not only electricity but district heating to the region of Pevek where it is connected. And in China, the Haiyang nuclear power plant (AP1000 technology) has started delivering commercial district heating. In China, there is an additional motivation to reducing emissions, namely to cut air pollution because in northern China a lot of the heating in winter is provided by coal-fired boilers. By going nuclear with district heating they are therefore cutting down on this pollution and helping with reducing carbon emissions as well. And Poland is looking at high-temperature reactors to replace its fleet of coal-fired boilers and so that's a technology that could also be a game-changer on the industry side.

There have also been decades of research into the production of hydrogen using nuclear energy, but no real deployment. Now, from a climate point of view, there is a clear drive to find substitute fuels for the hydrocarbon fuels that we use today, and multiple new nuclear stations are seen by industry leaders as necessary to meet net-zero targets. In the near term, we will be able to produce hydrogen with electrolysis using low-carbon electricity, from renewables and nuclear. But the cheapest source of low-carbon power is from the long-term operation of existing nuclear power plants which, combined with their high capacity factors, can give the cheapest low-carbon hydrogen of all.

In the mid to long term, there is research on-going with processes that are more efficient than low-temperature electrolysis, which is high temperature steam electrolysis or thermal splitting of water. These may offer higher efficiencies and effectiveness but they also require advanced reactors that are still under development. Demonstration projects are being considered in several countries and we at the IAEA are developing a publication that looks into the business opportunities for nuclear production of hydrogen from existing reactors. In some countries, there is a need to boost the economics of the existing fleet, especially in the electricity systems where you have low or even negative market prices for electricity. So, we are looking at other products that have higher values to improve the competitiveness of existing nuclear power plants.

The future means not only looking at electricity, but also at industry and transport, and so integrated energy systems. Electricity will be the main workhorse of our global decarbonisation effort, but through heat and hydrogen. How you model this is the object of a lot of research work being done by different institutes and we at the IAEA are developing some modelling capabilities with the objective of optimising low-carbon emissions and overall costs.

This is just a picture of what the future might look like: a low-carbon power system with nuclear lightwater reactors (large reactors, small modular reactors and fast reactors) drawing on the green industrial revolution reactor waves in planning; solar, wind, anything that produces low-carbon electricity that can be used to electrify industry, transport, and the heating and cooling of buildings. But we know there is a need for high-temperature process steam that electricity cannot bring but which can be delivered directly by high-temperature reactors. And there are a number of ways of producing low-carbon hydrogen. The beauty of hydrogen is that it can be stored and it could possibly be injected into gas networks that could be run in the future on 100% hydrogen, and this could be converted back into electricity.

So, for decarbonising power, there are many options - nuclear, hydro, variable renewables, with renewables poised to surpass coal in global generation, and fossil with carbon capture and storage - and it's up to countries and industries to invest in the ones they prefer. We find that nuclear can actually reduce the overall cost of systems due to its dispatchability and the fact that variable renewables have a cost because of their intermittency. There is a need for appropriate market designs and the role of governments to encourage investments in nuclear.

Decarbonising other sectors will be as important as decarbonising electricity, from ways to produce low-carbon heat and low-carbon hydrogen. It's not so obvious who will be the clear winners, but I would say that since nuclear can produce all three low-carbon vectors - electricity, heat and hydrogen - it should have the advantage.
We at the IAEA will be organising a webinar next month with the IEA looking at long-term nuclear projections in a net-zero world, building on IAEA analysis on COVID-19 and low-carbon electricity insights. That will be our contribution from the point of view of nuclear to the IEA's special report on roadmaps to net zero that it will publish in May.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified