Marines look to solar and biofuel power generation

By Associated Press


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Chastened by high fuel prices, the Marine Corps wants its sprawling base at Kaneohe Bay to become energy self-sufficient by 2015.

Its plan involves building a sizable solar power array around Kansas Tower Hill, which could be operating by next fall.

The plan also includes an electricity generating plant that will run primarily on locally grown biofuels, such as sugar cane or palm oil, or jet fuel in emergencies.

"I'm 100 percent sure" the plan will make the base energy independent "by 2020, but I want to be more aggressive in that goal, and I want to get there by 2015," Col. Robert Rice, commanding officer of Marine Corps Base Hawaii, told The Honolulu Advertiser.

The Corps' effort is one of several that the Marine Corps, Navy, Air Force and Army are studying for their bases in Hawaii.

For example, a 12-foot-diameter yellow cylinder called a PowerBuoy that floats a mile offshore from the Kaneohe Bay Marine Corps Base generates electricity as part of a wave-power research program. Eventually, an array of such buoys could generate as much as 100 megawatts.

The Army and a private builder is constructing and renovating 7,500 Army homes, many of them with roof-mounted solar power panels that could generate six megawatts.

When the services pooled their projects, with an eye on issuing a formal request for proposal next year, the alternative energy industry grew enthusiastic, said Kendall Kam, project manager for renewable energy initiatives at Naval Facilities Engineering Command Pacific.

The military is the nation's and Hawaii's largest energy consumer. In Hawaii, the services currently use about 15 percent of the power generated by the Hawaiian Electric Co., and they are the utility's biggest customer.

Federal law requires U.S. agencies to produce or procure 3 percent of their energy usage from renewable sources by next year, with incremental increases to that goal in subsequent years. Another statute specifically requires military installations to produce or purchase 25 percent of their energy from renewable sources by 2025.

Related News

Quebec shatters record for electricity consumption once again

Hydro Quebec Power Consumption Record surges amid extreme cold, peak demand, and grid stress, as Hydro-Quebec urges energy conservation, load management, and reduced heating during morning and evening peaks across Montreal and southern Quebec.

 

Key Points

Quebec's grid hit 40,300 MW during an extreme cold snap, setting a new record and prompting conservation appeals.

✅ Lower thermostats 1-2 C in unused rooms during peak hours

✅ Delay dishwashers, dryers, and hot water use to off-peak

✅ Peak windows: 6-9 a.m. and 4-8 p.m.; import power if needed

 

Hydro Quebec says it has once again set a new record for power consumption, echoing record-breaking demand in B.C. in 2021 as extreme cold grips much of the province.

An extreme cold warning has been in effect across southern Quebec since Friday morning, straining the system, just as Calgary's electricity use soared during a frigid February, as Quebecers juggle staying warm and working from home.

Hydro Québec recorded consumption levels reaching 40,300 megawatts as of 8 a.m. Friday, breaking a previous record of 39,000 MW (with B.C. electricity demand hit an all-time high during a similar cold snap) that was broken during another cold snap on Jan 11. 

The publicly owned utility is now asking Quebecers to reduce their electricity consumption as much as possible today and tomorrow, a move consistent with clean electricity goals under federal climate pledges, predicting earlier in the morning the province would again reach an all-time high.

Reducing heating by just one or two degrees, especially in rooms that aren't being used, is one step that people can take to limit their consumption. They can also avoid using large appliances like the dishwasher and clothing dryer as often, and shortening the use of hot water. 

"They're small actions, but across millions of clients, it makes a difference," said Cendrix Bouchard, a spokesperson with Hydro Québec, while speaking with Tout un matin.

"We understand that asking this may pose challenges for some who are home throughout the day because they are working remotely, but if people are able to contribute, we appreciate it."

The best time to try and limit electricity usage is in the morning and evening, when electricity usage tends to peak, Bouchard said.

The province can import electricity from other regions if Quebec's system reaches its limits, even as the utility pursues selling to the United States as part of its long-term strategy, he added.

Temperatures dropped to –24 C in Montreal at 7 a.m., with a wind chill of –29 C. 

It will get colder across the south of the province through the evening and wind chills are expected to make it feel as cold as – 40 until Saturday morning, Environment Canada warned.

Those spending time outdoors are at a higher risk of frostbite and hypothermia.

"Frostbite can develop within minutes on exposed skin, especially with wind chill," Environment Canada said.

Conserving energy
Hydro-Québec has signed up 160,000 clients to a flexible billing plan similar to BC Hydro's winter payment plan that allows them to pay less for energy — as long as they use it during non-peak periods.

Quebec's energy regulator, the Régie de l'énergie, also forces crypto-currency mining operations to shut down for some hours  on peak-demand days, a topic where BC Hydro's approach to crypto mining has also drawn attention, Bouchard said.

Hydro-Québec says the highest consumption periods are usually between 6 a.m.-9 a.m. and 4 p.m.-8 p.m.

 

Related News

View more

Is a Resurgence of Nuclear Energy Possible in Germany?

Germany Nuclear Phase-Out reflects a decisive energy policy shift, retiring reactors as firms shun new builds amid high costs, radioactive waste challenges, climate goals, insurance gaps, and debate over small modular reactors and subsidies.

 

Key Points

Germany's policy to end nuclear plants and block new builds, emphasizing safety, waste, climate goals, and viability.

✅ Driven by safety risks, waste storage limits, and insurance gaps

✅ High capital costs and subsidies make new reactors uneconomic

✅ Political debate persists; SMRs raise cost and proliferation concerns

 

A year has passed since Germany deactivated its last three nuclear power plants, marking a significant shift in its energy policy.

Nuclear fission once heralded as the future of energy in Germany during the 1960s, was initially embraced with minimal concern for the potential risks of nuclear accidents. As Heinz Smital from Greenpeace recalls, the early optimism was partly driven by national interest in nuclear weapon technology rather than energy companies' initiatives.

Jochen Flasbarth, State Secretary in the Ministry of Development, reflects on that era, noting Germany's strong, almost naive, belief in technology. Germany, particularly the Ruhr region, grappled with smog-filled skies at that time due to heavy industrialization and coal-fired power plants. Nuclear energy presented a "clean" alternative at the time.

This sentiment was also prevalent in East Germany, where the first commercial nuclear power plant came online in 1961. In total, 37 nuclear reactors were activated across Germany, reflecting a widespread confidence in nuclear technology.

However, the 1970s saw a shift in attitudes. Environmental activists protested the construction of new power plants, symbolizing a generational rift. The 1979 Three Mile Island incident in the US, followed by the catastrophic Chornobyl disaster in 1986, further eroded public trust in nuclear energy.

The Chornobyl accident, in particular, significantly dampened Germany's nuclear ambitions, according to Smital. Post-Chernobyl, plans for additional nuclear power plants in Germany, once numbering 60, drastically declined.

The emergence of the Green Party in 1980, rooted in anti-nuclear sentiment, and its subsequent rise to political prominence further influenced Germany's energy policy. The Greens, joining forces with the Social Democrats in 1998, initiated a move away from nuclear energy, facing opposition from the Christian Democrats (CDU) and Christian Social Union (CSU).

However, the Fukushima disaster in 2011 prompted a policy reversal from CDU and CSU under Chancellor Angela Merkel, leading to Germany's eventual nuclear phase-out in March 2023, after briefly extending nuclear power amid the energy crisis.

Recently, the CDU and CSU have revised their stance once more, signaling a potential U-turn on the nuclear phaseout, advocating for new nuclear reactors and the reactivation of the last shut-down plants, citing climate protection and rising fossil fuel costs. CDU leader Friedrich Merz has lamented the shutdown as a "black day for Germany." However, these suggestions have garnered little enthusiasm from German energy companies.

Steffi Lemke, the Federal Environment Minister, isn't surprised by the companies' reluctance, noting their longstanding opposition to nuclear power, which she argues would do little to solve the gas issue in Germany, due to its high-risk nature and the long-term challenge of radioactive waste management.

Globally, 412 reactors are operational across 32 countries, even as Europe is losing nuclear power during an energy crunch, with the total number remaining relatively stable over the years. While countries like China, France, and the UK plan new constructions, there's a growing interest in small, modern reactors, which Smital of Greenpeace views with skepticism, noting their potential military applications.

In Germany, the unresolved issue of nuclear waste storage looms large. With temporary storage facilities near power plants proving inadequate for long-term needs, the search for permanent sites faces resistance from local communities and poses financial and logistical challenges.

Environment Minister Lemke underscores the economic impracticality of nuclear energy in Germany, citing prohibitive costs and the necessity of substantial subsidies and insurance exemptions.

As things stand, the resurgence of nuclear power in Germany appears unlikely, with economic factors playing a decisive role in its future.

 

Related News

View more

Newsom Vetoes Bill to Codify Load Flexibility

California Governor Gavin Newsom vetoed a bill aimed at expanding load flexibility in state grid planning, citing conflicts with California’s resource adequacy framework and concerns over grid reliability and energy planning uncertainty.

 

Why has Newsom vetoed the Bill to Codify Load Flexibility?

Governor Gavin Newsom’s veto blocks legislation that would have required the California Energy Commission to incorporate load flexibility into the state’s energy planning and policy framework, a move that has stirred debate across the clean energy sector.

✅ Argues the bill conflicts with California’s existing Resource Adequacy system

✅ Draws backlash from clean energy and grid modernization advocates

✅ Exposes ongoing tension over how to manage renewable integration and demand response

 

California Governor Gavin Newsom has vetoed Assembly Bill 44, which would have required the California Energy Commission to evaluate and incorporate load management mechanisms into the state’s energy planning process. The move drew criticism from clean energy advocates who say it undermines efforts to strengthen grid reliability and reduce costs.

The bill directed the commission to adopt “upfront technical requirements and load modification protocols” that would allow load-serving entities to adjust their electrical demand forecasts. Proponents viewed this as a way to modernize California’s grid management, and to explore a revamp of electricity rates to help clean the grid, making it more responsive to demand fluctuations and renewable energy variability.

In his veto statement, Newsom said the bill was incompatible with existing energy planning frameworks, even as a looming electricity shortage remains a concern. “While I support expanding electric load flexibility, this bill does not align with the California Public Utility Commission’s Resource Adequacy framework,” he said. “As a result, the requirements of this bill would not improve electric grid reliability planning and could create uncertainty around energy resource planning and procurement processes.”

Newsom’s decision comes shortly after he signed a broad package of energy legislation that set the stage for a regional Western electricity market and extended the state’s cap-and-trade program. However, that legislative package did not include continued funding for several key grid reliability programs — including what advocates have called the world’s largest virtual power plant, a distributed network of connected devices that can balance electricity demand in real time.

Clean energy supporters saw AB 44 as a crucial step toward integrating these distributed energy resources into long-term grid planning. “With Assembly Bill 44 being vetoed, the state has missed a huge opportunity to advance common-sense policy that would have lowered costs, strengthened the grid, and unlocked the full potential of advanced energy,” said Edson Perez, California lead at Advanced Energy United.

Perez added that the setback increases pressure on lawmakers to take stronger action in the next legislative session. “The pressure is on next session to ensure that California is using all tools in its policy toolbox to build critically needed infrastructure, strengthen the grid, and bring costs down,” he said.

California’s growing use of demand response programs and virtual power plants has been central to its strategy for managing grid stress during heat waves and wildfire seasons. These systems allow utilities and customers to temporarily reduce or shift energy use, helping to prevent blackouts and reduce the need for fossil-fuel peaker plants during peak demand.

A recent report by the Brattle Group found that California’s taxpayer-funded virtual power plant could save ratepayers $206 million between 2025 and 2028 while reducing reliance on gas generation. The study, commissioned by Sunrun and Tesla Energy, highlighted the potential for flexible load management to improve both grid reliability and reduce costs, even as regulators weigh whether the state needs more power plants to ensure reliability.

Despite these findings, Newsom’s veto signals continued tension between state policymakers and clean energy advocates over how best to modernize California’s power grid. While the governor has prioritized large-scale renewable development and regional market integration, critics argue that California’s climate policy choices risk exacerbating reliability challenges and that failing to codify load flexibility could slow progress toward a more adaptive, resilient, and affordable clean energy future.

 

Related Articles

View more

UK's Energy Transition Stalled by Supply Delays

UK Clean Energy Supply Chain Delays are slowing decarbonization as transformer lead times, grid infrastructure bottlenecks, and battery storage contractors raise costs and risk 2030 targets despite manufacturing expansions by Siemens Energy and GE Vernova.

 

Key Points

Labor and equipment bottlenecks delay transformers and grid upgrades, risking the UK's 2030 clean power target.

✅ Transformer lead times doubled or tripled, raising project costs

✅ Grid infrastructure and battery storage contractors in short supply

✅ Firms expand capacity cautiously amid uncertain demand signals

 

The United Kingdom's ambitious plans to transition to clean energy are encountering significant obstacles due to prolonged delays in obtaining essential equipment such as transformers and other electrical components. These supply chain challenges are impeding the nation's progress toward decarbonizing its power sector by 2030, even as wind leads the power mix in key periods.

Supply Chain Challenges

The global surge in demand for renewable energy infrastructure, including large-scale storage solutions, has led to extended lead times for critical components. For example, Statera Energy's storage plant in Thurrock experienced a 16-month delay for transformers from Siemens Energy. Such delays threaten the UK's goal to decarbonize power supplies by 2030.

Economic Implications

These supply chain constraints have doubled or tripled lead times over the past decade, resulting in increased costs and straining the energy transition as wind became the main source of UK electricity in a recent milestone. Despite efforts to expand manufacturing capacity by companies like GE Vernova, Hitachi Energy, and Siemens Energy, the sector remains cautious about overinvesting without predictable demand, and setbacks at Hinkley Point C have reinforced concerns about delivery risks.

Workforce and Manufacturing Capacity

Additionally, there is a limited number of companies capable of constructing and maintaining battery sites, adding to the challenges. These issues underscore the necessity for new factories and a trained workforce to support the electrification plans and meet the 2030 targets.

Government Initiatives

In response to these challenges, the UK government is exploring various strategies to bolster domestic manufacturing capabilities and streamline supply chains while supporting grid reform efforts underway to improve system resilience. Investments in infrastructure and workforce development are being considered to mitigate the impact of global supply chain disruptions and advance the UK's green industrial revolution for next-generation reactors.

The UK's energy transition is at a critical juncture, with supply chain delays posing substantial risks to achieving decarbonization goals, including the planned end of coal power after 142 years for the UK. Addressing these challenges will require coordinated efforts between the government, industry stakeholders, and international partners to ensure a sustainable and timely shift to clean energy.

 

Related News

View more

Doug Ford ‘proud’ of decision to tear up hundreds of green energy contracts

Ontario Renewable Energy Cancellations highlight Doug Ford's move to scrap wind turbine contracts, citing electricity rate relief and taxpayer savings, while critics, the NDP, and industry warn of job losses, termination fees, and auditor scrutiny.

 

Key Points

Ontario's termination of renewable contracts, defended as cost and rate relief, faces disputes over savings and jobs.

✅ PCs cite electricity rate relief and taxpayer savings.

✅ Critics warn of job losses and termination fees.

✅ Auditor inquiry sought into contract cancellation costs.

 

Ontario Premier Doug Ford, whose new stance on wind power has drawn attention, said Thursday he is “proud” of his decision to tear up hundreds of renewable energy deals, a move that his government acknowledges could cost taxpayers more than $230 million.

Ford dismissed criticism that his Progressive Conservatives are wasting public money, telling a news conference that the cancellation of 750 contracts signed by the previous Liberal government will save cash, even as Ontario moves to reintroduce renewable energy projects in the coming years.

“I’m so proud of that,” Ford said of his decision. “I’m proud that we actually saved the taxpayers $790 million when we cancelled those terrible, terrible, terrible wind turbines that really for the last 15 years have destroyed our energy file.”

Later Thursday, Ford went further in defending the cancelled contracts, saying “if we had the chance to get rid of all the wind mills we would,” though a court ruling near Cornwall challenged such cancellations.

The NDP first reported the cost of the cancellations Tuesday, saying the $231 million figure was listed as “other transactions”, buried in government documents detailing spending in the 2018-2019 fiscal year.

The Progressive Conservatives have said the final cost of the cancellations, which include the decommissioning of a wind farm already under construction in Prince Edward County, Ont., has yet to be established, amid warnings about wind project cancellation costs from developers.

The government has said it tore up the deals because the province didn’t need the power and it was driving up electricity rates, and the decision will save millions over the life of the contracts. Industry officials have disputed those savings, saying the cancellations will just mean job losses for small business, and ignore wind power’s growing competitiveness in electricity markets.

NDP Leader Andrea Horwath has asked Ontario’s auditor general to investigate the contracts and their termination fees, amid debates over Ontario’s electricity future among leadership contenders. She called Ford’s remarks on Thursday “ridiculous.”

“Every jurisdiction around the world is trying to figure out how to bring more renewables onto their electricity grids,” she said. “This government is taking us backwards and costing us at the very least $231 million in tearing these energy contracts.”

At the federal level, a recent green electricity contract with an Edmonton company underscores that shift.

 

Related News

View more

Growing pot sucks up electricity and pumps out an astounding amount of carbon dioxide — it doesn't have to

Sustainable Cannabis Cultivation leverages greenhouse design, renewable energy, automation, and water recapture to cut electricity use, emissions, and pesticides, delivering premium yields with natural light, smart sensors, and efficient HVAC and irrigation control.

 

Key Points

A data-driven, low-impact method that cuts energy, water, and chemicals while preserving premium yields.

✅ 70-90% less electricity vs. conventional indoor grows

✅ Natural light, solar, and rainwater recapture reduce footprint

✅ Automation, sensors, and HVAC stabilize microclimates

 

In the seven months since the Trudeau government legalized recreational marijuana use, licensed producers across the country have been locked in a frenetic race to grow mass quantities of cannabis for the new market.

But amid the rush for scale, questions of sustainability have often taken a back seat, and in Canada, solar adoption has lagged in key sectors.

According to EQ Research LLC, a U.S.-based clean-energy consulting firm, cannabis facilities can need up to 150 kilowatt-hours of electricity per year per square foot. Such input is on par with data centres, which are themselves 50 to 200 times more energy-intensive than a typical office building, and achieving zero-emission electricity by 2035 would help mitigate the associated footprint.

At the Lawrence Berkley National Laboratory in California, a senior scientist estimated that one per cent of U.S. electricity use came from grow ops. The same research — published in 2012 — also found that the procedures for refining a kilogram of weed emit around 4,600 kilograms of carbon dioxide to the atmosphere, equivalent to operating three million cars for a year, though a shift to zero-emissions electricity by 2035 could substantially cut those emissions.

“All factors considered, a very large expenditure of energy and consequent ‘environmental imprint’ is associated with the indoor cultivation of marijuana,” wrote Ernie Small, a principal research scientist for Agriculture and Agri-Food Canada, in the 2018 edition of the Biodiversity Journal.

Those issues have left some turning to technology to try to reduce the industry’s footprint — and the economic costs that come with it — even as more energy sources make better projects for forward-looking developers.

“The core drawback of most greenhouse environments is that you’re just getting large rooms, which are harder to control,” says Dan Sutton, the chief executive officer of Tantalus Labs., a B.C.-based cannabis producer. “What we did was build a system specifically for cannabis.”

Sutton is referring to SunLab, the culmination of four years of construction, and at present the main site where his company nurtures rows of the flowering plant. The 120,000-square foot structure was engineered for one purpose: to prove the merits of a sustainable approach.

“We’re actually taking time-series data on 30 different environmental parameters — really simple ones like temperature and humidity — all the way down to pH of the soil and water flow,” says Sutton. “So if the temperature gets a little too cold, the system recognizes that and kicks on heaters, and if the system senses that the environment is too hot in the summertime, then it automatically vents.”

A lot is achieved without requiring much human intervention, he adds. Unlike conventional indoor operations, SunLab demands up to 90 per cent less electricity, avoids using pesticides, and draws from natural light and recaptured rainwater to feed its crops.

The liquid passes through a triple-filtration process before it is pumped into drip irrigation tubing. “That allows us to deliver a purity of water input that is cleaner than bottled water,” says Sutton.

As transpiration occurs, a state-of-the-art, high-capacity airflow suspended below the ceiling cycles air at seven-minute intervals, repeatedly cooling the air and preventing outbreaks of mould, while genetically modified “guardian” insects swoop in to eliminate predatory pests.

“When we first started, people never believed we would cultivate premium quality cannabis or cannabis that belongs on the top shelf, shoulder to shoulder with the best in the world and the best of indoor,” says Sutton.

Challenges still exist, but they pale in comparison to the obstacles that American companies with an interest in adopting greener solutions persistently face, and in provinces like Alberta, an Alberta renewable energy surge is reshaping the opportunity set.

Although cannabis is legal in a number of states, it remains illegal federally, which means access to capital and regulatory clarity south of the border can be difficult to come by.

“Right now getting a new project built is expensive to do because you can’t get traditional bank loans,” says Canndescent CEO Adrian Sedlin, speaking by phone from California.

In retrofitting the company’s farm to accommodate a sizeable solar field, he struggled to secure investors, even as a solar-powered cannabis facility in Edmonton showcased similar potential.

“We spent over a year and a half trying to get it financed,” says Sedlin. “Finding someone was the hard part.”

Decriminalizing the drug would ultimately increase the supply of capital and lower the costs for innovative designs, something Sedlin says would help incentivize producers to switch to more effective and ecologically sound techniques.

Some analysts argue that selling renewable energy in Alberta could become a major growth avenue that benefits energy-intensive industries like cannabis cultivation.

Canndescent, however, is already there.

“We’re now harnessing the sun to reduce our reliance on fossil fuels and going to sustainable, or replenishable, energy sources, while leveraging the best and most efficient water practices,” says Sedlin. “It’s the right thing to do.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified