Thin-film cells fatten solar market

By Electronic Engineering Times


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
With the political winds starting to blow its way, the solar-cell industry is poised for explosive growth. But advocates for this inexhaustible and nonpolluting energy source still need a few technical breakthroughs and a measure of political stamina.

The latest civic breakthrough was the recent passage of the California Solar Initiative, the largest solar-energy bill in U.S. history. The California Public Utilities Commission's bill establishes an 11-year solar rebate program worth $3.2 billion for new and retrofit installations of solar photovoltaic systems.

On the national level, the House of Representatives recently introduced legislation that would extend solar tax credits, now due to end in 2008, through 2017. Under the plan, residential and commercial installations receive a tax credit of $1,500 per half-kilowatt in power use reduction, among other incentives.

Observers said U.S. interest in solar energy might be catching up with the interest seen in the rest of the world.

"American taxpayers want to invest in technologies that create jobs, reduce emissions, lower our energy bills and keep our energy dollars here in the United States," the Washington-based Solar Energy Industries Association said in a statement praising the bill. That group and other alternative-energy advocates are swarming the halls of Congress to compete for federal largesse, as lawmakers seek to reduce U.S. dependence on foreign oil.

Nonetheless, the 2007 solar-cell market is expected to be virtually a mirror image of last year's: Demand is astronomical, but worldwide growth remains hampered by persistent shortages of the critical polysilicon materials used to make the cells.

One change this year is that thin-film solar cells have arrived and are poised to steal market share from conventional solar-cell products. One thin-film startup, First Solar Inc. (Phoenix), is ramping up at a frenetic pace and claims to have the industry's lowest-cost panels, priced at $2.40/W-up to 45 percent below its rivals.

The Wild West of the booming clean-technology sector boasts no fewer than 40 companies scrambling to develop thin-film cells. Even Sharp Corp., the world's largest solar-cell maker, is entering the fray. Venture capitalists are pouring millions into thin-film solar startups, and a diversity of companies, from Google to Honda, has invested in the sector.

The appeal of thin-film cells is that they require little or no polysilicon, a critical material now in short supply because of spiraling solar-energy demand. Conventional solar cells, which account for 90 percent or more of today's shipments, are manufactured using the polysilicon materials, which constitute 40 to 50 percent of the cost of a conventional photo-voltaic cell. In contrast, thin-film cells use a thin layer of materials formed on a substrate.

For some time, polysilicon shortages have disrupted the supply chain and stunted overall growth rates in the solar-cell market. Piper Jaffray & Co. (Minneapolis) predicts that the sector will see a 22 percent jump in worldwide sales in 2007.

Polysilicon shortages may last until 2008 or longer-a trend that opens the door for thin-film technologies, said Jesse Pichel, an analyst with Piper Jaffray. "We don't expect to see a polysilicon glut for the foreseeable future. However, it's a better situation than in past years, in that we have several new polysilicon plants moving into production," he said.

What this means is that the solar-cell industry is out of balance and under pressure. "The solar-power evolution is in its early stages, and there is no single-point technology," Pichel said. "Polysilicon feedstock prices are rising, and module ASPs are falling 6 percent annually, squeezing margins and limiting capacity."

The solar-energy industry as a whole faces a multitude of challenges. First, the solar-cell market could be overhyped and due for a shakeout.

Many of the companies in the sector are smaller, privately held startups, which face stiff competition from the established, conventional solarcell giants. The latter group includes Evergreen, Kyocera, Mitsubishi, Motech, Sanyo, Sharp, Shell, SunPower and Suntech.

Cost is another issue. Despite breakthroughs, residential solar-energy costs range from 20 to 40 cents/kilowatt-hour on sunny days. That's two to three times more expensive than the current electricity grid, according to market research firm Solarbuzz LLC (San Francisco). (One kilowatt equals the amount of electricity needed to burn a 100-W light bulb for 10 hours, according to the firm.)

The sun is free, but converting its energy into electric power isn't. That requires a new and costly infrastructure from the home to the public utilities.

A household must install a solar-module system on the roof. Power from that system flows to an inverter, which converts and transforms it into usable voltage and alternating current. Some homes could generate sufficient solar power for all their power needs, but many would still need to be connected to the public utility grid because they wouldn't derive sufficient power from the solar installation.

For a typical home, a 3-kW grid-tied solar system costs approximately $17,500 to install after California's rebate (but before any tax incentives), according to Solarbuzz. It takes three to seven years to break even, the firm said.

In general, solar energy is not expected to reach parity or become "grid competitive" without subsidies until 2010, Pichel of Piper Jaffray said.

In many nations, governments must provide subsidies in order to make solar viable for consumers and businesses. For years, Germany and Japan have offered attractive subsidies; not surprisingly, they also lead all other nations in solar adoption. Incentives are also in place in Spain and elsewhere, but the United States lags in such programs.

Some observers believe the tide is turning in solar, thanks to subsidies and technology breakthroughs, including the much-touted thin films. But there are a number of costs and technology trade- offs associated with these new materials.

The polysilicon used in conventional cells is expensive, but the conventional cell structures have proved production-worthy, and they achieve greater power efficiencies than their thin-film counterparts. Thin-film cells have a power efficiency rating of 8 to 14 percent, compared with 14 to 20 percent for conventional products.

Thin-film cells have been in development for decades, but they use exotic materials that are difficult to manufacture with decent volume yields. The most common thin-film materials are amorphous silicon or polycrystalline. They include cadmium telluride and copper indium gallium diselenide, among others.

Only a handful of companies have actually brought the technology into mass production, including First Solar, Mitsubishi and United Solar Ovonic LLC (Auburn Hills, Mich.). Nanosolar Inc., a startup originally funded by Google Inc. in June 2006, announced a $100 million financing package to build the world's largest solar-cell manufacturing facility, in San Jose, Calif. Currently in pilot production in its Palo Alto, Calif., facility, the solar-cell startup is developing a roll-to-roll solar-cell technology.

In December, Honda Motor Co. Ltd. established a subsidiary, Honda Soltec Co. Ltd., that will produce next-generation thin-film solar cells based on a compound of copper, indium, gallium and selenium.

Thin-film products will not displace conventional solar cells at least "in the next decade, but we do expect that they will grow and find markets," said Julie Blunden, vice president of external affairs at SunPower Corp. (San Jose).

"The overall solar-cell market will grow 10 to 20 percent in 2007 and 2008," predicted Subhendu Guha, president and chief operating officer of United Solar Ovonic, a subsidiary of Energy Conversion Devices Inc. "We are growing 50 to 100 percent every year."

United Solar Ovonic claims to be the world's largest manufacturer of triple-junction, amorphous silicon photovoltaic solar panels. "Previously, the question was, 'Can we develop it?' Now, not only can we do it, but we're in production," Guha said.

United plans to nearly triple its output by 2008 and says its panels are cost-competitive. With help from its subsidies in California, the company's solar modules are "getting close to 20 cents per kW-hr," approaching the peak rates of the electricity grid, Guha said.

Another thin-film supplier, First Solar, also is raising eyebrows. "First Solar's modules are the lowest-cost in commercial production today, at about $1.50/W to manufacture-about 45 percent below (the) industry average," according to a recent report from Piper Jaffray. "While emerging lower-cost technologies may exist in the lab, First Solar has a two-year lead in costs and scale."

The company's modules are based on cadmium tellurium technology and require no polysilicon. First Solar reportedly has signed a number of large OEM contracts in Germany, but the company is not expected to turn a profit until 2008.

Not all of the excitement revolves around the startups. In fact, the newcomers are keeping a close eye on the established industry giants, especially Sharp. That company has been expanding its conventional solar-cell capacity, but it is also making a major push into the thin-film arena. Late last year, Sharp rolled out two thin-film solar panels, which are said to achieve a conversion efficiency of 8.5 percent and to deliver 90 W.

The products are based on a tandem cell design, which combines separate amorphous and monocrystalline layers. A key feature is the ability to form the silicon raw materials into a layer only about 2 microns thick on a glass substrate. That thickness - roughly 1/100th that of conventional polysilicon solar cells - reduces overall cost for consumers, Sharp says.

This month, Sharp claimed to have developed a stacked, triple-junction thin-film solar cell for mass production. The triple-junction structure combines two amorphous silicon layers and one microcrystalline silicon layer. The new architecture claims to boost cell conversion efficiency from 11 percent to 13 percent and module conversion efficiency from 8.6 percent to 10 percent. Production of the triple-junction technology is slated to begin at Sharp's Katsuragi plant (Nara Prefecture, Japan) in May.

Despite its developments in thin films, Sharp has not turned its back on conventional solar cells. Last year, the company increased its annual production capacity by 100 MW to meet demand in Japan and abroad. As a result, solar-cell production capacity at the Katsuragi Plant will reach 600 MW per year, the world's highest, according to the firm.

Sharp said it would double its production capacity for solar modules during the coming year at Sharp Manufacturing Co. (Wrexham, North Wales). Capacity will increase from 110 MW to 220 MW annually, which will supply the booming European market.

The U.S. market also is seeing strong growth in both homes and businesses, said Marc Cortez, director of marketing for the Sharp's Solar Energy Solutions Group. "Generally, in the United States, we expect the market to grow," he said. "You will still see growth rates of 20 percent per year."

Related News

Heatwave Sparks Unprecedented Electricity Demand Across Eastern U.S

Eastern U.S. Heatwave Electricity Demand surges to record peak load, straining the power grid, lifting wholesale prices, and prompting demand response, conservation measures, and load shedding to protect grid reliability during extreme temperatures.

 

Key Points

It is the record peak load from extreme heat, straining grids, lifting wholesale prices, and prompting demand response.

✅ Peak electricity use stresses regional power grid.

✅ Prices surge; conservation and demand response urged.

✅ Utilities monitor load, avoid outages via load shedding.

 

As temperatures soar to unprecedented highs across the Eastern United States, a blistering heatwave has triggered record-breaking electricity demand. This article delves into the causes behind the surge in energy consumption, its impact on the power grid, and measures taken to manage the strain during this extraordinary weather event.

Intensifying Heatwave Conditions

The Eastern U.S. is currently experiencing one of its hottest summers on record, with temperatures climbing well above seasonal norms. This prolonged heatwave has prompted millions of residents to rely heavily on air conditioning and cooling systems to escape the sweltering heat, with electricity struggles worsening in several communities, driving up electricity usage to peak levels.

Strain on Power Grid Infrastructure

The surge in electricity demand during the heatwave has placed significant strain on the region's power grid infrastructure, with supply-chain constraints complicating maintenance and equipment availability during peak periods.

Record-breaking Energy Consumption

The combination of high temperatures and increased cooling demands has led to record-breaking energy consumption levels across the Eastern U.S. States like New York, Pennsylvania, and Maryland have reported peak electricity demand exceeding previous summer highs, with blackout risks drawing heightened attention from operators, highlighting the extraordinary nature of this heatwave event.

Impact on Energy Costs and Supply

The spike in electricity demand during the heatwave has also affected energy costs and supply dynamics. Wholesale electricity prices have surged in response to heightened demand, contributing to sky-high energy bills for many households, reflecting the market's response to supply constraints and increased operational costs for power generators and distributors.

Management Strategies and Response

Utility companies and grid operators have implemented various strategies to manage electricity demand and maintain grid reliability during the heatwave. These include voluntary conservation requests, load-shedding measures, and real-time monitoring of grid conditions to prevent power outages while avoiding potential blackouts or disruptions.

Community Outreach and Public Awareness

Amidst the heatwave, community outreach efforts play a crucial role in raising public awareness about energy conservation and safety measures. Residents are encouraged to conserve energy during peak hours, adjust thermostat settings, and utilize energy-efficient appliances to alleviate strain on the power grid and reduce overall energy costs.

Climate Change and Resilience

The intensity and frequency of heatwaves are exacerbated by climate change, underscoring the importance of building resilience in energy infrastructure and adopting sustainable practices. Investing in renewable energy sources, improving energy efficiency and demand response programs that can reduce peak demand, and implementing climate adaptation strategies are essential steps towards mitigating the impacts of extreme weather events like heatwaves.

Looking Ahead

As the Eastern U.S. navigates through this heatwave, stakeholders are focused on implementing lessons learned from California's grid response to enhance preparedness and resilience for future climate-related challenges. Collaborative efforts between government agencies, utility providers, and communities will be crucial in developing comprehensive strategies to manage energy demand, promote sustainability, and safeguard public health and well-being during extreme weather events.

Conclusion

The current heatwave in the Eastern United States has underscored the critical importance of reliable and resilient energy infrastructure in meeting the challenges posed by extreme weather conditions. By prioritizing energy efficiency, adopting sustainable energy practices, and fostering community resilience, stakeholders can work together to mitigate the impacts of heatwaves and ensure a sustainable energy future for generations to come.

 

Related News

View more

Global electric power demand surges above pre-pandemic levels

Global Power Sector CO2 Surge 2021 shows electricity demand outpacing renewable energy, with coal and fossil fuels rebounding, undermining green recovery goals and climate change targets flagged by the IEA and IPCC.

 

Key Points

Record rise in power sector CO2 in 2021 as demand outpaced renewables and coal rebounded, undermining a green recovery.

✅ Electricity demand rose 5% above pre-pandemic levels

✅ Fossil fuels supplied 61% of power; coal led the rebound

✅ Wind and solar grew 15% but lagged demand

 

Carbon dioxide emissions from the global electric power sector surged past pre-pandemic levels to record highs in the first half of 2021, according to new research by London-based environmental think tank Ember.

Electricity demand and emissions are now 5% higher than where they were before the Covid-19 outbreak, which prompted worldwide lockdowns that led to a temporary drop in global greenhouse gas emissions. Electricity demand also surpassed the growth of renewable energy, and surging electricity demand is putting power systems under strain, the analysis found.

The findings signal a failure of countries to achieve a so-called “green recovery” that would entail shifting away from fossil fuels toward renewable energy, though European responses to Covid-19 have accelerated the electricity system transition by about a decade, to avoid the worst consequences of climate change.

The report found that 61% of the world’s electricity still came from fossil fuels in 2020. Five G-20 countries had more than 75% of their electricity supplied from fossil fuels last year, with Saudi Arabia at 100%, South Africa at 89%, Indonesia at 83%, Mexico at 75% and Australia at 75%.

Coal generation did fall a record 4% in 2020, but overall coal supplied 43% of the additional energy demand between 2019 and 2020, with soaring electricity and coal use underscoring persistent demand pressures. Asia currently generates 77% of the world’s coal electricity and China alone generates 53%, up from 44% in 2015.

The world’s transition out of coal power, which contributes to roughly 30% of the world’s greenhouse gas emissions, is happening far too slowly to avoid the worst impacts of climate change, the study warned. And the International Energy Agency forecasts coal generation will rebound in 2021 as electricity demand picks up again, even as renewables are poised to eclipse coal by 2025 according to other analyses.

“Progress is nowhere near fast enough. Despite coal’s record drop during the pandemic, it still fell short of what is needed,” Ember lead analyst Dave Jones said in a statement.

Jones said coal power usage must collapse by 80% by the end of the decade to avoid dangerous levels of global warming above 1.5 degrees Celsius (2.7 degrees Fahrenheit).

“We need to build enough clean electricity to simultaneously replace coal and electrify the global economy,” Jones said. “World leaders have yet to wake up to the enormity of the challenge.”

The findings come ahead of a major U.N. climate conference in Glasgow, Scotland, in November, where negotiators will push for more ambitious climate action and emissions reduction pledges from nations.

Without immediate, rapid and large-scale reductions to global emissions, scientists of the Intergovernmental Panel on Climate Change warn that the average global temperature will likely cross the 1.5 degrees Celsius threshold within 20 years.

The study also highlighted some upsides. Wind and solar generation, for instance, rose by 15% in 2020, and low-emissions sources are set to cover almost all the growth in global electricity demand in the next three years, producing nearly a tenth of the world’s electricity last year and doubling production since 2015.

Some countries now get about 10% of their electricity from wind and solar, including India, China, Japan, Brazil. The U.S. and Europe have experienced the biggest growth in wind and solar, and in the EU, wind and solar generated more electricity than gas last year, with Germany at 33% and the U.K. leads the G20 for wind power at 29%.

 

Related News

View more

WY Utility's First Wind Farm Faces Replacement

Foote Creek I Wind Farm Repowering upgrades Wyoming turbines with new nacelles, towers, and blades, cutting 68 units to 12 while sustaining 41.6 MW, under PacifiCorp and Rocky Mountain Power's Energy Vision 2020 plan.

 

Key Points

Replacement at Foote Creek Rim I, cutting to 12 turbines while sustaining about 41.6 MW using modern 2-4.2 MW units.

✅ 12 turbines replace 68, output steady near 41.6 MW

✅ New nacelles, towers, blades; taller 500 ft turbines

✅ Part of PacifiCorp Energy Vision 2020 and Gateway West

 

A Wyoming utility company has filed a permit to replace its first wind farm—originally commissioned in 1998, composed of over 65 turbines—amid new gas capacity competing with nuclear in Ohio, located at Foote Creek Rim I. The replacement would downsize the number of turbines to 12, which would still generate roughly the same energy output.

According to the Star Tribune, PacifiCorp’s new installation would involve new nacelles, new towers and new blades. The permit was filed with Carbon County.

 

New WY Wind Farm

The replacement wind turbines will stand more than twice as tall as the old: Those currently installed stand 200 feet tall, whereas their replacements will tower closer to 500 feet. Though this move is part of the company’s overall plan to expand its state wind fleet as some utilities respond to declining coal returns in the Midwest, the work going into the Foote Creek site is somewhat special, noted David Eskelsen, spokesperson for Rocky Mountain Power, the western arm of PacifiCorp.

“Foote Creek I repowering is somewhat different from the repowering projects announced in the (Energy Vision) 2020 initiative,” he said. “Foote Creek is a complete replacement of the existing 68 foundations, towers, turbine nacelles and rotors (blades).”

Currently, the turbines at Foote Creek have 600 kilowatts capacity each; the replacements’ maximum production ranges from 2 megawatts to 4.2 megawatts each, with the total output remaining steady at 41.4 megawatts, a scale similar to a 30-megawatt wind expansion in Eastern Kings, though there will be a slight capacity increase to 41.6 megawatts, according to the Star Tribune.

As part of the wind farm repowering initiative, PacifiCorp is to become full owner and operator of the Foote Creek site. When the farm was originally built, an Oregon-based water and electric board was 21 percent owner; 37 percent of the project’s output was tied into a contract with the Bonneville Power Administration.

Otherwise, PacifiCorp is moving to further expand its state wind fleet in line with initiatives like doubling renewable electricity by 2030 in Saskatchewan, with the addition of three new wind farms—to be located in Carbon, Albany and Converse counties—which may add up to 1,150 megawatts of power.

According to PacifiCorp, the company has more than 1,000 megawatts of owned wind generation capability, along with long-term purchase agreements for more than 600 megawatts from other wind farms owned by other entities. Energy Vision 2020 refers to a $3.5 billion investment and company move that is looking to upgrade the company's existing wind fleet with newer technology, adding 1,150 megawatts of new wind resources by 2020 and a a new 140-mile Gateway West transmission segment in Wyoming, comparable to a transmission project in Missouri just energized.

 

 

Related News

View more

Hydro One announces pandemic relief fund for Hydro One customers

Hydro One Pandemic Relief Fund offers COVID-19 financial assistance, payment flexibility, and Winter Relief to Ontario electricity customers facing hardship, with disconnection protection and customer support to help manage bills during the health crisis.

 

Key Points

COVID-19 aid offering bill credits, payment flexibility, and disconnection protection for electricity customers.

✅ Financial assistance and bill credits for hardship cases

✅ Flexible payment plans and extended Winter Relief

✅ No-disconnect policy and dedicated customer support hours

 

We are pleased to announce a Pandemic Relief Fund to assist customers affected by the novel coronavirus (COVID-19). As part of our commitment to customers, we will offer financial assistance as well as increased payment flexibility to customers experiencing hardship. The fund is designed to support customers impacted by these events and those that may experience further impacts.

In addition to this, we've also extended our Winter Relief program, aligning with our ban on disconnections policy so no customer experiencing any hardship has to worry about potential disconnection.

We recognize that this is a difficult time for everyone and we want our customers to know that we’re here to support them. We hope this fund and the added measures, such as extended off-peak rates that help provide our customers peace of mind so they can concentrate on what matters most — keeping their loved ones safe.

If you are concerned about paying your bill, are experiencing hardship or have been impacted by the pandemic, including electricity relief announced by the province, we want to help you. Call us to discuss the fund and see what options are available for you.


CUSTOMER CONTACT CENTRE HOURS
Call us at 1-888-664-9376

Monday to Friday from 7:30 a.m. to 8:00 p.m.

Saturdays from 9:00 a.m. to 3:00 p.m.


KEEPING ONTARIANS AND OUR ELECTRICITY SYSTEM SAFE
We recognize the critical role we play in powering communities across the province and our support for the Province of Ontario during COVID-19. This is a responsibility to employees, customers, businesses and the people of Ontario that we take very seriously.

Since the novel coronavirus (COVID-19) outbreak began, Hydro One’s Pandemic Team along with our leadership, have been actively monitoring the issues to ensure we can continue to deliver the service Ontarians depend on while keeping our employees, customers and the public safe, even as there has been no cut in peak hydro rates yet for self-isolating customers across Ontario. While the risk in Ontario remains low, we believe we can best protect our people and our operations by taking proactive measures.

As information continues to evolve, our leadership team along with the Pandemic Planning Team and our Emergency Operations Centre are committed to maintaining business continuity while minimizing risk to employees and communities.

Over the days and weeks to come, we will work with the sector and government, which is preparing to extend disconnect moratoriums across the province, to enhance safety protocols and champion the needs of electricity customers in Ontario.
 

 

Related News

View more

Site C dam could still be cancelled at '11th hour' if First Nations successful in court

Site C Dam Court Ruling could halt hydroelectric project near Fort St. John, as First Nations cite Treaty 8 rights in B.C. Supreme Court against BC Hydro, reservoir flooding, and Peace River Valley impacts.

 

Key Points

Potential B.C. Supreme Court stop to Site C, grounded in Treaty 8 rights claims by First Nations against BC Hydro.

✅ Trial expected in 2022 before planned 2023 reservoir flooding

✅ Treaty 8 rights and Peace River Valley impacts at issue

✅ Talks ongoing among B.C., BC Hydro, West Moberly, Prophet River

 

The Site C dam could still be stopped by an "eleventh hour" court ruling, according to the lawyer representing B.C. First Nations opposed to the massive hydroelectric project near Fort St. John.

The B.C. government, BC Hydro and West Moberly and Prophet River First Nations were in B.C. Supreme Court Feb. 28 to set a 120-day trial, expected to begin in March 2022.

That date means a ruling would come prior to the scheduled flooding of the dam's reservoir area in 2023 said Tim Thielmann, legal counsel for the West Moberly First Nation.

"The court has left itself the opportunity for an eleventh hour cancellation of the project," he said.

 

Construction continues

At the core of the case is First Nations arguments the multi-billion dollar BC Hydro dam will cause irreparable harm to its territory and way of life — even as drought strains hydro production elsewhere — rights protected under Treaty 8.

The West Moberly have previously warned it believes Site C constitutes a $1 billion treaty violation.

​In 2018, the First Nations lost a bid for an injunction order, meaning construction of the dam is continuing despite warnings that delays could cost $600 million to the project.

First Nations 'deeply frustrated' after B.C. Supreme Court dismisses Site C injunction

The judge in the case said the ruling was made because if the First Nations lost the challenge, the project would be needlessly put into disarray.

 

Province, Nations enter talks to avoid litigation

Also this week the B.C. government announced it has entered into talks with BC Hydro and the two First Nations in an attempt to avoid the court process altogether, amid broader energy debates such as bridging the Alberta-B.C. electricity gap for climate goals.

Thielmann said the details of the talk are confidential, but his clients are willing to pursue all avenues in order to stop the dam from moving forward.

"They are trying to save what little is left [of the Peace River Valley]", he said.

Tim Thielmann of Sage Legal is representing the West Moberly First Nation in its lawsuit aimed at stopping Site C. (Sage Legal)

In the meantime, the parties will continue to prepare for the 2022 court dates.

The latest figure on the cost of the dam is $10.7 billion, in a billions-over-budget project that the premier says will proceed. When complete, it would power the equivalent of 450,000 homes a year, though use of Site C's electricity remains a point of debate.

 

Related News

View more

Heat Exacerbates Electricity Struggles for 13,000 Families in America

Energy Poverty in Extreme Heat exposes vulnerable households to heatwaves, utility shutoffs, and unreliable grid infrastructure, straining public health. Community nonprofits, cooling centers, and policy reform aim to improve electricity access, resilience, and affordable energy.

 

Key Points

Without reliable, affordable power in heatwaves, health risks rise and cooling, food storage, and daily needs suffer.

✅ Risks: heat illness, dehydration, and indoor temperatures above 90F

✅ Causes: utility shutoffs, aging grid, unpaid bills, remote areas

✅ Relief: cooling centers, aid programs, weatherization, bill credits

 

In a particular pocket of America, approximately 13,000 families endure the dual challenges of sweltering heat and living without electricity, and the broader risk of summer shut-offs highlights how widespread these pressures have become across the country. This article examines the factors contributing to their plight, the impact of living without electricity during hot weather, and efforts to alleviate these hardships.

Challenges Faced by Families

For these 13,000 families, daily life is significantly impacted by the absence of electricity, especially during the scorching summer months. Without access to cooling systems such as air conditioners or fans, residents are exposed to dangerously high temperatures, which can lead to heat-related illnesses and discomfort, particularly among vulnerable populations such as children, the elderly, and individuals with health conditions, where electricity's role in public health became especially evident.

Causes of Electricity Shortages

The reasons behind the electricity shortages vary. In some cases, it may be due to economic challenges that prevent families from paying utility bills, resulting in disconnections. Other factors include outdated or unreliable electrical infrastructure in underserved communities, as reflected in a recent grid vulnerability report that underscores systemic risks, where maintenance and upgrades are often insufficient to meet growing demand.

Impact of Extreme Heat

During heatwaves, the lack of electricity exacerbates health risks and quality of life issues for affected families, aligning with reports of more frequent outages across the U.S. Furthermore, the absence of refrigeration and cooking facilities can compromise food safety and nutritional intake, further impacting household well-being.

Community Support and Resilience

Despite these challenges, communities and organizations often rally to support families living without electricity. Local nonprofits, community centers, and government agencies provide assistance such as distributing fans, organizing cooling centers, and delivering essentials like bottled water and non-perishable food items during heatwaves to alleviate immediate hardships and improve summer blackout preparedness in vulnerable neighborhoods.

Long-term Solutions

Addressing electricity access issues requires comprehensive, long-term solutions. These may include policy reforms to ensure equitable access to affordable energy, investments in upgrading infrastructure in underserved areas, and expanding financial assistance programs to help families maintain uninterrupted electricity service, in recognition that climate change risks increasingly stress the grid.

Advocacy and Awareness

Advocacy efforts play a crucial role in raising awareness about the challenges faced by families living without electricity and advocating for sustainable solutions. By highlighting these issues, community leaders, activists, and policymakers can work together to drive policy changes, secure funding for infrastructure improvements, and promote energy efficiency initiatives, drawing lessons from Canada's harsh-weather grid exposures that illustrate regional vulnerabilities.

Building Resilience

Building resilience in vulnerable communities involves not only improving access to reliable electricity but also enhancing preparedness for extreme weather events. This includes developing emergency response plans, educating residents about heat safety measures, and fostering community partnerships to support those in need during crises.

Conclusion

As temperatures rise and climate impacts intensify, addressing the plight of families living without electricity becomes increasingly urgent. By prioritizing equitable access to energy, investing in resilient infrastructure, and fostering community resilience, stakeholders can work towards ensuring that all families have access to essential services, even during the hottest months of the year. Collaborative efforts between government, nonprofit organizations, and community members are essential in creating sustainable solutions that improve quality of life and promote health and well-being for all residents.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified