Utilities, S.C. officials debate giving consumers energy credits

By Knight Ridder Tribune


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
If you're laying solar panels on your roof or building a wind turbine in the backyard, soon you will know how much utility companies will pay for the electricity you generate.

You might, however, need a Ph.D in mathematics to figure out the financial benefits. The S.C. Public Service Commission held a hearing where the state's three power companies explained how much they plan to pay customers who produce electricity and then sell it back to the grid.

The process for selling energy back to the grid was established by the federal Energy Policy Act of 2005, the same bill that gave tax credits to homeowners and businesses who buy energy-efficient vehicles and appliances. Under the government program, a homeowner can install a solar energy system, for instance, use electricity to run things in the home and then sell the leftover energy back to utility companies.

Thus far, no one in South Carolina is participating, said Dukes Scott, executive director the S.C. Office of Regulatory Staff. However, "just because no one is using it now, it's not a reason to not have the program in place."

Utility regulators hope people will participate once rates are set and consumers know the economic advantages. Plus, technology for solar energy production is rapidly changing, which makes it more affordable and more productive in places like South Carolina.

"Right now, the costs of the technology are fairly high," said Randy Watts, electric regulatory manager at the Office of Regulatory Staff.

Even if the financial benefits are small, some might participate for environmental reasons. Today, the three energy companies operating in South Carolina will explain how much they will pay homeowners and businesses for the extra electricity.

The calculations are not simple. The written proposals from SCANA, Progress Energy Carolinas and Duke Energy Corp. are lengthy. None are the same. Each company will set rates based on whether the electricity was produced during peak or off-peak hours, and those times vary by company. Also, rules will dictate when homeowners can receive checks from the utilities or when they get credit for the energy their systems produced, Watts said.

Watts and other utility regulators admit the formulas are complicated.

"They're going to have to study and see if they want to put in a system at their residence or business," he said. One solar advocate in the state said the financial benefits for consumers will be minimal under the companies' proposals.

David Odell, president of Sun Store Solar in the Upstate, said customers would receive about 2 cents of financial credit for generating electricity and then pay 8 cents for what they buy from the utility companies. While South Carolina debates these rates, other states are gaining ground by putting together sensible plans, Odell said.

Eventually, solar energy will help relieve the U.S. dependence on fossil fuels and carbon emissions, he said. "It's not a part of the solution today. But it will be part of the solution so let's start knocking down these roadblocks."

Related News

Energy Vault Lands $110M From SoftBank’s Vision Fund for Gravity Storage

Energy Vault Gravity Storage uses crane-stacked concrete blocks to deliver long-duration, grid-scale renewable energy; a SoftBank Vision Fund-backed, pumped-hydro analog enabling baseload power and a lithium-ion alternative with proprietary control algorithms.

 

Key Points

Gravity-based cranes stack blocks to store and dispatch power for hours, enabling grid-scale, low-cost storage.

✅ 4 MW/35 MWh modules; ~9-hour duration

✅ Estimated $200-$250/kWh; lower LCOE than lithium-ion

✅ Backed by SoftBank Vision Fund; Cemex and Tata support

 

Energy Vault, the Swiss-U.S. startup that says it can store and discharge electrical energy through a super-sized concrete-and-steel version of a child’s erector set, has landed a $110 million investment from Japan’s SoftBank Vision Fund to take its technology to commercial scale.

Energy Vault, a spinout of Pasadena-based incubator Idealab and co-founded by Idealab CEO and billionaire investor Bill Gross, unstealthed in November with its novel approach to using gravity to store energy.

Simply put, Energy Vault plans to build storage plants — dubbed “Evies” — consisting of a 35-story crane with six arms, surrounded by a tower consisting of thousands of concrete bricks, each weighing about 35 tons.

This plant will “store” energy by using electricity to run the cranes that lift bricks from the ground and stack them atop of the tower, and “discharge” energy by reversing that process. It’s a mechanical twist on the world’s most common energy storage technology, pumped hydro, which “stores” energy by pumping water uphill, and lets it fall to spin turbines when electricity is needed, even as California funds 100-hour long-duration storage pilots to expand flexibility worldwide.

But behind this simplicity lies some heavy-duty software to orchestrate the cranes and blocks, with a "unique stack of proprietary algorithms" to balance energy supply and demand, volatility, grid stability, weather elements and other variables.

CEO and co-founder Robert Piconi said in a November interview with GTM that the standard array would deliver 4 megawatts/35 megawatt-hours of storage, which translates to nearly 9 hours of duration — the equivalent of building the tower to its height, and then reducing it to ground level. It can be built on-site in partnership with crane manufacturers and recycled concrete material, and can run fully automated for decades with little deterioration, he said.

And the cost, which Piconi pegged in the $200 to $250 per kilowatt-hour range, with room to decline further, is roughly 50 percent below the upfront price of the conventional storage market today, and 80 percent below it on levelized cost, he said, a trend utilities see benefits in as they plan resources.

The result, according to Wednesday’s statement, is a technology that could allow “renewables to deliver baseload power for less than the cost of fossil fuels 24 hours a day,” in applications such as community microgrids serving low-income housing.

Wednesday’s announcement builds on a recent investment from Mexico's Cemex Ventures, the corporate venture capital unit of building materials giant Cemex, along with a promise of deployment support from Cemex's strategic network, and also follows project financing for a California green hydrogen microgrid led by the company. Piconi said in November that the company had sufficient investment from two funding rounds to carry it through initial customer deployments, though he declined to disclose figures.

This is the first energy storage investment for Vision Fund, the $100 billion venture fund set up by SoftBank founder Masayoshi Son. While large by startup standards, it’s in keeping with the capital costs that Energy Vault will face in scaling up its technology to meet its commitments, amid mounting demand in regions like Ontario energy storage that face supply crunches. Those include a 35 megawatt-hour order with Tata Power Company, the energy-producing arm of the Indian industrial conglomerate, first unveiled in November, as well as plans to demonstrate its first storage tower in northern Italy in 2019.

For Vision Fund, it’s also an unusual choice for a storage investment, given that the vast majority of venture capital in the industry today is being directed toward lithium-ion batteries, and even Mercedes-Benz energy storage ventures targeting the U.S. market. Lithium-ion batteries are limited in terms of how many hours they can provide cost-effectively, with about 4 hours being seen as the limit today.

The search for long-duration energy storage has driven investment into flow battery technologies such as grid-scale vanadium systems deployed on utility networks, compressed-air energy storage and variations on gravity-based storage, including a previous startup backed by Gross and Idealab, Energy Cache, whose idea of using a ski lift carrying buckets of gravel up a hill to store energy petered out with a 50-kilowatt pilot project.

 

Related News

View more

Ontario faces growing electricity supply gap, study finds

Ontario Electricity Capacity Gap threatens reliability as IESO forecasts shortfalls from the Pickering shutdown and rapid electrification, requiring new low-emission nuclear generation to meet net-zero targets, maintain baseload, and stabilize the grid.

 

Key Points

Expected 2030 shortfalls from Pickering closure and electrification, requiring new low-emission nuclear to meet net-zero.

✅ IESO projects a 3.6-9.5 GW capacity gap by 2030

✅ Pickering shutdown removes baseload, stressing reliability

✅ New low-emission nuclear needed to meet net-zero targets

 

Ontario faces an electricity supply shortage and reliability risks in the next four to eight years and will not meet net-zero objectives without building new low-emission, nuclear generation starting as soon as possible, according to a report released yesterday by the Power Workers' Union (PWU). The capacity needed to fill the expected supply gap will be equivalent to doubling the province's planned nuclear fleet in eight years.

The planned closure of the Pickering nuclear power plant in 2025 and the increase in demand from electrification of the economy are the drivers behind a capacity gap in 2030 of at least 3.6 GW which could widen to as much as 9.5 GW, Electrification Pathways for Ontario to Reduce Emissions, finds. Ontario's Independent Electricity System Operator (IESO) has since 2013 been forecasting a significant gap in the province's electricity supply due the closure of Pickering, but has been underestimating the impact of electrification, the report says.

In addition, the electrification of buildings, transport and industry sectors that will be needed to achieve goals of net-zero emissions by 2050 that being set by the federal government and civil society will see the province's electricity demand increase by at least 130% over current planning forecasts, and potentially by over 190%. Leveraging electricity, natural gas and hydrogen synergies can reduce supply needs, but 55 GW of new electricity capacity, including new large-scale nuclear plants, will still be needed by 2050 - four times Ontario's current nuclear and hydro assets - the report finds.

These findings underscore the urgent need for a paradigm shift in Ontario's electricity planning and procurement process, the authors say, adding that immediate action is needed both to mitigate the system reliability risks and enable the significant societal benefits needed to pursue net-zero objectives. Planning for procurement to replace Pickering's capacity, or to pursue life extension options, must begin as soon as possible.

"Policymakers around the world realise climate change can't be tackled without nuclear. Ontario's nuclear fleet has delivered emissions reductions for over 50 years," PWU President Jeff Parnell said. "In fact, without building new nuclear units, Ontario will miss its emission reduction targets and carbon emissions from electricity generation will rise dramatically, as explored in why Ontario's power could get dirtier today."

"This report clearly shows that Ontario cannot sustain the low-carbon status of its hydro and nuclear-based electricity system, decarbonise its economy and meet its carbon reduction targets without new nuclear or continued operation at Pickering in the near term. Most disturbing is the fact that we are already well behind and needed to start planning for this capacity yesterday," he said.

The six operating Candu reactors at Ontario Power Generation's Pickering plant have been kept in operation to provide baseload electricity during the refurbishment of units at the Darlington and Bruce plants. Currently, the company plans to shut down Pickering units 1 and 4 in 2024 and units 5 to 8 in 2025, even as Ontario moves to refurbish Pickering B to extend life.

 

Related News

View more

Maritime Link almost a reality, as first power cable reaches Nova Scotia

Maritime Link Subsea Cable enables HVDC grid interconnection across the Cabot Strait, linking Nova Scotia with Newfoundland and Labrador to import Muskrat Falls hydroelectric power and expand renewable energy integration and reliability.

 

Key Points

A 170-km HVDC subsea link connecting Nova Scotia and Newfoundland and Labrador for Muskrat Falls power and renewables

✅ 170-km HVDC subsea route across Cabot Strait

✅ Connects Nova Scotia and Newfoundland and Labrador grids

✅ Enables Muskrat Falls hydro and renewable energy trade

 

The longest sub-sea electricity cable in North America now connects Nova Scotia and Newfoundland and Labrador, according to the company behind the $1.7-billion Maritime Link project.  

The first of the project's two high-voltage power transmission cables was anchored at Point Aconi, N.S., on Sunday. 

The 170-kilometre long cable across the Cabot Strait will connect the power grids in the two provinces. The link will allow power to flow between the two provinces, as demonstrated by its first electricity transfer milestone, and bring to Nova Scotia electricity generated by the massive Muskrat Falls hydroelectric project in Labrador. 

Ultimately, the Maritime Link will help Nova Scotia reach the renewable energy goals set out by the federal government, said Rick Janega, the president and CEO of Emera Newfoundland and Labrador, whose subsidiary owns the Maritime Link.

"If not for the Maritime Link then really the province would not have the ability to meet those requirements because we're pretty much tapped out of all the hydro in province and all the wind generation without creating new interconnections like the Maritime Link," said Janega. 

Not everyone wanted the link 

Fishermen in Cape Breton had objected to the Maritime Link. They were concerned about how the undersea cable might affect fish in the area. 

The laying of the cable and other construction closed a three-kilometre long and 600-metre wide swath of ocean bottom to fishermen for the entire 2017 lobster season.  

But the company came to an agreement to compensate a group of 60 Cape Breton lobster and crab fishermen affected by the project this season. The terms of the compensation deal were not released. 

 

Long cable, big job

The transmission cable runs northwest of the Marine Atlantic ferry route between North Sydney, N.S., and Port aux Basques, N.L. 

Installation of the second cable is set to begin in June, a major step comparable to BC Hydro's Site C transmission milestone achieved recently. The entire link should be completed by late 2017 and should go into full service by January 2018.

"We're quite confident as soon as the Maritime Link is in service there will be energy transactions between Nova Scotia Power and Newfoundland Hydro. Both utilities have already identified opportunities to save money and exchange energy between the two provinces," said Janega.

That's two years before power is expected to flow from the Muskrat Falls hydro project. The Labrador-based power generating facility has been hampered by delays.

Those kinds of transmission project delays are expected for such a large project, said Janega, and won't stop the Maritime Link from being used. 

"With the Maritime Link going in service this year providing Nova Scotia the opportunity that it needs to be able to reach carbon reductions and to adapt to climate change and to increase renewable energy content and we're very pleased to be at this state today," said Janega.

 

Related News

View more

Ontario pitches support for electric bills

Ontario CEAP Program provides one-time electricity bill relief for residential consumers via local utilities, supports low-income households, aligns with COVID-19 recovery rates, and complements time-of-use pricing options and the winter disconnection ban.

 

Key Points

A one-time electricity bill credit for eligible Ontario households affected by COVID-19, available via local utilities.

✅ Apply through your local distribution company or utility

✅ One-time credit for overdue electricity bills from COVID-19

✅ Complements TOU options, OER, and winter disconnection ban

 

Applications for the CEAP program for Ontario residential consumers has opened. Residential customers across the province can now apply for funding through their local distribution company/utility.

On June 1st, our government announced a suite of initiatives to support Ontario’s electricity consumers amid changes for electricity consumers during the pandemic, including a $9 million investment to support low-income Ontarians through the COVID-19 Energy Assistance Program (CEAP). CEAP will provide a one-time payment to Ontarians who are struggling to pay down overdue electricity bills incurred during the COVID-19 outbreak.

These initiatives include:

  • $9 million for the COVID-19 Energy Assistance Program (CEAP) to support consumers struggling to pay their energy bills during the pandemic. CEAP will provide one-time payments to consumers to help pay down any electricity bill debt incurred over the COVID19 period. Applications will be available through local utilities in the upcoming months;
  • $8 million for the COVID-19 Energy Assistance Program for Small Business (CEAP-SB) to provide support to businesses struggling with bill payments as a result of the outbreak; and
  • An extension of the Ontario Energy Board’s winter disconnection ban until July 31, 2020 to ensure no one is disconnected from their natural gas or electricity service during these uncertain times.


More information about applications for the CEAP for Small Business will be coming later this summer, as electricity rates are about to change across Ontario for many customers.

In addition, the government recently announced that it will continue the suspension of time-of-use (TOU) electricity rates and, starting on June 1, 2020, customers will be billed based on a new fixed COVID-19 hydro rate of 12.8 cents per kilowatt hour. The COVID-19 Recovery Rate, which some warned in analysis could lead to higher hydro bills will be in place until October 31, 2020.

Later in the pandemic, Ontario set electricity rates at the off-peak price until February 7 to provide additional relief.

“Starting November 1, 2020, our government has announced Ontario electricity consumers will have the option to choose between time-of-use and tiered electricity pricing plan, following the Ontario Energy Board’s new rate plan prices and support thresholds announcement. We are proud to soon offer Ontarians the ability to choose an electricity plan that best suits for their lifestyle,” said Jim McDonell, MPP for Stormont–Dundas–South Glengarry.

The government will continue to subsidize electricity bills by 31.8 per cent through the Ontario Electricity Rebate.

The government is providing approximately $5.6 billion in 2020-21 as part of its existing electricity cost relief programs and conservation initiatives such as the Peak Perks program to help ensure more affordable electricity bills for eligible residential, farm and small business consumers.

 

Related News

View more

Russia suspected as hackers breach systems at power plants across US

US Power Grid Cyberattacks target utilities and nuclear plants, probing SCADA, ICS, and business networks at sites like Wolf Creek; suspected Russian actors, malware, and spear-phishing trigger DHS and FBI alerts on critical infrastructure resilience.

 

Key Points

Intrusions on energy networks probing ICS and SCADA, seeking persistence and elevating risks to critical infrastructure.

✅ Wolf Creek nuclear plant targeted; no operational systems breached

✅ Attackers leveraged stolen credentials, malware, and spear-phishing

✅ DHS and FBI issued alerts; utilities enhance cyber resilience

 

Hackers working for a foreign government recently breached at least a dozen US power plants, including the Wolf Creek nuclear facility in Kansas, according to current and former US officials, sparking concerns the attackers were searching for vulnerabilities in the electrical grid.

The rivals could be positioning themselves to eventually disrupt the nation’s power supply, warned the officials, who noted that a general alert, prompting a renewed focus on protecting the U.S. power grid, was distributed to utilities a week ago. Adding to those concerns, hackers recently infiltrated an unidentified company that makes control systems for equipment used in the power industry, an attack that officials believe may be related.

The chief suspect is Russia, according to three people familiar with the continuing effort to eject the hackers from the computer networks. One of those networks belongs to an ageing nuclear generating facility known as Wolf Creek -- owned by Westar Energy Inc, Great Plains Energy Inc, and Kansas Electric Power Cooperative Inc -- on a lake shore near Burlington, Kansas.

The possibility of a Russia connection is particularly worrying, former and current official s say, because Russian hackers have previously taken down parts of the electrical grid in Ukraine and appear to be testing increasingly advanced tools, including cyber weapons to disrupt power grids, to disrupt power supplies.

The hacks come as international tensions have flared over US intelligence agencies’ conclusion that Russia tried to influence the 2016 presidential election, and amid U.S. government condemnation of Russian power-grid hacking in recent advisories. The US, which has several continuing investigations into Russia’s activities, is known to possess digital weapons capable of disrupting the electricity grids of rival nations.

“We don’t pay attention to such anonymous fakes,” Kremlin spokesman Dmitry Peskov said, in response to a request to comment on alleged Russian involvement.

It was unclear whether President Donald Trump was planning to address the cyber attacks at his meeting on Friday with Russian President Vladimir Putin. In an earlier speech in Warsaw, Trump called out Russia’s “destabilising activities” and urged the country to join “the community of responsible nations.”

The Department of Homeland Security and Federal Bureau of Investigation said they are aware of a potential intrusion in the energy sector. The alert issued to utilities cited activities by hackers since May.

“There is no indication of a threat to public safety, as any potential impact appears to be limited to administrative and business networks,” the government agencies said in a joint statement.

The Department of Energy also said the impact appears limited to administrative and business networks and said it was working with utilities and grid operators to enhance security and resilience.

“Regardless of whether malicious actors attempt to exploit business networks or operational systems, we take any reports of malicious cyber activity potentially targeting our nation’s energy infrastructure seriously and respond accordingly,” the department said in an emailed statement.

Representatives of the National Security Council, the Director of National Intelligence and the Nuclear Regulatory Commission declined to comment. While Bloomberg News was waiting for responses from the government, the New York Times reported that hacks were targeting nuclear power stations.

The North American Electric Reliability Corp, a nonprofit that works to ensure the reliability of the continent’s power system, said it was aware of the incident and was exchanging information with the industry through a secure portal.

“At this time, there has been no bulk power system impact in North America,” the corporation said in an emailed statement.

In addition, the operational controls at Wolf Creek were not pierced, according to government officials, even as attackers accessed utility control rooms elsewhere in the U.S., according to separate reports. “There was absolutely no operational impact to Wolf Creek,” Jenny Hageman, a spokeswoman for the nuclear plant, said in a statement to Bloomberg News.

“The reason that is true is because the operational computer systems are completely separate from the corporate network.”

Determining who is behind an attack can be tricky. Government officials look at the sophistication of the tools, among other key markers, when gauging whether a foreign government is sponsoring cyber activities.

Several private security firms, including Symantec researchers, are studying data on the attacks, but none has linked the work to a particular hacking team or country.

“We don’t tie this to any known group at this point,” said Sean McBride, a lead analyst for FireEye Inc, a global cyber security firm. “It’s not to say it’s not related, but we don’t have the evidence at this point.”

US intelligence officials have long been concerned about the security of the country’s electrical grid. The recent attack, striking almost simultaneously at multiple locations, is testing the government’s ability to coordinate an effective response among several private utilities, state and local officials, and industry regulators.

Specialised teams from Homeland Security and the FBI have been scrambled to help extricate the hackers from the power stations, in some cases without informing local and state officials. Meanwhile, the US National Security Agency is working to confirm the identity of the hackers, who are said to be using computer servers in Germany, Italy, Malaysia and Turkey to cover their tracks.

Many of the power plants are conventional, but the targeting of a nuclear facility adds to the pressure. While the core of a nuclear generator is heavily protected, a sudden shutdown of the turbine can trigger safety systems. These safety devices are designed to disperse excess heat while the nuclear reaction is halted, but the safety systems themselves may be vulnerable to attack.

Homeland Security and the FBI sent out a general warning about the cyber attack to utilities and related parties on June 28, though it contained few details or the number of plants affected. The government said it was most concerned about the “persistence” of the attacks on choke points of the US power supply. That language suggests hackers are trying to establish backdoors on the plants’ systems for later use, according to a former senior DHS official who asked not to be identified.

Those backdoors can be used to insert software specifically designed to penetrate a facility’s operational controls and disrupt critical systems, according to Galina Antova, co-founder of Claroty, a New York firm that specialises in securing industrial control systems.

“We’re moving to a point where a major attack like this is very, very possible,” Antova said. “Once you’re into the control systems -- and you can get into the control systems by hacking into the plant’s regular computer network -- then the basic security mechanisms you’d expect are simply not there.”

The situation is a little different at nuclear facilities. Backup power supplies and other safeguards at nuclear sites are meant to ensure that “you can’t really cause a nuclear plant to melt down just by taking out the secondary systems that are connected to the grid,” Edwin Lyman, a nuclear expert with the Union of Concerned Scientists, said in a phone interview.

The operating systems at nuclear plants also tend to be legacy controls built decades ago and don’t have digital control systems that can be exploited by hackers. Wolf Creek, for example, began operations in 1985. “They’re relatively impervious to that kind of attack,” Lyman said.

The alert sent out last week inadvertently identified Wolf Creek as one of the victims of the attack. An analysis of one of the tools used by the hackers had the stolen credentials of a plant employee, a senior engineer. A US official acknowledged the error was not caught until after the alert was distributed.

According to a security researcher who has seen the report, the malware that activated the engineer’s username and password was designed to be used once the hackers were already inside the plant’s computer systems.

The tool tries to connect to non-public computers, and may have been intended to identify systems related to Wolf Creek’s generation plant, a part of the facility typically more modern than the nuclear reactor control room, according to a security expert who asked to note be identified because the alert is not public.

Even if there is no indication that the hackers gained access to those control systems, the design of the malware suggests they may have at least been looking for ways to do so, the expert said.

Stan Luke, the mayor of Burlington, the largest community near Wolf Creek, which is surrounded by corn fields and cattle pastures, said he learned about a cyber threat at the plant only recently, and then only through golfing buddies.

With a population of just 2,700, Burlington boasts a community pool with three water slides and a high school football stadium that would be the envy of any junior college. Luke said those amenities lead back to the tax dollars poured into the community by Wolf Creek, Coffey County’s largest employer with some 1,000 workers, 600 of whom live in the county.

E&E News first reported on digital attacks targeting US nuclear plants, adding it was code-named Nuclear 17. A senior US official told Bloomberg that there was a bigger breach of conventional plants, which could affect multiple regions.

Industry experts and US officials say the attack is being taken seriously, in part because of recent events in Ukraine. Antova said that the Ukrainian power grid has been disrupted at least twice, first in 2015, and then in a more automated attack last year, suggesting the hackers are testing methods.

Scott Aaronson, executive director for security and business continuity at the Edison Electric Institute, an industry trade group, said utilities, grid operators and federal officials were already dissecting the attack on Ukraine’s electric sector to apply lessons in North America before the US government issued the latest warning to “energy and critical manufacturing sectors”. The current threat is unrelated to recently publicised ransomware incidents or the CrashOverride malware, Mr Aaronson said in an emailed statement.

Neither attack in Ukraine caused long-term damage. But with each escalation, the hackers may be gauging the world’s willingness to push back.

“If you think about a typical war, some of the acts that have been taken against critical infrastructure in Ukraine and even in the US, those would be considered crossing red lines,” Antova said.

 

Related News

View more

Modular nuclear reactors a 'long shot' worth studying, says Yukon gov't

Yukon SMR Feasibility Study examines small modular reactors as low-emissions nuclear power for Yukon's grid and remote communities, comparing costs, safety, waste, and reliability with diesel generation, renewables, and energy efficiency.

 

Key Points

An official assessment of small modular reactors as low-emission power options for Yukon's grid and remote sites.

✅ Compares SMR costs vs diesel, hydro, wind, and solar

✅ Evaluates safety, waste, fuel logistics, decommissioning

✅ Considers remote community loads and grid integration

 

The Yukon government is looking for ways to reduce the territory's emissions, and wondering if nuclear power is one way to go.

The territory is undertaking a feasibility study, and, as some developers note, combining multiple energy sources can make better projects, to determine whether there's a future for SMRs — small modular reactors — as a low-emissions alternative to things such as diesel power.

The idea, said John Streicker, Yukon's minister of energy, mines and resources, is to bring the SMRs into the Yukon to generate electricity.

"Even the micro ones, you could consider in our remote communities or wherever you've got a point load of energy demand," Streicker said. "Especially electricity demand."

For remote coastal communities elsewhere in Canada, tidal energy is being explored as a low-emissions option as well.

SMRs are nuclear reactors that use fission to produce energy, similar to existing large reactors, but with a smaller power capacity. The International Atomic Energy Agency (IAEA) defines reactors as "small" if their output is under 300 MW. A traditional nuclear power plant produces about three times as much power or more.

They're "modular" because they're designed to be factory-assembled, and then installed where needed. 

Several provinces have already signed an agreement supporting the development of SMRs, and in Alberta's energy mix that conversation spans both green and fossil power, and Canada's first grid-scale SMRs could be in place in Ontario by 2028 and Saskatchewan by 2032.

A year ago, the government of Yukon endorsed Canada's SMR action plan, at a time when analysts argue that zero-emission electricity by 2035 is practical and profitable, agreeing to "monitor the progress of SMR technologies throughout Canada with the goal of identifying potential for applicability in our northern jurisdiction."

The territory is now following through by hiring someone to look at whether SMRs could make sense as a cleaner-energy alternative in Yukon. 

The territorial government has set a goal of reducing emissions by 45 per cent by 2030, excluding mining emissions, even as some analyses argue that zero-emissions electricity by 2035 is possible, and "future emissions actions for post-2030 have not yet been identified," reads the government's request for proposals to do the SMR study. 

Streicker acknowledges the potential for nuclear power in Yukon is a bit of "long shot" — but says it's one that can't be ignored.

"We need to look at all possible solutions," he said, as countries such as New Zealand's electricity sector debate their future pathways.

"I don't want to give the sense like we're putting all of our emphasis and energy towards nuclear power. We're not."

According to Streicker, it's nothing more than a study at this point.

Don't bother, researcher says
Still, M.V. Ramana, a professor at the School of Public Policy and Global Affairs at the University of British Columbia, said it's a study that's likely a waste of time and money. He says there's been plenty of research already, and to him, SMRs are just not a realistic option for Yukon or anywhere in Canada.

"I would say that, you know, that study can be done in two weeks by a graduate student, essentially, all right? They just have to go look at the literature on SMRs and look at the critical literature on this," Ramana said.

Ramana co-authored a research paper last year, looking at the potential for SMRs in remote communities or mine sites. The conclusion was that SMRs will be too expensive and there won't be enough demand to justify investing in them.

He said nuclear reactors are expensive, which is why their construction has "dried up" in much of the world.

"They generate electricity at very high prices," he said.

'They just have to go look at the literature,' said M.V. Ramana, a professor at the School of Public Policy and Global Affairs at the University of British Columbia. (Paul Joseph)
"[For] smaller reactors, the overall costs go down. But the amount of electricity that they will generate goes down even further."

The environmental case is also shaky, according to a statement signed last year by dozens of Canadian environmental and community groups, including the Sierra Club, Greenpeace, the Council of Canadians and the Canadian Environmental Law Associaton (CELA). The statement calls SMRs a "dirty, dangerous distraction" from tackling climate change and criticized the federal government for investing in the technology.

"We have to remember that the majority of the rhetoric we hear is from nuclear advocates. And so they are promoting what I would call, and other legal scholars and academics have called, a nuclear fantasy," said Kerrie Blaise of CELA.

Blaise describes the nuclear industry as facing an unknown future, with some of North America's larger reactors set to be decommissioned in the coming years. SMRs are therefore touted as the future.

"They're looking for a solution. And so that I would say climate change presents that timely solution for them."

Blaise argues the same safety and environmental questions exist for SMRs as for any nuclear reactors — such as how to produce and transport fuel safely, what to do with waste, and how to decommission them — and those can't be glossed over in a single-minded pursuit of lower carbon emissions.  

Main focus is still renewables, minister says
Yukon's energy minister agrees, and he's eager to emphasize that the territory is not committed to anything right now beyond a study.

"Every government has a responsibility to do diligence around this," Streicker said.

A solar farm in Old Crow, Yukon. The territory's energy minister says Yukon is still primarily focussed on renewables, and energy efficiency. (Caleb Charlie)
He also dismisses the idea that studying nuclear power is any sort of distraction from his government's response to climate change right now. Yukon's main focus is still renewable energy such as solar and wind power, though Canada's solar progress is often criticized as lagging, increasing efficiency, and connecting Yukon's grid to the hydro project in Atlin, B.C., he said.

Streicker has been open to nuclear energy in the past. As a federal Green Party candidate in 2008, Streicker broke with the party line to suggest that nuclear could be a viable energy alternative. 

He acknowledges that nuclear power is always a hot-button issue, and Yukoners will have strong feelings about it. A lot will depend on how any future regulatory process works, he says.

In taking action on climate, this Arctic community wants to be a beacon to the world
Cameco signs agreement with nuclear reactor company
"There's some people that think it's the 'Hail Mary,' and some people that think it's evil incarnate," he said. 

"Buried deep within Our Clean Future [Yukon's climate change strategy], there's a line in there that says we should keep an eye on other technologies, for example, nuclear. That's what this [study] is — it's to keep an eye on it."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.