30,000 solar dishes proposed for desert

By New York Times


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Federal efforts to permit nearly a dozen large-scale solar-power projects in California by year's end moved a significant step forward as the Bureau of Land Management rolled out a detailed environmental review for one of the largest plants proposed to date — a 750-megawatt concentrated solar facility in the Colorado Desert.

When completed, Stirling Energy System Inc.'s $2.2 billion Solar Two project is expected to include 30,000 solar dish systems across more than 6,100 acres of federal land — making it the largest project to move this far through the federal permitting process.

At full capacity, Solar Two could generate enough electricity to power more than a quarter-million homes, according to a draft environmental impact statement (EIS) released last week by BLM and the California Energy Commission.

The proposed plant, in the Imperial Valley about 14 miles east of El Centro, is one of nine commercial-scale solar projects in California that the Interior Department has placed on a fast-track permitting schedule for 2010. Plants that break ground by the end of the year can qualify for lucrative stimulus grants under the American Recovery and Reinvestment Act.

The other two solar projects to reach the draft EIS stage are the Ivanpah Solar Energy Generating Station, a 400-megawatt solar power plant in the Mojave Desert near San Bernardino County, and the 45-megawatt Lucerne Valley Solar Project in San Bernardino County. BLM and CEC issued a draft EIS for BrightSource Energy Inc.'s Ivanpah project in November and Chevron Energy Solutions' Lucerne Valley project this month.

Together, the nine fast-tracked solar projects have a total generation capacity of 4,580 megawatts — enough to power about 1.6 million homes, according to federal estimates.

A final EIS on Stirling's Solar Two project should be completed in the next few months, said David Briery, a BLM spokesman in Sacramento.

Stirling has secured a 20-year power purchase agreement with San Diego Gas & Electric, and the electricity produced at Solar Two will power homes and businesses in the San Diego metropolitan area about 100 miles to the west. A 10.3-mile-long electricity transmission line would be built to help bring the power to market, according to the EIS.

"We're expecting to have the permits in hand by late summer and to get this project into construction by the fall," said Sean Gallagher, vice president for market strategy and regulatory affairs for Tessera Solar North America, Stirling Energy's sister company involved in project planning. "It's a big project and it's a lot of work, and we've taken the approach of let's cooperate and make sure we address everyone's issues up front."

Some of those issues involve environmental impacts, including questions about water availability in the arid Imperial Valley and potential impacts to species like flat-tailed horned lizards, burrowing owls and peninsular bighorn sheep.

Environmental groups monitoring the Solar Two project and other fast-tracked proposals in California say Stirling appears to be addressing such issues in a proactive and thoughtful manner. For example, 1,039 acres of the proposed project site are already disturbed and being used as BLM-sanctioned off-roading trails.

"I think Stirling Solar Two is... headed in the right direction," said Kim Delfino, California program director for Defenders of Wildlife, a national conservation group. "I'm optimistic about the project."

Still, efforts to build large-scale solar projects in the Southern California desert have met resistance from environmentalists worried that the federal push to expand renewable energy will damage or destroy pristine natural resources.

A prime example is the Ivanpah Solar Energy Generating Station in the Mojave Desert.

BLM's draft EIS for that project, released last November, concluded that with proper mitigation the Ivanpah plant would not cause significant harm to the 4,073 acres of undisturbed desert where it would be sited. But BLM also found that the project could destroy rare plants and permanently alter prized views from the nearby Mojave National Preserve, as well as potentially harm federally protected desert tortoises that would be relocated to make way for the project (Land Letter, November 12, 2009).

BrightSource submitted a revised project plan that reduces the project size by 12 percent in an effort to trim the number of desert tortoises that must be relocated and to avoid an area of rare plants. The revision will also result in scaling back the amount of electricity capacity from 440 megawatts to 390 megawatts, according to the company (Greenwire, Feb. 12).

Environmental groups who have opposed BrightSource's plans to locate the plant in the Ivanpah Valley were cautiously optimistic about the revised plan.

"I think from our perspective, we're happy they are starting to work to address some of the issues we've been raising for more than year," said Delfino, the Defenders of Wildlife official. "But our feeling is there is more work to be done. The project is still proposed in a high-density area for tortoises."

Delfino said her group has pushed for BrightSource to move the proposed project closer to a nearby federal highway where there are fewer tortoises.

"No matter where you put this project, you're going to impact tortoises. It is inevitable," she said. "The question is are you going to impact lower-density or higher-density populations?"

Meanwhile, Stirling Energy's Solar Two project must address some big environmental questions, too, including nagging questions about water supply.

BLM's analysis found that the project would require 10.4 million gallons of water annually to wash solar panels, provide dust control and support other plant operations.

But, the agency said, such a need could not be met by the region's existing surface or groundwater.

"Water studies showed that the aquifer is significantly overdrafted and that new well permits are not being granted," the draft EIS states.

There is, however, plenty of available wastewater, and Stirling has proposed a novel approach that could allow for the use of treated sewage water to meet its demand.

The treated wastewater would come from nearby Seeley, California, where Stirling would pay to upgrade the town's wastewater treatment plant so that the water meets state requirements for reuse. The company would also pay to train plant operators to use the new equipment and build an 11.8-mile underground water pipeline to the plant, according to the EIS.

In addition, the company is working to reduce its water demand "by developing alternative mirror washing methods and schedules," according to the EIS.

Another concern cited by BLM is that the project would occupy a site that "supports a diversity of mammals, birds, and reptiles, including some special status wildlife species, such as flat-tailed horned lizard (FTHL) and burrowing owl." The Fish and Wildlife Service is currently reviewing whether the lizard should be added to the federal Endangered Species List.

Rare desert bighorn sheep also occupied part of the project site as recently as last spring, but federal and state wildlife officials believe the sheep were "flushed" onto the property by off-road vehicles and do not normally use the area to forage or as a migration route.

Much of the 6,140 acres of BLM land, and another 300-acre parcel of privately owned land, would need to be graded to make way for the solar power systems.

BLM and the California Energy Commission, which are jointly handling the environmental assessment of the project, have proposed that Stirling purchase 6,619 acres "of habitat suitable for these listed species" to compensate for the loss of habitat at the project site. Including surveys and fees, the total cost for the mitigation would run $5.7 million, according to the EIS.

Gallagher, the Tessera Solar official, said BLM has identified several nearby inholdings — private parcels within federally managed land — that would be suitable to transfer lizards.

Lastly, the project would require two 2.5-million-gallon evaporation ponds to store wastewater, causing concern among regulators that the ponds will attract animals that prey on the flat-tailed horned lizard and other species. Stirling has proposed to build fences around the structures and overlay the ponds' surface areas with netting to prevent predators from accessing them.

"We made a conscientious effort to take a responsible approach to the sizing of this project, and we've tried to work closely with the environmental groups to make sure that at least some of them can support this project," Gallagher said.

Related News

Current Model For Storing Nuclear Waste Is Incomplete

Nuclear Waste Corrosion accelerates as stainless steel, glass, and ceramics interact in aqueous conditions, driving localized corrosion in repositories like Yucca Mountain, according to Nature Materials research on high-level radioactive waste storage.

 

Key Points

Degradation of waste forms and canisters from water-driven chemistry, causing accelerated, localized corrosion in storage.

✅ Stainless steel-glass contact triggers severe localized attack

✅ Ceramics and steel co-corrosion observed under aqueous conditions

✅ Yucca Mountain-like chemistry accelerates waste form degradation

 

The materials the United States and other countries plan to use to store high-level nuclear waste, even as utilities expand carbon-free electricity portfolios, will likely degrade faster than anyone previously knew because of the way those materials interact, new research shows.

The findings, published today in the journal Nature Materials (https://www.nature.com/articles/s41563-019-0579-x), show that corrosion of nuclear waste storage materials accelerates because of changes in the chemistry of the nuclear waste solution, and because of the way the materials interact with one another.

"This indicates that the current models may not be sufficient to keep this waste safely stored," said Xiaolei Guo, lead author of the study and deputy director of Ohio State's Center for Performance and Design of Nuclear Waste Forms and Containers, part of the university's College of Engineering. "And it shows that we need to develop a new model for storing nuclear waste."

Beyond waste storage, options like carbon capture technologies are being explored to reduce atmospheric CO2 alongside nuclear energy.

The team's research focused on storage materials for high-level nuclear waste -- primarily defense waste, the legacy of past nuclear arms production. The waste is highly radioactive. While some types of the waste have half-lives of about 30 years, others -- for example, plutonium -- have a half-life that can be tens of thousands of years. The half-life of a radioactive element is the time needed for half of the material to decay.

The United States currently has no disposal site for that waste; according to the U.S. General Accountability Office, it is typically stored near the nuclear power plants where it is produced. A permanent site has been proposed for Yucca Mountain in Nevada, though plans have stalled. Countries around the world have debated the best way to deal with nuclear waste; only one, Finland, has started construction on a long-term repository for high-level nuclear waste.

But the long-term plan for high-level defense waste disposal and storage around the globe is largely the same, even as the U.S. works to sustain nuclear power for decarbonization efforts. It involves mixing the nuclear waste with other materials to form glass or ceramics, and then encasing those pieces of glass or ceramics -- now radioactive -- inside metallic canisters. The canisters then would be buried deep underground in a repository to isolate it.

At the generation level, regulators are advancing EPA power plant rules on carbon capture to curb emissions while nuclear waste strategies evolve.

In this study, the researchers found that when exposed to an aqueous environment, glass and ceramics interact with stainless steel to accelerate corrosion, especially of the glass and ceramic materials holding nuclear waste.

In parallel, the electrical grid's reliance on SF6 insulating gas has raised warming concerns across Europe.

The study qualitatively measured the difference between accelerated corrosion and natural corrosion of the storage materials. Guo called it "severe."

"In the real-life scenario, the glass or ceramic waste forms would be in close contact with stainless steel canisters. Under specific conditions, the corrosion of stainless steel will go crazy," he said. "It creates a super-aggressive environment that can corrode surrounding materials."

To analyze corrosion, the research team pressed glass or ceramic "waste forms" -- the shapes into which nuclear waste is encapsulated -- against stainless steel and immersed them in solutions for up to 30 days, under conditions that simulate those under Yucca Mountain, the proposed nuclear waste repository.

Those experiments showed that when glass and stainless steel were pressed against one another, stainless steel corrosion was "severe" and "localized," according to the study. The researchers also noted cracks and enhanced corrosion on the parts of the glass that had been in contact with stainless steel.

Part of the problem lies in the Periodic Table. Stainless steel is made primarily of iron mixed with other elements, including nickel and chromium. Iron has a chemical affinity for silicon, which is a key element of glass.

The experiments also showed that when ceramics -- another potential holder for nuclear waste -- were pressed against stainless steel under conditions that mimicked those beneath Yucca Mountain, both the ceramics and stainless steel corroded in a "severe localized" way.

Other Ohio State researchers involved in this study include Gopal Viswanathan, Tianshu Li and Gerald Frankel.

This work was funded in part by the U.S. Department of Energy Office of Science.

Meanwhile, U.S. monitoring shows potent greenhouse gas declines confirming the impact of control efforts across the energy sector.

 

Related News

View more

Michigan utilities propose more than $20M in EV charging programs

Michigan EV time-of-use charging helps DTE Energy and Consumers Energy manage off-peak demand, expand smart charger rebates, and build DC fast charging infrastructure, lowering grid costs, emissions, and peak load impacts across Michigan's distribution networks.

 

Key Points

Michigan utility programs using time-based EV rates to shift charging off-peak and ease grid load via charger rebates.

✅ Off-peak rates cut peak load and distribution transformer stress.

✅ Rebates support home smart chargers and DC fast charging sites.

✅ DTE Energy and Consumers Energy invest to expand EV infrastructure.

 

The two largest utilities in the state of Michigan, DTE Energy and Consumers Energy, are looking at time-of-use charging rates in two proposed electric vehicle (EV) charging programs, aligned with broader EV charging infrastructure trends among utilities, worth a combined $20.5 million of investments.

DTE Energy last month proposed a $13 million electric vehicle (EV) charging program, which would include transformer upgrades/additions, service drops, labor and contractor costs, materials, hardware and new meters to provide time-of-use charging rates amid evolving charging control dynamics in the market. The Charging Forward program aims to address customer education and outreach, residential smart charger support and charging infrastructure enablement, DTE told regulators in its 1,100-page filing. The utility requested that rebates provided through the program be deferred as a regulatory asset.

Consumers Energy in 2017 withdrew a proposal to install 800 electric vehicle charging ports in its Michigan service territory after questions were raised over how to pay for the $15 million plan. According to Energy News Network, the utility has filed a modified proposal building on the former plan and conversations over the last year that calls for approximately half of the original investment.

Utilities across the country are viewing new demand from EVs as a potential boon to their systems, a shift accelerated by the Model 3's impact on utility planning, potentially allowing greater utilization and lower costs. But that will require the vehicles to be plugged in when other demand is low, to avoid the need for extensive upgrades and more expensive power purchases. Michigan utilities' proposal focuses on off-peak EV charging, as well as on developing new EV infrastructure.

While adoption has remained relatively low nationally, last year the Edison Electric Institute and the Institute for Electric Innovation forecast 7 million EVs on United States' roads by the end of 2025. But unless those EVs can be coordinated, state power grids could face increased stress, the National Renewable Energy Laboratory has said distribution transformers may need to be replaced more frequently and peak load could push system limits — even with just one or two EVs on a neighborhood circuit. 

In its application, DTE told regulators that electrification of transportation offers a range of benefits including "reduced operating costs for EV drivers and affordability benefits for utility customers."

"Most EV charging takes place overnight at home, effectively utilizing distribution and generation capacity in the system during a low load period," the utility said. "Therefore, increased EV adoption puts downward pressure on rates by spreading fixed costs over a greater volume of electric sales."

DTE added that other benefits include reduced carbon emissions, improved air quality, increased expenditures in local economies and reduced dependency on foreign oil for the public at large.

A previous proposal from Consumers Energy included 60 fast charging DC stations along major highways in the Lower Peninsula and 750 240-volt AC stations in metropolitan areas. Consumers' new plan will offer rebates for charger installation, as U.S. charging networks jostle for position amid federal electrification efforts, including residential and DC fast-charging stations.

 

Related News

View more

British Columbia Halts Further Expansion of Self-Driving Vehicles

BC Autonomous Vehicle Ban freezes new driverless testing and deployment as BC develops a regulatory framework, prioritizing safety, liability clarity, and road sharing with pedestrians and cyclists while existing pilot projects continue.

 

Key Points

A moratorium pausing new driverless testing until a safety-first regulatory framework and clear liability rules exist.

✅ Freezes new AV testing and deployment provincewide

✅ Current pilot shuttles continue under existing approvals

✅ Focus on safety, liability, and road-user integration

 

British Columbia has halted the expansion of fully autonomous vehicles on its roads. The province has announced it will not approve any new applications for testing or deployment of vehicles that operate without a human driver until it develops a new regulatory framework, even as it expands EV charging across the province.


Safety Concerns and Public Questions

The decision follows concerns about the safety of self-driving vehicles and questions about who would be liable in the event of an accident. The BC government emphasizes the need for robust regulations to ensure that self-driving cars and trucks can safely share the road with traditional vehicles, pedestrians, and cyclists, and to plan for infrastructure and power supply challenges associated with electrified fleets.

"We want to make sure that British Columbians are safe on our roads, and that means putting the proper safety guidelines in place," said Rob Fleming, Minister of Transportation and Infrastructure. "As technology evolves, we're committed to developing a comprehensive framework to address the issues surrounding self-driving technology."


What Does the Ban Mean?

The ban does not affect current pilot projects involving self-driving vehicles that already operate in BC, such as limited shuttle services and segments of the province's Electric Highway that support charging and operations.


Industry Reaction

The response from industry players working on autonomous vehicle technology has been mixed, amid warnings of a potential EV demand bottleneck as adoption ramps up. While some acknowledge the need for clear regulations, others express concern that the ban could stifle innovation in the province.

"We understand the government's desire to ensure safety, but a blanket ban risks putting British Columbia behind in the development of this important technology," says a spokesperson for a self-driving vehicle start-up.


Debate Over Self-Driving Technology

The BC ban highlights a larger debate about the future of autonomous vehicles. While proponents point to potential benefits such as improved safety, reduced traffic congestion, and increased accessibility, and national policies like Canada's EV goals aim to accelerate adoption, critics raise concerns about liability, potential job losses in the transportation sector, and the ability of self-driving technology to handle complex driving situations.


BC Not Alone

British Columbia is not the only jurisdiction grappling with the regulation of self-driving vehicles. Several other provinces and states in both Canada and the U.S. are also working to develop clear legal and regulatory frameworks for this rapidly evolving technology, even as studies suggest B.C. may need to double its power output to fully electrify road transport.


The Road Ahead

The path forward for fully autonomous vehicles in BC depends on the government's ability to create a regulatory framework that balances safety considerations with fostering innovation, and align with clean-fuel investments like the province's hydrogen project to support zero-emission mobility.  When and how that framework will materialize remains unclear, leaving the future of self-driving cars in the province temporarily uncertain.

 

Related News

View more

Ford's Washington Meeting: Energy Tariffs and Trade Tensions with U.S

Ontario-U.S. Energy Tariff Dispute highlights cross-border trade tensions, retaliatory tariffs, export surcharges, and White House negotiations as Doug Ford meets U.S. officials to de-escalate pressure over steel, aluminum, and energy supplies.

 

Key Points

A trade standoff over energy exports and tariffs, sparked by Ontario's surcharge and U.S. duties on steel and aluminum.

✅ 25% Ontario energy surcharge paused before White House talks

✅ U.S. steel and aluminum tariffs reduced from 50% to 25%

✅ Potential energy supply cutoff remains leverage in negotiations

 

Ontario Premier Doug Ford's recent high-stakes diplomatic trip to Washington, D.C., underscores the delicate trade tensions between Canada and the United States, particularly concerning energy exports and Canada's electricity exports across the border. Ford's potential use of tariffs or even halting U.S. energy supplies, amid Ontario's energy independence considerations, remains a powerful leverage tool, one that could either de-escalate or intensify the ongoing trade conflict between the two neighboring nations.

The meeting in Washington follows a turbulent series of events that began with Ontario's imposition of a 25% surcharge on energy exports to the U.S. This move came in retaliation to what Ontario perceived as unfair treatment in trade agreements, a step that aligned with Canadian support for tariffs at the time. In response, U.S. President Donald Trump's administration threatened its own set of tariffs, specifically targeting Canadian steel and aluminum, which further escalated tensions. U.S. officials labeled Ford's threat to cut off U.S. electricity exports and energy supplies as "egregious and insulting," warning of significant economic retaliation.

However, shortly after these heated exchanges, Trump’s commerce secretary, Howard Lutnick, extended an invitation to Ford for a direct meeting at the White House. Ford described this gesture as an "olive branch," signaling a potential de-escalation of the dispute. In the lead-up to this diplomatic encounter, Ford agreed to pause the energy surcharge, allowing the meeting to proceed, amid concerns tariffs could spike NY energy prices, without further escalating the crisis. Trump's administration responded by lowering its proposed 50% tariff on Canadian steel and aluminum to a more manageable 25%.

The outcome of the meeting, which is set to address these critical issues, could have lasting implications for trade relations between Canada and the U.S. If Ford and Lutnick can reach an agreement, the potential for tariff imposition on energy exports, though experts advise against cutting Quebec's energy exports due to broader risks, could be resolved. However, if the talks fail, it is likely that both countries could face further retaliatory measures, compounding the economic strain on both sides.

As Canada and the U.S. continue to navigate these complex issues, where support for Canadian energy projects has risen, the outcome of Ford's meeting with Lutnick will be closely watched, as it could either defuse the tensions or set the stage for a prolonged trade battle.

 

Related News

View more

Battery-electric buses hit the roads in Metro Vancouver

TransLink Electric Bus Pilot launches zero-emission service in Metro Vancouver, cutting greenhouse gas emissions with fast-charging stations on Route 100, supporting renewable energy goals alongside trolley buses, CNG, and hybrid fleets.

 

Key Points

TransLink's Metro Vancouver program deploying charging, zero-emission buses on Route 100 to cut emissions and fuel costs.

✅ Cuts ~100 tonnes GHG and saves $40k per bus annually

✅ Five-minute on-route charging at terminals on Route 100

✅ Pilot data to guide zero-emission fleet transition by 2050

 

TransLink's first battery-electric buses are taking to the roads in Metro Vancouver as part of a pilot project to reduce emissions, joining other initiatives like electric school buses in B.C. that aim to cut pollution in transportation.

The first four zero-emission buses picked up commuters in Vancouver, Burnaby and  New Westminster on Wednesday. Six more are expected to be brought in, and similar launches like Edmonton's first electric bus are underway across Canada.

"With so many people taking transit in Vancouver today, electric buses will make a real difference," said Merran Smith, executive director of Clean Energy Canada, a think tank at Simon Fraser University, in a release.

According to TransLink, each bus is expected to reduce 100 tonnes of greenhouse gas emissions and save $40,000 in fuel costs per year compared to a conventional diesel bus.

"Buses already help tackle climate change by getting people out of cars, and Vancouver is ahead of the game with its electric trolleys," Smith said.

She added there is still more work to be done to get every bus off diesel, as seen with the TTC's battery-electric buses rollout in Toronto.

The buses will run along the No. 100 route connecting Vancouver and New Westminster. They recharge — it takes about five minutes — at new charging stations installed at both ends of the route while passengers load and unload or while the driver has a short break. 

Right now, more than half of TransLink's fleet currently operates with clean technology, offering insights alongside Toronto's large battery-electric fleet for other cities. 

In addition to the four new battery-electric buses, the fleet also includes hundreds of zero-emission electric trolley buses, compressed natural gas buses and hybrid diesel-electric buses, while cities like Montreal's first STM electric buses continue to expand adoption.

"Our iconic trolley buses have been running on electricity since 1948 and we're proud to integrate the first battery-electric buses to our fleet," said TransLink CEO Kevin Desmond in a press release.

TransLink has made it a goal to operate its fleet with 100 per cent renewable energy in all operations by 2050. Desmond says, the new buses are one step closer to meeting that goal.

The new battery-electric buses are part of a two-and-a-half year pilot project that looks at the performance, maintenance, and customer experience of making the switch to electric, complementing BC Hydro's vehicle-to-grid pilot initiative underway in the province.

 

Related News

View more

Global: Nuclear power: what the ‘green industrial revolution’ means for the next three waves of reactors

UK Nuclear Energy Ten Point Plan outlines support for large reactors, SMRs, and AMRs, funding Sizewell C, hydrogen production, and industrial heat to reach net zero, decarbonize transport and heating, and expand clean electricity capacity.

 

Key Points

A UK plan backing large, small, and advanced reactors to drive net zero via clean power, hydrogen, and industrial heat.

✅ Funds large plants (e.g., Sizewell C) under value-for-money models

✅ Invests in SMRs for factory-built, modular, lower-cost deployment

✅ Backs AMRs for high-temperature heat, hydrogen, and industry

 

The UK government has just announced its “Ten Point Plan for a Green Industrial Revolution”, in which it lays out a vision for the future of energy, transport and nature in the UK. As researchers into nuclear energy, my colleagues and I were pleased to see the plan is rather favourable to new nuclear power.

It follows the advice from the UK’s Nuclear Innovation and Research Advisory Board, pledging to pursue large power plants based on current technology, and following that up with financial support for two further waves of reactor technology (“small” and “advanced” modular reactors).

This support is an important part of the plan to reach net-zero emissions by 2050, as in the years to come nuclear power will be crucial to decarbonising not just the electricity supply but the whole of society.

This chart helps illustrate the extent of the challenge faced:

Electricity generation is only responsible for a small percentage of UK emissions. William Bodel. Data: UK Climate Change Committee

Efforts to reduce emissions have so far only partially decarbonised the electricity generation sector. Reaching net zero will require immense effort to also decarbonise heating, transport, as well as shipping and aviation. The plan proposes investment in hydrogen production and electric vehicles to address these three areas – which will require, as advocates of nuclear beyond electricity argue, a lot more energy generation.

Nuclear is well-placed to provide a proportion of this energy. Reaching net zero will be a huge challenge, and industry leaders warn it may be unachievable without nuclear energy. So here’s what the announcement means for the three “waves” of nuclear power.

Who will pay for it?
But first a word on financing. To understand the strategy, it is important to realise that the reason there has been so little new activity in the UK’s nuclear sector since the 1990s is due to difficulty in financing. Nuclear plants are cheap to fuel and operate and last for a long time. In theory, this offsets the enormous upfront capital cost, and results in competitively priced electricity overall.

But ever since the electricity sector was privatised, governments have been averse to spending public money on power plants. This, combined with resulting higher borrowing costs and cheaper alternatives (gas power), has meant that in practice nuclear has been sidelined for two decades. While climate change offers an opportunity for a revival, these financial concerns remain.

Large nuclear
Hinkley Point C is a large nuclear station currently under construction in Somerset, England. The project is well-advanced, with its first reactor installed and due to come online in the middle of this decade. While the plant will provide around 7% of current UK electricity demand, its agreed electricity price is relatively expensive.

Under construction: Hinkley Point C. Ben Birchall/PA

The government’s new plan states: “We are pursuing large-scale new nuclear projects, subject to value-for-money.” This is likely a reference to the proposed Sizewell C in Suffolk, on which a final decision is expected soon. Sizewell C would be a copy of the Hinkley plant – building follow-up identical reactors achieves capital cost reductions, and setbacks at Hinkley Point C have sharpened delivery focus as an alternative funding model will likely be implemented to reduce financing costs.

Other potential nuclear sites such as Wylfa and Moorside (shelved in 2018 and 2019 respectively for financial reasons) are also not mentioned, their futures presumably also covered by the “subject to value-for-money” clause.

Small nuclear
The next generation of nuclear technology, with various designs under development worldwide are smaller, cheaper, safer Small Modular Reactors (SMRs), such as the Rolls Royce “UK SMR”.

Reactors small enough to be manufactured in factories and delivered as modules can be assembled on site in much shorter times than larger designs, which in contrast are constructed mostly on site. In so doing, the capital costs per unit (and therefore borrowing costs) could be significantly lower than current new-builds.

The plan states “up to £215 million” will be made available for SMRs, Phase 2 of which will begin next year, with anticipated delivery of units around a decade from now.

Advanced nuclear
The third proposed wave of nuclear will be the Advanced Modular Reactors (AMRs). These are truly innovative technologies, with a wide range of benefits over present designs and, like the small reactors, they are modular to keep prices down.

Crucially, advanced reactors operate at much higher temperatures – some promise in excess of 750°C compared to around 300°C in current reactors. This is important as that heat can be used in industrial processes which require high temperatures, such as ceramics, which they currently get through electrical heating or by directly burning fossil fuels. If those ceramics factories could instead use heat from AMRs placed nearby, it would reduce CO₂ emissions from industry (see chart above).

High temperatures can also be used to generate hydrogen, which the government’s plan recognises has the potential to replace natural gas in heating and eventually also in pioneering zero-emission vehicles, ships and aircraft. Most hydrogen is produced from natural gas, with the downside of generating CO₂ in the process. A carbon-free alternative involves splitting water using electricity (electrolysis), though this is rather inefficient. More efficient methods which require high temperatures are yet to achieve commercialisation, however if realised, this would make high temperature nuclear particularly useful.

The government is committing “up to £170 million” for AMR research, and specifies a target for a demonstrator plant by the early 2030s. The most promising candidate is likely a High Temperature Gas-cooled Reactor which is possible, if ambitious, over this timescale. The Chinese currently lead the way with this technology, and their version of this reactor concept is expected soon.

In summary, the plan is welcome news for the nuclear sector, even as Europe loses nuclear capacity across the continent. While it lacks some specifics, these may be detailed in the government’s upcoming Energy White Paper. The advice to government has been acknowledged, and the sums of money mentioned throughout are significant enough to really get started on the necessary research and development.

Achieving net zero is a vast undertaking, and recognising that nuclear can make a substantial contribution if properly supported is an important step towards hitting that target.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.