Gaining power from the sun

By Needles Desert Star


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
As she looks toward retirement, Kippy Poulson is planning for a future with lower electric bills.

On Dec. 18, 24 photo-voltaic panels on the roof of a barn in Poulson's back yard were connected to the grid-tied electrical service panel of her home on the south side of Needles.

The panels are expected to generate 60 to 65 percent of Poulson's electricity needs annually. She wants to make sure that she will be able to afford her electric bill after retirement.

“I feel that electricity is just going to keep getting worse and worse and worse,” said Poulson. “I might as well start now.”

The system Poulson installed consists of 24 panels, capable of generating 208 watts of direct current each. The panels are connected to an inverter, which turns the DC power into alternating current, that appliances in the house can use. The inverter then feeds the power into the house's electric service panel.

When the sun is shining and Poulson is not using all the juice, her electrical meter will run backwards building credit with the utility department.

The system was not cheap, but Poulson expects to make her money back before long. “I expect it'll take 15 to 25 years,” she said. “But, it could be 10 years if power keeps going up out of sight.”

Glenn Roehl, of Bare Land Developers/Sunquest Solar, installed the system.

Systems costs around $8 per watt, installed, with a minimum of approximately 2,000 watts, according to Roehl.

“This system came out to just under $40,000,” said Roehl.

The system took more than a month to plan out and two days to install. Luckily, Poulson had a large south-facing pitched roof to install the panels on. “For her particular application, this is a perfect set up,” said Roehl.

Photo-voltaic systems are tailored for individual user's needs and the space available. “What I do,” said Roehl, “is look at the energy consumption of the home owner, and then look at how much energy they want to save.”

Once he figures out how much energy the customer wants, Roehl can look at the space required to generate the energy and begin to design a system.

The panels on Poulson's house take up 400 square feet on the back roof of her barn, and are completely out of sight from the house. “I was lucky, because I have the perfect roof for it,” said Poulson.

Poulson started investigating PV systems months ago, after deciding that the cost of electricity was going to continue to increase. “I just said, it's time to do it, and do it now,” she said.

“In 10 years, I could be really sorry or I could be really happy,” said Poulson, depending on the price of energy. “I'll get my money back, even if nothing changes.”

Poulson is hoping that she will be able to recoup around $7,000 of the systems cost quickly, with a $2,000 federal tax credit and a $5,000 grant from the city.

“The city was very reasonable,” said Poulson. “They were very easy to do business with.”

The city is mandated by the state to make grants available to citizens of Needles to install PV solar systems.

Dave Brownlee, administrative assistant to the city manager of Needles, said that Poulson's system is the first of it's kind in Needles. “Kippy's is the maiden voyage for that,” he said.

According to Brownlee Kippy won't be alone for long: five more family's are ready to take advantage of the sun's energy to offset their utility bills.

“The city has budgeted $50,000 for rebates for this fiscal year,” said Brownlee.

Related News

U.S. power demand seen sliding 1% in 2023 on milder weather

EIA U.S. Power Outlook 2023-2024 forecasts lower electricity demand, softer wholesale prices, and faster renewable growth from solar and wind, with steady natural gas, reduced coal generation, slight nuclear gains, and ERCOT market moderation.

 

Key Points

An EIA forecast of a 2023 demand dip, 2024 rebound, lower prices, and a higher renewable share in the U.S. power mix.

✅ Demand dips to 4,000 billion kWh in 2023; rebounds in 2024.

✅ ERCOT on-peak prices average about $35/MWh versus $80/MWh in 2022.

✅ Renewables grow to 24% share; coal falls to 17%; nuclear edges up.

 

U.S. power consumption is expected to slip about 1% in 2023 from the previous year as milder weather slows usage from the record high hit in 2022, consistent with recent U.S. consumption trends observed over the past several years, the U.S. Energy Information Administration (EIA) said in its Short-Term Energy Outlook (STEO).

EIA projected that electricity demand is on track to slide to 4,000 billion kilowatt-hours (kWh) in 2023 from a historic high of 4,048 billion kilowatt-hours (kWh) in 2022, reflecting patterns seen during COVID-19 demand shifts in prior years, before rising to 4,062 billion kWh in 2024 as economic growth ramps up.

Less demand coupled with more electricity generation from cheap renewable power sources and lower natural gas prices is forecast to slash wholesale power prices this year, the EIA said.

The on-peak wholesale price at the North hub in Texas’ ERCOT power market is expected to average about $35 per megawatt-hour (MWh) in 2023 compared with an average of nearly $80/MWh in 2022 after the 2022 price surge in power markets.

As capacity for renewables like solar and wind ramp up and as natural gas prices ease amid the broader energy crisis pressures, the EIA said it expects coal-fired power generation to be 17% less in the spring of 2023 than in the spring of 2022.

Coal will provide an average of 17% of total U.S. generation this year, down from 20% last year, as utilities shift investments toward electricity delivery and away from new power production, the EIA said.

The share of total generation supplied by natural gas is seen remaining at about the same this year at 39%. The nuclear share of generation is seen rising slightly to 20% this year from 19% in 2022. Generation from renewable energy sources grows the most in the forecast, increasing to 24% this year from a share of 22% last year, even as residential electricity bills rose in 2022 across the U.S.

 

Related News

View more

Idaho gets vast majority of electricity from renewables, almost half from hydropower

Idaho Renewable Energy 2018 saw over 80% in-state utility-scale power from hydropower, wind, solar, biomass, and geothermal, per EIA, with imports declining as Snake River Plain resources and Hells Canyon hydro lead.

 

Key Points

Idaho produced over 80% in-state power from renewables in 2018, led by hydropower, wind, solar, and biomass.

✅ Hydropower supplies about half of capacity; Hells Canyon leads.

✅ Wind provides nearly 20% of capacity along the Snake River Plain.

✅ Utility-scale solar surged since 2016; biomass and geothermal add output.

 

More than 80% of Idaho’s in-state utility-scale electricity generation came from renewable resources in 2018, behind only Vermont, according to recently released data from the U.S. Energy Information Administration’s Electric Power Monthly and broader trends showing that solar and wind reached about 10% of U.S. generation in the first half of 2018.

Idaho generated 17.4 million MWh of electricity in 2018, of which 14.2 million MWh came from renewable sources, while nationally January power generation jumped 9.3% year over year according to EIA. Idaho uses a variety of renewable resources to generate electricity:

Hydroelectricity. Idaho ranked seventh in the U.S. in electricity generation from hydropower in 2018. About half of Idaho’s electricity generating capacity is at hydroelectric power plants, and utility actions such as the Idaho Power settlement could influence future resource choices, and seven of the state’s 10 largest power plants (in terms of electricity generation) are hydroelectric facilities. The largest privately owned hydroelectric generating facility in the U.S. is a three-dam complex on the Snake River in Hells Canyon, the deepest river gorge in North America.

Wind. Nearly one-fifth of Idaho’s electricity generating capacity and one-sixth of its generation comes from wind turbines. Idaho has substantial wind energy potential, and nationally the EIA expects solar and wind to be larger sources this summer, although only a small percentage of the state's land area is well-suited for wind development. All of the state’s wind farms are located in the southern half of the state along the Snake River Plain.

Solar. Almost 5% of Idaho’s electricity generating capacity and 3% of its generation come from utility-scale solar facilities, and nationally over half of new capacity in 2023 will be solar according to projections. The state had no utility-scale solar generation as recently as 2015. Between 2016 and 2017, Idaho’s utility-scale capacity doubled and generation increased from 30,000 MWh to more than 450,000 MWh. Idaho’s small-scale solar capacity also doubled since 2017, generating 33,000 MWh in 2018.

Biomass. Biomass-fueled power plants account for about 2% of the state’s utility-scale electricity generating capacity and 3% of its generation, contributing to a broader U.S. shift where 40% of electricity came from non-fossil sources in 2021. Wood waste from the state’s forests is the primary fuel for these plants.

Geothermal. Idaho is one of seven states with utility-scale geothermal electricity generation. Idaho has one 18-MW geothermal facility, located near the state’s southern border with Utah.

EIA says Idaho requires significant electricity imports, totaling about one-third of demand, to meet its electricity needs. However, Idaho’s electricity imports have decreased over time, and Georgia's recent import levels illustrate how regional dynamics can vary. Almost all of these imports are from neighboring states, as electricity imports from Canada accounted for less than 0.1% of Idaho’s total electricity supply in 2017.

 

Related News

View more

Hydro One: No cut in peak hydro rates yet for self-isolating customers

Hydro One COVID-19 Rate Relief responds to time-of-use pricing, peak rates, and Ontario Energy Board rules as residents stay home, offering a Pandemic Relief Fund, flexible payments, and support for electricity bills amid off-peak adjustments.

 

Key Points

Hydro One's COVID-19 rate relief includes payment flexibility and hardship aid to ease time-of-use bill burdens.

✅ Advocates flexibility on time-of-use and peak rate impacts

✅ Pandemic Relief Fund offers aid and payment options

✅ OEB sets prices; utilities relay concerns and support

 

Hydro One says it is listening to requests by self-isolating residents for reduced kilowatt hour peak rates during the day when most people are home riding out the COVID-19 pandemic.

Peak rates of 20.8 cents per kw/h are twice as high from 7 a.m. to 7 p.m. – except weekends – than off-peak rates of 10.1 cents per kw/h and set by the Ontario Energy Board and not electricity providers such as Hydro One and Elexicon (formerly Veridian).

Frustrated electrical customers have signed their John Henry’s more than 50,000 times to a change.org petition demanding Hydro One temporarily slash rates for those already struggling with work closures and loss of income amid concerns about a potential recovery rate that could raise bills.

Alex Stewart, media relations spokesman for Hydro One, said the corporation is working toward a solution.

“While we are regulated to adhere to time-of-use pricing by the Ontario Energy Board, we’ve heard the concerns about time-of-use pricing and the idea of a fixed COVID-19 hydro rate as many of our customers will stay home to stop the spread of COVID-19,” Stewart told The Intelligencer.

“We continue to advocate for greater choice during this difficult time and are working with everyone in the electricity sector to ensure our customers are heard.”

Stewart said the electricity provider is reaching out to customers to help them during a difficult self-isolating and social distancing period in other ways to bring financial relief.

For example, new hardship measures are now in play by Hydro One to give customers some relief from ballooning electricity bills.

“This is a difficult time for everyone. Hydro One has launched a new Pandemic Relief Fund to support customers affected by the novel coronavirus COVID-19. As part of our commitment to customers, we will offer financial assistance, as well as increased payment flexibility, to customers experiencing hardship,” Stewart said.

“Hydro One is also extending its Winter Relief program to halt disconnections and reconnections to customers experiencing hardship during the coldest months of the year. This is about doing the right thing and offering flexibility to our customers so they have peace of mind and can concentrate on what matters most – keeping their loved ones safe.”

Stewart said customers having difficult times can visit the company’s website for more details at www.HydroOne.com/ReliefFund.

Elexicon Energy, meanwhile, said earlier the former Veridian company is passing along concerns to the OEB but otherwise can’t lower the rates unless directed to do so, as occurred when the province set off-peak pricing temporarily.

Chris Mace, Elexicon corporate communications spokesperson, said, “We don’t have the authority to do that.

“The Ontario Energy Board sets the energy prices. This is in the Ministry of Energy’s hands. We at Elexicon, along with other local distribution companies (LDC), have shared this feedback with the ministry and OEB to come up with some sort of solution or alternative. But this is out of our hands. We can’t shift anything.”

He suggested residents can shift the use of higher-drawing electrical appliances to early morning before 7 or in the evening after 7 p.m. when ultra-low overnight rates may apply.

Families may want to be “mindful whether it be cooking or laundry and so on and holding off on doing those until off-peak hours take effect. We are hearing customers and we have passed along those concerns to the ministry and the OEB.”

Hydro One power tips

Certain electrical uses in the home consumer more power than others, as reflected in Ontario’s electricity cost allocation approach:

62 per cent goes to space heating
19 per cent goes to water heaters
13 per cent goes to appliances
2 per cent goes to space cooling

 

Related News

View more

Construction of expanded Hoa Binh Hydropower Plant to start October 2020

Expanded Hoa Binh Hydropower Plant increases EVN capacity with 480MW turbines, commercial loan financing, grid stability, flood control, and Da River reliability, supported by PECC1 feasibility work and CMSC collaboration on site clearance.

 

Key Points

A 480MW EVN expansion on the Da River to enhance grid stability, flood control, and seasonal water supply in Vietnam.

✅ 480MW, two turbines, EVN-led financing without guarantees

✅ Improves frequency modulation and national grid stability

✅ Supports flood control and dry-season water supply

 

The extended Hoa Binh Hydropower Plant, which is expected to break ground in October 2020, is considered the largest power project to be constructed this year, even as Vietnam advances a mega wind project planned for 2025.

Covering an area of 99.2 hectares, the project is invested by Electricity of Vietnam (EVN). Besides, Vietnam Electricity Power Projects Management Board No.1 (EVNPMB1) is the representative of the investor and Power Engineering Consulting JSC 1 (EVNPECC1) is in charge of building the feasibility report for the project. The expanded Hoa Binh Hydro Power Plant has a total investment of VND9.22 trillion ($400.87 million), 30 per cent of which is EVN’s equity and the remaining 70 per cent comes from commercial loans without a government guarantee.

According to the initial plan, EVN will begin the construction of the project in the second quarter of this year and is expected to take the first unit into operation in the third quarter of 2023, a timeline reminiscent of Barakah Unit 1 reaching full power, and the second one in the fourth quarter of the same year.

Chairman of the Committee for Management of State Capital at Enterprises (CMSC) Nguyen Hoang Anh said that in order to start the construction in time, CMSC will co-operate with EVN to work with partners as well as local and foreign banks to mobilise capital, reflecting broader nuclear project milestones across the energy sector.

In addition, EVN will co-operate with Hoa Binh People’s Committee to implement site clearance, remove Ba Cap port and select contractors.

Once completed, the project will contribute to preventing floods in the rainy season and supply water in the dry season. The plant expansion will include two turbines with the total capacity of 480MW, similar in scale to the 525-MW hydropower station China is building on a Yangtze tributary, and electricity output of about 488.3 million kWh per year.

In addition, it will help improve frequency modulation capability and stabilise the frequency of the national electricity system through approaches like pumped storage capacity, and reduce the working intensity of available turbines of the plant, thus prolonging the life of the equipment and saving maintenance and repair costs.

Built in the Da River basin in the northern mountainous province of Hoa Binh, at the time of its conception in 1979, Hoa Binh was the largest hydropower plant in Southeast Asia, while projects such as China’s Lawa hydropower station now dwarf earlier benchmarks.

The construction was supported by the Soviet Union all the way through, designing, supplying equipment, supervising, and helping it go on stream. Construction began in November 1979 and was completed 15 years later in December 1994, when it was officially commissioned, similar to two new BC generating stations recently brought online.

 

Related News

View more

The Cool Way Scientists Turned Falling Raindrops Into Electricity

Raindrop Triboelectric Energy Harvesting converts falling water into electricity using Teflon (PTFE) on indium tin oxide and an aluminum electrode, forming a transient water bridge; a low frequency nanogenerator for renewable, static electricity harvesting.

 

Key Points

A method using PTFE, ITO, and an aluminum electrode to turn raindrop impacts into low frequency electrical power.

✅ PTFE on ITO boosts charge transfer efficiency.

✅ Water bridge links electrodes for rapid discharge.

✅ Low frequency output suits continuous energy harvesting.

 

Scientists at the City University of Hong Kong have used a Teflon-coated surface and a phenomenon called triboelectricity to generate a charge from raindrops. “Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene [Teflon] film on an indium tin oxide substrate plus an aluminium electrode,” they explain in their new paper in Nature as a step toward cheap, abundant electricity in the long term.

Triboelectricity itself is an old concept. The word means “friction electricity”—from the Greek tribo, to rub or wear down, which is why a diatribe tires you out—and dates back a long, long time. Static electricity is the most famous kind of triboelectric, and related work has shown electricity from the night sky can be harvested as well in niche setups. In most naturally occurring kinds, scientists have studied triboelectric in order to avoid its effects, like explosions inside of grain silos or hospital workers touching off pure oxygen. (Blowing sand causes an electric field, and NASA even worries about static when astronauts eventually land on Mars.)

One of the most studied forms of intentional and useful triboelectric is in systems such as ocean wave generators where the natural friction of waves meets nanogenerators of triboelectric energy. These even already use Teflon, which has natural conductivity that makes it ideal for this job. But triboelectricity is chaotic, and harnessing it generally involves a bunch of complicated, intersecting variables that can vary with the hourly weather. Promises of static electricity charging devices have often been, well, so much hot, sandy wind.

The scientists at City University of Hong Kong used triboelectric ideas to turn falling raindrops into energy. They say previous versions of the same idea were not very efficient, with materials that didn’t allow for high-fidelity transfer of electrical charge. (Many sources of renewable energy aren’t yet as efficient to turn into power, both because of developing technology and because their renewability means even less efficient use could be better than, for example, fossil fuels, and advances in renewable energy storage could help.)

“[A]chieving a high density of electrical power generation is challenging,” the team explains in its paper. “Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply.” Diversifying how power is generated by water sources such as oceans and rivers is good for the existing infrastructure as well as new installations.

The research team found that as simulated raindrops fell on their device, the way the water accumulated and spread created a link between their two electrodes, one Teflon-coated and the other aluminum. This watery de facto wire link closes the loop and allows accumulated energy to move through the system. Because it’s a mechanical setup, it’s not limited to salty seawater, and because the medium is already water, its potential isn’t affected by ambient humidity either.

Raindrop energy is very low frequency, which means this tech joins many other existing pushes to harvest continuously available, low frequency natural energy, including underwater 'kites' that exploit steady currents. To make an interface that increases “instantaneous power density by several orders of magnitude over equivalent devices,” as the researchers say they’ve done here, could represent a major step toward feasibility in triboelectric generation.

 

Related News

View more

Nearly $1 Trillion in Investments Estimated by 2030 as Power Sector Transitions to a More Decarbonized and Flexible System

Distributed Energy Resources (DER) are surging as solar PV, battery storage, and demand response decarbonize power, cut costs, and boost grid resilience for utilities, ESCOs, and C&I customers through 2030.

 

Key Points

DER are small-scale, grid-connected assets like solar PV, storage, and demand response that deliver flexible power.

✅ Investments in DER to rise 75% by 2030; $846B in assets, $285B in storage.

✅ Residential solar PV: 49.3% of spend; C&I solar PV: 38.9% by 2030.

✅ Drivers: favorable policy, falling costs, high demand charges, decarbonization.

 

Frost & Sullivan's recent analysis, Growth Opportunities in Distributed Energy, Forecast to 2030, finds that the rate of annual investment in distributed energy resources (DER) will increase by 75% by 2030, with the market set for a decade of high growth. Favorable regulations, declining project and technology costs, and high electricity and demand charges are key factors driving investments in DER across the globe, with rising European demand boosting US solar equipment makers prospects in export markets. The COVID-19 pandemic will reduce investment levels in the short term, but the market will recover. Throughout the decade, $846 billion will be invested in DER, supported by a further $285 billion that will be invested in battery storage, with record solar and storage growth anticipated as installations and investments accelerate.

"The DER business model will play an increasingly pivotal role in the global power mix, as highlighted by BNEF's 2050 outlook and as part of a wider effort to decarbonize the sector," said Maria Benintende, Senior Energy Analyst at Frost & Sullivan. "Additionally, solar photovoltaic (PV) will dominate throughout the decade. Residential solar PV will account for 49.3% of total investment ($419 billion), though policy moves like a potential Solar ITC extension could pressure the US wind market, with commercial and industrial solar PV accounting for a further 38.9% ($330 billion)."

Benintende added: "In developing economies, DER offers a chance to bridge the electricity supply gap that still exists in a number of country markets. Further, in developed markets, DER is a key part of the transition to a cleaner and more resilient energy system, consistent with IRENA's renewables decarbonization findings across the energy sector."

DER offers significant revenue growth prospects for all key market participants, including:

  • Technology original equipment manufacturers (OEMs): Offer flexible after-sales support, including digital solutions such as asset integrity and optimization services for their installed base.
  • System integrators and installers: Target household customers and provide efficient and trustworthy solutions with flexible financial models.
  • Energy service companies (ESCOs): ESCOs should focus on adding DER deployments, in line with US decarbonization pathways and policy goals, to expand and enhance their traditional role of providing energy savings and demand-side management services to customers.

Utility companies: Deployment of DER can create new revenue streams for utility companies, from real-time and flexibility markets, and rapid solar PV growth in China illustrates how momentum in renewables can shape utility strategies.
Growth Opportunities in Distributed Energy, Forecast to 2030 is the latest addition to Frost & Sullivan's Energy and Environment research and analyses available through the Frost & Sullivan Leadership Council, which helps organizations identify a continuous flow of growth opportunities to succeed in an unpredictable future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.