GM to make all-EV version of Volt

By Associated Press


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
General Motors Co. will build a pure-electric vehicle by expanding the Chevrolet Volt's battery pack and removing its internal combustion engine, Vice Chairman Bob Lutz said.

It's the next step for the Volt, a car the company says can run 40 miles on a charge from a standard home power outlet. After the battery wears down, a 1.4-liter four-cylinder internal combustion engine takes over and generates electricity to power the car.

It's due to go on sale this fall at a cost of about $40,000, before tax credits.

Lutz would not say exactly when the pure-electric version would make it into showrooms, but said it would be "technologically trivial" to switch out the internal combustion engine.

Lutz told reporters at the Detroit auto show that GM could quickly expand the Volt's battery pack and take out the engine to build a fully electric car similar to Nissan's Leaf.

The Leaf, also to go on sale in the U.S. late this year, can get up to 100 miles on an electric charge but must be recharged or have a new battery installed to go any further.

The Volt, Lutz said, eliminates "range anxiety" as the car gets close to depleting its batteries.

But there may be a market for pure-electric vehicles for people who travel less, or GM could need it to meet government fuel economy regulations, he said.

"Once you've done the Volt, pure electric is trivial. You just leave some parts out," Lutz said.

Lutz also said electric vehicles may not get the stated range on fully electric power because of weather, atmospheric conditions, terrain and driving habits. He said he had a Volt during the Thanksgiving weekend and got only 28 miles on full-electric power because of the cold weather.

"It varies a lot more than the range variation with a gasoline-powered car depending on your driving style," Lutz said.

The Volt equipped with the internal combustion engine was unveiled three years ago. Once it goes on sales later this year, it will qualify for up to $7,500 in tax credits.

Related News

Electricity and water do mix: How electric ships are clearing the air on the B.C. coast

Hybrid Electric Ships leverage marine batteries, LNG engines, and clean propulsion to cut emissions in shipping. From ferries to cargo vessels, electrification and sustainability meet IMO regulations, Corvus Energy systems, and dockside fast charging.

 

Key Points

Hybrid electric ships use batteries with diesel or LNG engines to cut fuel and emissions and meet stricter IMO rules.

✅ LNG or diesel gensets recharge marine battery packs.

✅ Cuts CO2, NOx, and particulate emissions in port and at sea.

✅ Complies with IMO standards; enables quiet, efficient operations.

 

The river is running strong and currents are swirling as the 150-metre-long Seaspan Reliant slides gently into place against its steel loading ramp on the shores of B.C.'s silty Fraser River.

The crew hustles to tie up the ship, and then begins offloading dozens of transport trucks that have been brought over from Vancouver Island.

While it looks like many vessels working the B.C. coast, below decks, the ship is very different. The Reliant is a hybrid, partly powered by electricity, and joins BC Ferries' hybrid ships in the region, the seagoing equivalent of a Toyota Prius.

Down below decks, Sean Puchalski walks past a whirring internal combustion motor that can run on either diesel or natural gas. He opens the door to a gleaming white room full of electrical cables and equipment racks along the walls.

"As with many modes of transportation, we're seeing electrification, from electric planes to ferries," said Puchalski, who works with Corvus Energy, a Richmond, B.C. company that builds large battery systems for the marine industry.

In this case, the batteries are recharged by large engines burning natural gas.

"It's definitely the way of the future," said Puchalski.

The 10-year-old company's battery system is now in use on 200 vessels around the world. Business has spiked recently, driven by the need to reduce emissions, and by landmark projects such as battery-electric high-speed ferries taking shape in the U.S.

"When you're building a new vessel, you want it to last for, say, 30 years. You don't want to adopt a technology that's on the margins in terms of obsolescence," said Puchalski. "You want to build it to be future-proof."

 

Dirty ships

For years, the shipping industry has been criticized for being slow to clean up its act. Most ships use heavy fuel oil, a cheap, viscous form of petroleum that produces immense exhaust. According to the European Commission, shipping currently pumps out about 940 million tonnes of CO2 each year, nearly three per cent of the global total.

That share is expected to climb even higher as other sectors reduce emissions.

When it comes to electric ships, Scandinavia is leading the world. Several of the region's car and passenger ferries are completely battery powered — recharged at the dock by relatively clean hydro power, and projects such as Kootenay Lake's electric-ready ferry show similar progress in Canada.

 

Tougher regulations and retailer pressure

The push for cleaner alternatives is being partly driven by worldwide regulations, with international shipping regulators bringing in tougher emission standards after a decade of talk and study, while financing initiatives are helping B.C. electric ferries scale up.

At the same time, pressure is building from customers, such as Mountain Equipment Co-op, which closely tracks its environmental footprint. Kevin Lee, who heads MEC's supply chain, said large companies are realizing they are accountable for their contributions to climate change, from the factory to the retail floor.

"You're hearing more companies build it into their DNA in terms of how they do business, and that's cool to see," said Lee. "It's not just MEC anymore trying to do this, there's a lot more partners out there."

In the global race to cut emissions, all kinds of options are on the table for ships, including giant kites being tested to harvest wind power at sea, and ports piloting hydrogen-powered cranes to cut dockside emissions.

Modern versions of sailing ships are also being examined to haul cargo with minimal fuel consumption.

But in practical terms, hybrids and, in the future, pure electrics are likely to play a larger role in keeping the propellers turning along Canada's coast, with neighboring fleets like Washington State Ferries' upgrade underscoring the shift.

 

Related News

View more

Imported coal volumes up 17% during Apr-Oct as domestic supplies shrink

India Thermal Power Coal Imports surged 17.6% as CEA-monitored plants offset weaker CIL and SCCL supplies, driven by Saubhagya-led electricity demand, regional power deficits, and varied consumption across Uttar Pradesh, Bihar, Maharashtra, and Gujarat.

 

Key Points

Fuel volumes imported for Indian thermal plants, tracked by CEA, reflecting shifts in CIL/SCCL supply, demand, and regional power deficits.

✅ Imports up 17.6% as domestic CIL/SCCL deliveries lag targets

✅ Saubhagya-driven demand lifts generation in key beneficiary states

✅ Industrial slowdowns cut usage in Maharashtra, Tamil Nadu, Gujarat

 

The receipt of imported coal by thermal power plants, where plant load factors have risen, has shot up by 17.6 per cent during April-October. The coal import volumes refer to the power plants monitored by the Central Electricity Authority (CEA), and come amid moves to ration coal supplies as electricity demand surges, a power update report from CARE Ratings showed.

Imports escalated as domestic supplies by Coal India Ltd (CIL) and another state run producer- Singareni Collieries Company Ltd (SCCL) dipped in the period, after earlier shortages that have since eased in later months. Rate of supplies by the two coal companies to the CEA monitored power stations stood at 80.4 per cent, indicating a shortfall of 19.6 per cent against the allocated quantity.

According to the study by CARE Ratings, total coal supplied by CIL and SCCL to the power sector stood at 315.9 million tonnes (mt) during April-October as against 328.5 mt in the comparable period of last fiscal year.

The study noted that growth in power generation during the April-October 2019, with India now the third-largest electricity producer globally, was on account of higher demand from Pradhan Mantri Sahaj Bijli Har Ghar Yojana or Saubhagya Scheme beneficiary states. Providing connection to households in order to achieve 100% per cent electrification has in part helped the sector avert de-growth, as part of efforts to rewire Indian electricity and expand access.

Large states namely Uttar Pradesh, Bihar, Punjab, West Bengal and Rajasthan have recorded over five per cent growth in consumption of power. These states along with Odisha, Madhya Pradesh and Assam accounted for 75 per cent of the beneficiaries under the Saubhagya Scheme (Household Electrification Scheme). The ongoing economic downturn has led to a sharp fall in electricity demand from industrialised states. Maharashtra, which is also the largest power consuming state in India, recorded a decline in consumption of 5.6 per cent.

Other states namely Tamil Nadu, Telangana, Gujarat and Odisha too recorded fall in power consumed, echoing global dips in daily electricity demand seen later during the pandemic. These states house large clusters of mining, automobile, cement and other manufacturing industries, and a decline in these sectors led to fall in demand for power across these states. - The demand-supply gap or power deficit has remained at 0.6 per cent during the April-October 2019. North-East reported 4.8 per cent of power deficit followed by Northern Region at 1.3 per cent. Within Northern Region, Jammu & Kashmir and Uttar Pradesh accounted for 65 per cent and 30 per cent respectively of the regions power supply deficit.

 

Related News

View more

Alberta breaks summer electricity record, still far short of capacity

Alberta Electricity Peak Demand surged to 10,638 MW, as AESO reported record summer load from air conditioning, Stampede visitors, and heatwave conditions, with ample generation capacity, stable grid reliability, and conservation urged during 5-7 p.m.

 

Key Points

It is the record summer power load in Alberta, reaching 10,638 MW, with evening conservation urged by AESO.

✅ Record 10,638 MW at 4 pm; likely to rise this week

✅ Drivers: A/C use, heat, Stampede visitors

✅ AESO reports ample capacity; conserve 5-7 pm

 

Consumer use hit 10,638 MW, blowing past a previous high of 10,520 MW set on July 9, 2015, said the Alberta Electric System Operator (AESO).

“We hit a new summer peak and it’s likely we’ll hit higher peaks as the week progresses,” said AESO spokeswoman Tara De Weerd.

“We continue to have ample supply, and as Alberta's electricity future trends toward more wind, our generators are very confident there aren’t any issues.”

That new peak was set at 4 p.m. but De Weerd said it was likely to be exceeded later in the day.

Heightened air conditioner use is normally a major driver of such peak electricity consumption, said De Weerd.

She also said Calgary’s big annual bash is also likely playing a role.

“It’s the beginning of Stampede, you have an influx of visitors so you’ll have more people using electricity,” she said.

Alberta’s generation capacity is 16,420 MW, said the AESO, with wind power increasingly outpacing coal in the province today.

There are no plans, she said, for any of the province’s electricity generators to shut down any of their plants for maintenance or other purposes in the near future as demand rises.

The summer peak is considerably smaller than that reached in the depths of Alberta’s winter.

Alberta’s winter peak usage was recorded last year and was 11,458 MW.

Though the province’s capacity isn’t being strained by the summer heat, De Weerd still encouraged consumers to go easy during the peak use time of the day, between 5 and 7 p.m.

“We don’t have to be running all of our appliances at once,” she said.

Alberta exports an insignificant amount of electricity to Montana, B.C. and Saskatchewan, where demand recently set a new record.

The weather forecast calls for temperatures to soar above 30C through the weekend.

In northern Canada, Yukon electricity demand recently hit a record high, underscoring how extreme temperatures can strain systems.

 

Related News

View more

British Columbia Accelerates Clean Energy Shift

BC Hydro Grid Modernization accelerates clean energy and electrification, upgrading transmission lines, substations, and hydro dams to deliver renewable power for EVs and heat pumps, strengthen grid reliability, and enable industrial decarbonization in British Columbia.

 

Key Points

A $36B, 10-year plan to expand and upgrade B.C.'s clean grid for electrification, reliability, and industrial growth.

✅ $36B for lines, substations, and hydro dam upgrades

✅ Enables EV charging, heat pumps, and smart demand response

✅ Prioritizes industrial electrification and Indigenous partnerships

 

In a significant move towards a clean energy transition, British Columbia has announced a substantial $36-billion investment to enlarge and upgrade its electricity grid over the next ten years. The announcement last Tuesday from BC Hydro indicates a substantial 50 percent increase from its prior capital plan. A major portion of this investment is directed towards new consumer connections and improving current infrastructure, including substations, transmission lines, and hydro dams for more efficient power generation.

The catalyst behind this major investment is the escalating demand for clean energy across residential, commercial, and industrial sectors in British Columbia. Projections show a 15 percent rise in electricity demand by 2030. According to the Canadian Climate Institute's models, achieving Canada’s climate goals will require extensive electrification across various sectors, raising questions about a net-zero grid by 2050 nationwide.

BC Hydro is planning substantial upgrades to the electrical grid to meet the needs of a growing population, decreasing industry carbon emissions, and the shift towards clean technology. This is vital, especially as the province works towards improving housing affordability and as households face escalating costs from the impacts of climate change and increasing exposure to harsh weather events. Affordable, reliable power and access to clean technologies such as electric vehicles and heat pumps are becoming increasingly important for households.

British Columbia is witnessing a significant shift from fossil fuels to clean electricity in powering homes, vehicles, and workplaces. Electric vehicle usage in B.C. has increased twentyfold in the past six years. Last year, one in every five new light-duty passenger vehicles sold in B.C. was electric – the highest rate in Canada. Additionally, over 200,000 B.C. homes are now equipped with heat pumps, indicating a growing preference for the province’s 98 percent renewable electricity.

The investment also targets reducing industrial emissions and attracting industrial investment. For instance, the demand for transmission along the North Coastline, from Prince George to Terrace, is expected to double this decade, especially from sectors like mining. Mining companies are increasingly looking for locations with access to clean power to reduce their carbon footprint.

This grid enhancement plan in B.C. is reflective of similar initiatives in provinces like Quebec and the legacy of Manitoba hydro history in building provincial systems. Hydro-Québec announced a substantial $155 to $185 billion investment in its 2035 Action Plan last year, aimed at supporting decarbonization and economic growth. By 2050, Hydro-Québec predicts a doubling of electricity demand in the province.

Both utilities’ strategies focus on constructing new facilities and enhancing existing assets, like upgrading dams and transmission lines. Hydro-Québec, for instance, includes energy efficiency goals in its plan to double customer savings and potentially save over 3,500 megawatts of power.

However, with this level of investment, provinces need to engage in dialogue about priorities and the optimal use of clean electricity resources, with concepts like macrogrids offering potential benefits. Quebec, for instance, has shifted from a first-come, first-served basis to a strategic review process for significant new industrial power requests.

B.C. is also moving towards strategic prioritization in its energy strategy, evident in its recent moratorium on new connections for virtual currency mining due to their high energy consumption.

Indigenous partnership and leadership are also key in this massive grid expansion. B.C.’s forthcoming Call for Power and Quebec’s financial partnerships with Indigenous communities indicate a commitment to collaborative approaches. British Columbia has also allocated $140 million to support Indigenous-led power projects.

Regarding the rest of Canada, electricity planning varies in provinces with deregulated markets like Ontario and Alberta. However, these provinces are adapting too, and the federal government has funded an Atlantic grid study to improve regional planning efforts. Ontario, for example, has provided clear guidance to its system operator, mirroring the ambition in B.C. and Quebec.

Utilities are rapidly working to not only expand and modernize energy grids but also to make them more resilient, affordable, and smarter, as demonstrated by recent California grid upgrades funding announcements across the sector. Hydro-Québec focuses on grid reliability and affordability, while B.C. experiments with smart-grid technologies.

Both Ontario and B.C. have programs encouraging consumers to reduce consumption in real-time, demonstrating the potential of demand-side management. A recent instance in Alberta showed how customer participation could prevent rolling blackouts by reducing demand by 150 megawatts.

This is a crucial time for all Canadian provinces to develop larger, smarter energy grids, including a coordinated western Canadian electricity grid approach for a sustainable future. Utilities are making significant strides towards this goal.
 

 

Related News

View more

Electricity prices may go up by 15 per cent

Jersey Electricity Standby Charge proposes a grid-backup fee for commercial self-generators of renewable energy, with a review delaying implementation; potential tariff impacts include 10-15 percent price rises, cost recovery, and network reliability.

 

Key Points

A grid-backup fee for Jersey self-generating businesses to share network costs fairly and curb electricity price rises.

✅ Applies to commercial self-generation using renewables or not

✅ Excludes full exporters and pre-charge installations

✅ Aims to recover grid costs and avoid 10-15% price rises

 

Electricity prices could rise by ten to 15 per cent if a standby charge for some commercial customers is not implemented, the chief executive of Jersey Electricity has warned.

Jersey Electricity has proposed extending a monthly fee to commercial customers who generate their own power through renewable means but still wish to be connected to Jersey’s grid as a back-up, echoing Ontario energy storage efforts to shore up reliability.

The States recently unanimously backed a proposal lodged by Deputy Carolyn Labey to delay administering the levy until a review could be carried out, as seen in the UK grid's net-zero transformation debates influencing policy. The charge, was due to be implemented next month but will now not be introduced until May, or later if the review has not concluded.

But Chris Ambler, JE chief executive, warned that failing to implement the standby charge could lead to additional costs for customers.

Some of JE’s commercial customers have already been charged a standby fee after generating their own power through non-renewable means.

The charge does not apply to businesses which export all of their electricity back into the system as part of a buy-back scheme or those which install self-generation facilities before the charge is implemented.

Deputy Labey argued that the Island had done ‘absolutely nothing’ to support the use of renewable energies and instead were discouraging locally generated power by allowing JE to set a standby charge.

She added that she was pleased that the Council of Ministers had already starting reviewing the charges but the debate needed to go ahead to ensure the work continued after the May election.

During a States debate last month, she said: ‘It is increasingly concerning that we, as an island in the 21st century, are happy for our electricity to be provided to us by an unregulated, publicly listed for-profit company with a monopoly on energy.

‘I also think that introducing a charge on renewables at a time when the world is experiencing a revolution in renewable energies, including offshore vessel charging solutions, which are becoming increasingly economic, is something that needs to be investigated.

‘Jersey should be looking to diversify our electricity production and supply, to help protect us from price and currency fluctuations and to ensure that we, as an island, receive the best deal possible for Islanders.’

Mr Ambler said that any price increase would be dependent on the future take-up and use of renewable-energy technology in Jersey.

He said: ‘The cost impact would not be significant in the short term but in the long term it could be significant. I think that we are obliged to let our customers know that.

‘It is very difficult to assess but if we are not able to levy a fair charge, then, as electricity shortages in Canada have shown, we could see prices rise by ten to 15 per cent over time.’

Mr Ambler added that his company was in favour of the use of renewable energy, with a third of the company’s electricity being generated by hydroelectric sources, but that the costs of implementing it needed to be fairly distributed, given how big battery rule changes can affect project viability elsewhere in the market.

And he said that, while it was difficult to quantify how much could be lost if the standby charge was not implemented, it could cost the company over £10 million.

‘In 2014, we only increased our prices by one per cent,’ he said. ‘We are reviewing our prices at the moment but if we did put an increase in place it would be modest and it would not be linked to the standby charge.’

 

Related News

View more

Massive power line will send Canadian hydropower to New York

Twin States Clean Energy Link connects New England to Hydro-Quebec via a 1,200 MW transmission line, DOE-backed capacity, underground segments, existing corridors, boosting renewable energy reliability across Vermont and New Hampshire with cross-border grid flexibility.

 

Key Points

DOE-backed 1,200 MW line linking Hydro-Quebec to New England, adding clean capacity with underground routes.

✅ 1,200 MW cross-border capacity for the New England grid

✅ Uses existing corridors; underground in VT and northern NH

✅ DOE capacity contract lowers risk and spurs investment

 

A proposal to build a new transmission line to connect New England with Canadian hydropower is one step closer to reality.

The U.S. Department of Energy announced Monday that it has selected the Twin States Clean Energy Link as one of three transmission projects that will be part of its $1.3 billion cross-border transmission initiative to add capacity to the grid.

WBUR is a nonprofit news organization. Our coverage relies on your financial support. If you value articles like the one you're reading right now, give today.

Twin States is a proposal from National Grid, a utility company that serves Massachusetts, New York, and Rhode Island, and also owns transmission in England and Wales as the region advances projects like the Scotland-to-England subsea link that expand renewable flows, and the non-profit Citizens Energy Corporation.

The transmission line would connect New England with power from Hydro-Quebec, moving into the United States from Canada in Northern Vermont and crossing into New Hampshire near Dalton. It would run through parts of Grafton, Merrimack, and Hillsborough counties, routing through a substation in Dunbarton and ending at a proposed new substation in Londonderry. (Here's a map of the Twin States proposal.)

The federal funding will allow the U.S. Department of Energy to purchase capacity on the planned transmission line, which officials say reduces the risk for other investors and can help encourage others to purchase capacity.

The project has gotten support from local officials in Vermont and New Hampshire, but there are still hurdles to cross. The contract negotiation process is beginning, National Grid said, and the proposal still needs approvals from regulators before construction could begin.

First Nations communities in Canada have opposed transmission lines connecting Hydro-Quebec with New England in the past, and the company has faced scrutiny from environmental groups.

What would Twin States look like?
Transmission projects, like the failed Northern Pass proposal, have been controversial in New England, though the Great Northern Transmission Line progressed in Minnesota.

But Reihaneh Irani-Famili, vice president of capital delivery, project management and construction at National Grid, said this one is different because the developers listened to community concerns before planning the project.

“They did not want new corridors of infrastructure, so we made sure that we're using existing right of way,” she said. “They did not want the visual impact and some of the newer corridors of infrastructure, we're making sure we're undergrounding portions of the line.”

In Vermont and northern New Hampshire, the transmission lines would be buried underground along state roads. South of Littleton, they would be located within existing transmission corridors.

The developers say the lines could provide 1,200 megawatts of transmission capacity. The project would have the ability to carry electricity from hydro facilities in Quebec to New England, and would also be able to bring electricity from New England into Quebec, a step toward broader macrogrid connectivity across regions.

“Those hydro dams become giant green batteries for the region, and they hold that water until we need the electrons,” Irani-Famili said. “So if you think about our energy system not as one that sees borders, but one that sees resources, this is connecting the Quebec resources to the New England resources and helping all of us get into that cleaner energy future with a lot less build than we otherwise would have.”

Irani-Famili says the transmission line could help facilitate more clean energy resources like offshore wind coming online. In a report released last week by New Hampshire’s Department of Energy, authors said importing Canadian hydropower could be one of the most cost-effective ways to move away from fossil fuels on the electric grid.

National Grid estimates the project will help save energy customers $8.3 billion in its first 12 years. The developers are constructing a $260 million “community benefits plan” that would take some profits from the transmission line and give that money back to communities that host the transmission lines and environmental justice communities in New England.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified