In North Carolina, unpaid electric and water bills are driving families and cities to the financial brink


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

North Carolina Utility Arrears Crisis strains households and municipal budgets as COVID-19 cuts jobs; unpaid utility bills mount, shutoffs loom, and emergency aid, unemployment benefits, and CARES Act relief lag behind rising arrears across cities.

 

Key Points

A COVID-19 driven spike in unpaid utility bills, threatening households and municipal budgets as federal aid lapses.

✅ 1 million families behind on power, water, sewage bills

✅ $218M arrears accrued April to June, double last year

✅ Municipal utilities face shutoffs, budget shortfalls

 

As many as 1 million families in North Carolina have fallen behind on their electric, water and sewage bills, a sign of energy insecurity threatening residents and their cities with severe financial hardship unless federal lawmakers act to approve more emergency aid.

The trouble stems from the widespread economic havoc wrought by the coronavirus, which has left millions of workers out of a job and struggling to cover their monthly costs as some states moved to suspend utility shut-offs to provide relief. Together, they’ve been late or missed a total of $218 million in utility payments between April 1 and the end of June, according to data released recently by the state, nearly double the amount in arrears at this time last year.

In some cases, cities that own or operate their own utilities have been forced to absorb these losses, as some utilities reconnected customers to prevent harm, creating a dire situation in which the government’s attempt to save people from the financial brink instead has pushed municipal coffers to their own breaking point.

In Elizabeth City, N.C., for example, about 2,500 residents haven’t paid their electric bills on time, according to Richard Olson, the city manager. The late payments at one point proved so problematic that Olson said he calculated Elizabeth City wouldn’t have enough money to pay for its expenses in July. In response, city leaders requested and obtained a waiver from a statewide order, similar to New York’s disconnection moratorium, issued in March, that protects people from being penalized for their past-due utility bills.

The predicament has presented unique budget challenges throughout North Carolina, while illustrating the consequences of a cash crunch plaguing the entire country, where proposals such as a Texas electricity market bailout surfaced following severe grid stress. State and federal leaders have extended a range of coronavirus relief programs since March to try to help people through the pandemic. But the money is limited and restricted — and it’s not clear whether more help from Congress is on the way — creating a crisis in which the nation’s economic woes are outpacing some of the aid programs adopted to combat them.

“We are entering a phase where the utilities [may] be able to shut off power, but what was propping up people’s economic lives, the unemployment benefits and Cares Act support, won’t be there,” said Paul Meyer, the executive director of the North Carolina League of Municipalities.

White House, GOP in disarray over coronavirus spending plan as deadline nears on expiring emergency aid

The future of that safety-net support — and other federal aid — hangs in the balance as lawmakers returned to work this week in their final sprint ahead of the August recess. The White House and congressional leaders are split over the contours of the next coronavirus relief package, including the need to extend more aid to cities and states as some utilities have waived fees to help customers, and reauthorize an extra $600 in weekly unemployment payments that were approved as part of the Cares Act in March.

Outside Washington, workers, businesses and government officials nationwide have pleaded with federal lawmakers to renew or expand those programs. Last week, Roy Cooper, the Democratic governor of North Carolina, urged Congress to act swiftly and adopt a wide array of new federal spending, including proposals for DOE nuclear cleanup funding, stressing in a letter that the “actions you take in the next few weeks are vital to our ability to emerge from this crisis. ”

 

Related News

Related News

Berlin Geothermal Plant in El Salvador Set to Launch This Year

El Salvador Geothermal Expansion boosts renewable energy with a 7 MW Berlin binary ORC plant, upgrades at Ahuachapan, and pipeline projects, strengthening clean power capacity, grid reliability, and sustainable growth in Central America.

 

Key Points

A national push adding binary-cycle capacity at Berlin and Ahuachapan, boosting geothermal supply and advancing sites.

✅ 7 MW Berlin binary ORC plant entering service.

✅ Ahuachapan upgrade adds 2 MW, total geothermal 204 MW.

✅ Next: Chinameca, San Miguel, San Vicente, World Bank backed.

 

El Salvador is set to expand its renewable energy capacity with the inauguration of the 7-MW Berlin binary geothermal power plant, slated to go online later this year. This new addition marks a significant milestone in the country’s geothermal energy development, highlighting its commitment to sustainable energy solutions. The plant, which has already been installed and is currently undergoing testing, is expected to boost the nation’s geothermal capacity, contributing to its growing renewable energy portfolio.

The Role of Geothermal Energy in El Salvador’s Energy Mix

Geothermal energy plays a pivotal role in El Salvador's energy landscape. With the combined output from the Ahuachapan and Berlin geothermal plants, geothermal energy now accounts for about 21% of the country's net electricity supply. This makes geothermal the second-largest source of energy generation in El Salvador, underscoring its importance as a reliable and sustainable energy resource alongside emerging options like advanced nuclear microreactor technologies in the broader low-carbon mix.

In addition to the Berlin plant, El Salvador has made significant improvements to its Ahuachapan geothermal power plant. Recent upgrades have increased its generation capacity by 2 MW, further enhancing the country’s geothermal energy output. Together, the Ahuachapan and Berlin plants bring the total installed geothermal capacity to 204 MW, positioning El Salvador as a regional leader in geothermal energy development.

The Berlin Binary Geothermal Plant: A Technological Milestone

The Berlin binary geothermal power plant is especially noteworthy for several reasons. It is the first geothermal power plant to be constructed in El Salvador since 2007, marking a significant step in the country's ongoing efforts to expand its renewable energy infrastructure while reinforcing attention to risk management in light of Hawaii geothermal safety concerns reported elsewhere. The plant utilizes a binary cycle geothermal system, which is known for its efficiency in extracting energy from lower temperature geothermal resources, making it an ideal solution for regions like Berlin, where geothermal resources are abundant but at lower temperatures.

The plant was built by Turboden, an Italian company specializing in organic Rankine cycle (ORC) technology. The binary cycle system operates by transferring heat from the geothermal fluid to a secondary fluid, which then drives a turbine to generate electricity. This system allows for the efficient use of geothermal resources that might otherwise be too low in temperature for traditional geothermal plants, enabling pairing with thermal storage demonstration solutions to optimize output.

Future Geothermal Developments in El Salvador

El Salvador is not stopping with the Berlin geothermal plant. The country is actively working on other geothermal projects, including those in Chinameca, San Miguel, and San Vicente. These developments are expected to add 50 MW of additional capacity in their first phase, reflecting a broader shift as countries pursue hydrogen-ready power plants to reduce emissions, with a second phase, supported by the World Bank, planned to add another 100 MW.

The Chinameca, San Miguel, and San Vicente projects represent the next wave of geothermal development in El Salvador. When completed, these plants will significantly increase the country’s geothermal capacity, further diversifying its energy mix and reducing reliance on fossil fuels, and will require ongoing grid upgrades, a task complicated elsewhere by Germany grid expansion challenges highlighted in Europe.

International Support and Collaboration

El Salvador’s geothermal development efforts are supported by various international partners, including the World Bank, which has been instrumental in financing the expansion of geothermal projects, as utilities such as SaskPower geothermal plans in Canada explore comparable pathways. This collaboration highlights the global recognition of El Salvador’s potential in geothermal energy and its efforts to position itself as a hub for geothermal energy development in Central America.

Additionally, the country’s expertise in geothermal energy, especially in binary cycle technology, has attracted international attention. El Salvador’s progress in the geothermal sector could serve as a model for other countries in the region that are looking to harness their geothermal resources to reduce energy costs and promote sustainable energy development.

The upcoming launch of the Berlin binary geothermal power plant is a testament to El Salvador’s commitment to sustainable energy. As the country continues to expand its geothermal capacity, it is positioning itself as a leader in renewable energy in the region. The binary cycle technology employed at the Berlin plant not only enhances energy efficiency but also demonstrates El Salvador’s ability to adapt and innovate within the renewable energy sector.

With the continued development of projects in Chinameca, San Miguel, and San Vicente, and ongoing international collaboration, El Salvador’s geothermal energy sector is set to play a crucial role in the country’s energy future. As global demand for clean energy grows, exemplified by U.S. solar capacity additions this year, El Salvador’s investments in geothermal energy are helping to build a more sustainable, resilient, and energy-independent future.

 

Related News

View more

Mercury in $3 billion takeover bid for Tilt Renewables

Mercury Energy Tilt Renewables acquisition signals a trans-Tasman energy push as PowAR and Mercury split assets via a scheme of arrangement, offering $7.80 per share and a $2.96b valuation across Australia and New Zealand.

 

Key Points

A PowAR-Mercury deal to buy Tilt Renewables, splitting Australian and New Zealand assets via a court-approved scheme.

✅ $7.80 per share, valuing Tilt at $2.96b

✅ PowAR takes AU assets; Mercury gets NZ business

✅ Infratil and Mercury to vote for the scheme

 

Mercury Energy and an Australian partner appear to have won the race to buy Tilt Renewables, an Australasian wind farm developer which was spun out of TrustPower, bidding almost $3 billion, amid wider utility consolidation such as the Peterborough Distribution sale to Hydro One.

Yesterday Tilt Renewables announced that it had entered a scheme implementation agreement under which it was proposed that PowAR would acquire its Australian business and Mercury would acquire the New Zealand business, mirroring cross-border approvals where U.S. antitrust clearance shaped Hydro One's bid for Avista.

Conducted through a scheme of arrangement, Tilt shareholders will be offered $7.80 a share, valuing Tilt at $2.96b.

Yesterday morning shares in Tilt opened about 18 per cent up at $7.65, though regulatory outcomes can swing valuations as seen when Hydro One-Avista reconsideration of a U.S. order came into play.

In early December Infratil, which owns around two thirds of Tilt's shares, announced it was undertaking a review of its investment after receiving approaches, with investor sentiment sensitive to governance shifts as when Hydro One shares fell after leadership changes in Ontario.

According to a report in the Australian Financial Review, the transtasman bid beat out other parties including ASX-listed APA Group, Canadian pension fund CDPQ and Australian fund manager Infrastructure Capital Group, as Canadian investors like Ontario Teachers' Plan pursue similar infrastructure deals.

“This compelling acquisition proposal is a result of Tilt Renewables’ constant focus on delivering long-term value for shareholders and the board is pleased that, with these new owners, the transition to renewables in Australia and New Zealand will continue to accelerate,” Tilt’s chairman Bruce Harker said.

Comparable community-led clean energy partnerships, such as initiatives with British Columbia First Nations highlighted in clean-energy generation, underscore the broader momentum.

Just prior to the announcement, Tilt shares had been trading for less than $4. Such repricing reflects how utilities can face perceived uncertainties, as one investor argued too many unknowns at the time.

Mercury is already Tilt’s second largest shareholder, at just under 20 per cent. Both Infratil and Mercury have agreed to vote in favour of the scheme. The deal values Tilt’s New Zealand business at $770m, however the value of Mercury’s existing shareholding is around $585m, meaning the company will increase debt by around $185m.

 

Related News

View more

Biggest offshore windfarm to start UK supply this week

Hornsea One Offshore Wind Farm delivers first power to the UK grid, scaling renewable energy with 1.2GW capacity, giant offshore turbines, and Yorkshire coast infrastructure to replace delayed nuclear and cut fossil fuel emissions.

 

Key Points

Hornsea One Offshore Wind Farm is a 1.2GW UK project delivering offshore renewable power to about 1 million homes.

✅ 174 turbines over 407 km2; Siemens Gamesa supply chain in the UK

✅ 1.2GW capacity can power ~1m homes; phases scale with 10MW+ turbines

✅ Supports UK grid, replaces delayed nuclear, cuts fossil generation

 

An offshore windfarm on the Yorkshire coast that will dwarf the world’s largest when completed is to supply its first power to the UK electricity grid this week, mirroring advances in tidal electricity projects delivering to the grid as well.

The Danish developer Ørsted, which has installed the first of 174 turbines at Hornsea One, said it was ready to step up its plans and fill the gap left by failed nuclear power schemes.

The size of the project takes the burgeoning offshore wind power sector to a new scale, on a par with conventional fossil fuel-fired power stations.

Hornsea One will cover 407 square kilometres, five times the size of the nearby city of Hull. At 1.2GW of capacity it will power 1m homes, making it about twice as powerful as today’s biggest offshore windfarm once it is completed in the second half of this year.

“The ability to generate clean electricity offshore at this scale is a globally significant milestone at a time when urgent action needs to be taken to tackle climate change,” said Matthew Wright, UK managing director of Ørsted, the world’s biggest offshore windfarm builder.

The power station is only the first of four planned in the area, with a green light and subsidies already awarded to a second stage due for completion in the early 2020s, and interest from Japanese utilities underscoring growing investor appetite.

The first two phases will use 7MW turbines, which are taller than London’s Gherkin building.

But the latter stages of the Hornsea development could use even more powerful, 10MW-plus turbines. Bigger turbines will capture more of the energy from the wind and should lower costs by reducing the number of foundations and amount of cabling firms need to put into the water, with developers noting that offshore wind can compete with gas in the U.S. as costs fall.

Henrik Poulsen, Ørsted’s chief executive, said he was in close dialogue with major manufacturers to use the new generation of turbines, some of which are expected to approach the height of the Shard in London, the tallest building in the EU.

The UK has a great wind resource and shallow enough seabed to exploit it, and could even “power most of Europe if it [the UK] went to the extreme with offshore”, he said.

Offshore windfarms could help ministers fill the low carbon power gap created by Hitachi and Toshiba scrapping nuclear plants, the executive suggested. “If nuclear should play less of a role than expected, I believe offshore wind can step up,” he said.

New nuclear projects in Europe had been “dramatically delayed and over budget”, he added, in comparison to “the strong track record for delivering offshore [wind]”.

The UK and Germany installed 85% of new offshore wind power capacity in the EU last year, according to industry data, with wind leading power across several markets. The average power rating of the turbines is getting bigger too, up 15% in 2018.

The turbines for Hornsea One are built and shipped from Siemens Gamesa’s factory in Hull, part of a web of UK-based suppliers that has sprung up around the growing sector, such as Prysmian UK's land cables supporting grid connections.

Around half of the project’s transition pieces, the yellow part of the structure that connects the foundation to the tower, are made in Teeside. Many of the towers themselves are made by a firm in Campbeltown in the Scottish highlands. Altogether, about half of the components for the project are made in the UK.

Ørsted is not yet ready to bid for a share of a £60m pot of further offshore windfarm subsidies, to be auctioned by the government this summer, but expects the price to reach even more competitive levels than those seen in 2017.

Like other international energy companies, Ørsted has put in place contingency planning in event of a no-deal Brexit – but the hope is that will not come to pass. “We want a Brexit deal that will facilitate an orderly transition out of the union,” said Poulsen.

 

Related News

View more

Volkswagen's German Plant Closures

VW Germany Plant Closures For EV Shift signal a strategic realignment toward electric vehicles, sustainability, and zero-emission mobility, optimizing manufacturing, cutting ICE capacity, boosting battery production, retraining workers, and aligning with the Accelerate decarbonization strategy.

 

Key Points

VW is shuttering German plants to cut ICE costs and scale EV output, advancing sustainability and competitiveness.

✅ Streamlines operations; reallocates capital to EV platforms and batteries.

✅ Cuts ICE output, lowers emissions, and boosts clean manufacturing capacity.

✅ Retrains workforce amid closures; invests in software and charging tech.

 

Volkswagen (VW), one of the world’s largest automakers, is undergoing a significant transformation with the announcement of plant closures in Germany. As reported by The Guardian, this strategic shift is part of VW’s broader move towards prioritizing electric vehicles (EVs) and adapting to the evolving automotive market as EVs reach an inflection point globally. The decision highlights the company’s commitment to sustainability and innovation amid a rapidly changing industry landscape.

Strategic Plant Closures

Volkswagen’s decision to close several of its plants in Germany marks a pivotal moment in the company's history. These closures are part of a broader strategy to streamline operations, reduce costs, and focus on the production of electric vehicles. The move reflects VW’s response to the growing demand for EVs and the need to transition from traditional internal combustion engine (ICE) vehicles to cleaner, more sustainable alternatives.

The affected plants, which have been key components of VW’s manufacturing network, will cease production as the company reallocates resources and investments towards its electric vehicle programs. This realignment is aimed at improving operational efficiency and ensuring that VW remains competitive in a market that is increasingly oriented towards electric mobility.

A Shift Towards Electric Vehicles

The closures are closely linked to Volkswagen’s strategic shift towards electric vehicles. The automotive industry is undergoing a profound transformation as governments and consumers place greater emphasis on sustainability and reducing carbon emissions. Volkswagen has recognized this shift and is investing heavily in the development and production of EVs as part of its "Accelerate" strategy, anticipating widespread EV adoption within a decade across key markets.

The company’s commitment to electric vehicles is evident in its plans to launch a range of new electric models and increase production capacity for EVs. Volkswagen aims to become a leader in the electric mobility sector by leveraging its technological expertise and scale to drive innovation and expand its EV offerings.

Economic and Environmental Implications

The closure of VW’s German plants carries both economic and environmental implications. Economically, the move will impact the workforce and local economies dependent on these manufacturing sites. Volkswagen has indicated that it will work on providing support and retraining opportunities for affected employees, as the EV aftermarket evolves and reshapes service needs, but the transition will still pose challenges for workers and their communities.

Environmentally, the shift towards electric vehicles represents a significant positive development. Electric vehicles produce zero tailpipe emissions, which aligns with global efforts to combat climate change and reduce air pollution. By focusing on EV production, Volkswagen is contributing to the reduction of greenhouse gas emissions and supporting the transition to a more sustainable transportation system.

Challenges and Opportunities

While the transition to electric vehicles presents opportunities, it also comes with challenges. Volkswagen will need to manage the complexities of closing and repurposing its existing plants while ramping up production at new or upgraded facilities dedicated to EVs. This transition requires substantial investment in new technologies, infrastructure, and training, including battery supply strategies that influence manufacturing footprints, to ensure a smooth shift from traditional automotive manufacturing.

Additionally, Volkswagen faces competition from other automakers that are also investing heavily in electric vehicles, including Daimler's electrification plan outlining the scope of its transition. To maintain its competitive edge, VW must continue to innovate and offer attractive, high-performance electric models that meet consumer expectations.

Future Outlook

Looking ahead, Volkswagen’s focus on electric vehicles aligns with broader industry trends and regulatory pressures. Governments worldwide are implementing stricter emissions regulations and providing incentives for EV adoption, although Germany's plan to end EV subsidies has sparked debate domestically, creating a favorable environment for companies that are committed to sustainability and clean technology.

Volkswagen’s investment in electric vehicles and its strategic realignment reflect a proactive approach to addressing these trends. The company’s ability to navigate the challenges associated with plant closures and the transition to electric mobility will be critical, especially as Europe's EV slump tests demand signals, in determining its success in the evolving automotive landscape.

Conclusion

Volkswagen’s decision to close several plants in Germany and focus on electric vehicle production represents a significant shift in the company’s strategy. While the closures present challenges, they also highlight Volkswagen’s commitment to sustainability and its response to the growing demand for cleaner transportation solutions. By investing in electric vehicles and adapting its operations, Volkswagen aims to lead the way in the transition to a more sustainable automotive future. As the company moves forward, its ability to effectively manage this transition will be crucial in shaping its role in the global automotive market.

 

Related News

View more

Battery-electric buses hit the roads in Metro Vancouver

TransLink Electric Bus Pilot launches zero-emission service in Metro Vancouver, cutting greenhouse gas emissions with fast-charging stations on Route 100, supporting renewable energy goals alongside trolley buses, CNG, and hybrid fleets.

 

Key Points

TransLink's Metro Vancouver program deploying charging, zero-emission buses on Route 100 to cut emissions and fuel costs.

✅ Cuts ~100 tonnes GHG and saves $40k per bus annually

✅ Five-minute on-route charging at terminals on Route 100

✅ Pilot data to guide zero-emission fleet transition by 2050

 

TransLink's first battery-electric buses are taking to the roads in Metro Vancouver as part of a pilot project to reduce emissions, joining other initiatives like electric school buses in B.C. that aim to cut pollution in transportation.

The first four zero-emission buses picked up commuters in Vancouver, Burnaby and  New Westminster on Wednesday. Six more are expected to be brought in, and similar launches like Edmonton's first electric bus are underway across Canada.

"With so many people taking transit in Vancouver today, electric buses will make a real difference," said Merran Smith, executive director of Clean Energy Canada, a think tank at Simon Fraser University, in a release.

According to TransLink, each bus is expected to reduce 100 tonnes of greenhouse gas emissions and save $40,000 in fuel costs per year compared to a conventional diesel bus.

"Buses already help tackle climate change by getting people out of cars, and Vancouver is ahead of the game with its electric trolleys," Smith said.

She added there is still more work to be done to get every bus off diesel, as seen with the TTC's battery-electric buses rollout in Toronto.

The buses will run along the No. 100 route connecting Vancouver and New Westminster. They recharge — it takes about five minutes — at new charging stations installed at both ends of the route while passengers load and unload or while the driver has a short break. 

Right now, more than half of TransLink's fleet currently operates with clean technology, offering insights alongside Toronto's large battery-electric fleet for other cities. 

In addition to the four new battery-electric buses, the fleet also includes hundreds of zero-emission electric trolley buses, compressed natural gas buses and hybrid diesel-electric buses, while cities like Montreal's first STM electric buses continue to expand adoption.

"Our iconic trolley buses have been running on electricity since 1948 and we're proud to integrate the first battery-electric buses to our fleet," said TransLink CEO Kevin Desmond in a press release.

TransLink has made it a goal to operate its fleet with 100 per cent renewable energy in all operations by 2050. Desmond says, the new buses are one step closer to meeting that goal.

The new battery-electric buses are part of a two-and-a-half year pilot project that looks at the performance, maintenance, and customer experience of making the switch to electric, complementing BC Hydro's vehicle-to-grid pilot initiative underway in the province.

 

Related News

View more

New Program Set to Fight for 'Electricity Future That Works for People and the Planet'

Energy Justice Program drives a renewables-based transition, challenging utility monopolies with legal action, promoting rooftop solar, distributed energy, public power, and climate justice to decarbonize the grid and protect communities and wildlife nationwide.

 

Key Points

A climate justice initiative advancing renewables, legal action, and public power to challenge utility monopolies.

✅ Challenges utility barriers to rooftop solar and distributed energy

✅ Advances state and federal policies for equitable, public power

✅ Uses litigation to curb fossil fuel dependence and protect communities

 

The Center for Biological Diversity on Monday rolled out a new program to push back against the nation's community- and wildlife-harming energy system that the climate advocacy group says is based on fossil fuels and a "centralized monopoly on power."

The goal of the new effort, the Energy Justice Program, is to help forge a path towards a just and renewables-based energy future informed by equitable regulation principles.

"Our broken energy system threatens our climate and our future," said Jean Su, the Energy Justice Program's new director, in a statement. "Utilities were given monopolies to ensure public access to electricity, but these dinosaur corporations are now hurting the public interest by blocking the clean energy transition, including via coal and nuclear subsidy schemes that profit off the fossil fuel era."

"In this era of climate catastrophe," she continued, "we have to stop these outdated monopolies and usher in a new electricity future that works for people and the planet."

To meet those goals, the new program will pursue a number of avenues, including using legal action to fight utilities' obstruction of clean energy efforts, helping communities advance local solar programs through energy freedom strategies in the South, and crafting energy policies on the state, federal, and international levels in step with commitments from major energy buyers to achieve a 90% carbon-free goal by 2030.

Some of that work is already underway. In June the Center filed a brief with a federal court in a bid to block Arizona power utility Salt River Project from slapping a 60-percent electricity rate hike on rooftop solar customers—amid federal efforts to reshape electricity pricing that critics say are being rushed—a move the group described (pdf) as an obstacle to achieving "the energy transition demanded by climate science."

The Center is among the groups in Energy Justice NC. The diverse coalition seeks to end the energy stranglehold in North Carolina held by Duke Energy, which continues to invest in fossil fuel projects even as it touts clean energy and grid investments in the region.

The time for a new energy system, says the Energy Justice Program, is now, as climate change impacts increasingly strain the grid.

"Amid this climate and extinction emergency," said Su, "the U.S. can't afford to stick with the same centralized, profit-driven electricity system that drove us here in the first place. We have to seize this once-in-a-generation opportunity to design a new system of accountable, equitable, truly public power."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.