Wind Farm to be built in West Texas

By Houston Chronicle


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Shell WindEnergy and a partner will build a 160-turbine wind farm in West Texas, both companies recently announced.

The project, on a site 90 miles southeast of Lubbock in Scurry and Borden counties, is to be done by year's end.

Shell WindEnergy, which has offices in Houston and La Jolla, California, and is part of Royal Dutch/Shell Group, is constructing the farm in a 50-50 joint venture with Padoma Wind Power of California.

Shell WindEnergy will operate the farm.

Green Mountain Energy Co. and TXU Energy, both Texas companies, have agreed to buy all the farm's electricity.

The 160-megawatt project is expected to generate enough electricity to power about 30,000 homes.

Some of the Mitsubishi turbines will stand 226 feet tall and weigh more than 170 tons.

Others involved include Austin-based Cielo Wind Power and Orion Energy of California, which are the project developers. Shell WindEnergy and Padoma acquired the project this month.

Shell WindEnergy already owns four wind parks in the United States.

Related News

Rising Electricity Prices: Inflation, Climate Change, and Clean Energy Challenges

Rising Electricity Prices are driven by inflation, climate change, and the clean energy transition, affecting energy bills, grid resilience, and supply. Renewables, storage, and infrastructure upgrades shape costs, volatility, and long-term sustainability.

 

Key Points

Rising electricity prices stem from inflation, climate risk, and costs of integrating clean energy and storage into modern grids.

✅ Inflation raises fuel, materials, and labor costs for utilities

✅ Extreme weather damages infrastructure and strains peak demand

✅ Clean energy rollout needs storage, backup, and grid upgrades

 

In recent months, consumers have been grappling with a concerning trend: rising electricity prices across the country. This increase is not merely a fluctuation but a complex issue shaped by a confluence of factors including inflation, climate change, and the transition to clean energy. Understanding these dynamics is crucial for navigating the current energy landscape and preparing for its future.

Inflation and Its Impact on Energy Costs

Inflation, the economic phenomenon of rising prices across various sectors, has significantly impacted the cost of living, including electricity and natural gas prices for households. As the price of goods and services increases, so too does the cost of producing and delivering electricity. Energy production relies heavily on raw materials, such as metals and fuels, whose prices have surged in recent years. For instance, the costs associated with mining, transporting, and refining these materials have risen, thereby increasing the operational expenses for power plants.

Moreover, inflation affects labor costs, as wages often need to keep pace with the rising cost of living. As utility companies face higher expenses for both materials and labor, these costs are inevitably passed on to consumers in the form of higher electricity bills.

Climate Change and Energy Supply Disruptions

Climate change also plays a significant role in driving up electricity prices. Extreme weather events, such as hurricanes, heatwaves, and floods, have become more frequent and severe due to climate change. These events disrupt energy production and distribution by damaging infrastructure, impeding transportation, and affecting the availability of resources.

For example, hurricanes can knock out power plants and damage transmission lines, leading to shortages and higher costs. During periods of extreme summer heat across many regions, heatwaves can strain the power grid as increased demand for air conditioning pushes the system to its limits. Such disruptions not only lead to higher immediate costs but also necessitate costly repairs and infrastructure upgrades.

Additionally, the increasing frequency of natural disasters forces utilities to invest in more resilient infrastructure, as many utilities spend more on delivery to harden grids and reduce outages, which adds to overall costs. These investments, while necessary for long-term reliability, contribute to short-term price increases for consumers.

The Transition to Clean Energy

The shift towards clean energy is another pivotal factor influencing electricity prices. While renewable energy sources like wind, solar, and hydro power are crucial for reducing greenhouse gas emissions and combating climate change, their integration into the existing grid presents challenges.

Renewable energy infrastructure requires substantial initial investment. The construction of wind farms, solar panels, and the associated grid improvements involve significant capital expenditure. These upfront costs are often reflected in electricity prices. Moreover, renewable energy sources can be intermittent, meaning they do not always produce electricity at times of high demand. This intermittency necessitates the development of energy storage solutions and backup systems, which further adds to the costs.

Utilities are also transitioning from fossil fuel-based energy production to cleaner alternatives, a process that involves both technological and operational shifts and intersects with the broader energy crisis impacts on electricity, gas, and EVs nationwide. These changes can temporarily increase costs as utilities phase out old systems and implement new ones. While the long-term benefits of cleaner energy include environmental sustainability and potentially lower operating costs, the transition period can be financially burdensome for consumers.

The Path Forward

Addressing rising electricity prices requires a multifaceted approach. Policymakers must balance the need for immediate relief, as California regulators face calls for action amid soaring bills, with the long-term goals of sustainability and resilience. Investments in energy efficiency can help reduce overall demand and ease pressure on the grid. Expanding and modernizing energy infrastructure to accommodate renewable sources can also mitigate price volatility.

Additionally, efforts to mitigate climate change through improved resilience and adaptive measures can reduce the frequency and impact of extreme weather events, thereby stabilizing energy costs.

Consumer education is vital in this process. Understanding the factors driving electricity prices can empower individuals to make informed decisions about energy consumption and conservation. Furthermore, exploring energy-efficient appliances and practices can help manage costs in the face of rising prices.

In summary, the rising cost of electricity is a multifaceted issue influenced by inflation, climate change, and the transition to clean energy, and recent developments show Germany's rising energy costs in the coming year. While these factors pose significant challenges, they also offer opportunities for innovation and improvement in how we produce, distribute, and consume energy. By addressing these issues with a balanced approach, it is possible to navigate the complexities of rising electricity prices while working towards a more sustainable and resilient energy future.

 

Related News

View more

Shell says electricity to meet 60 percent of China's energy use by 2060

China 2060 Carbon-Neutral Energy Transition projects tripled electricity, rapid electrification, wind and solar dominance, scalable hydrogen, CCUS, and higher carbon pricing to meet net-zero goals while decarbonizing heavy industry and transport.

 

Key Points

Shell's outlook for China to reach net zero by 2060 via electrification, renewables, hydrogen, CCUS, and carbon pricing.

✅ Power supply to 60% of energy; generation triples by 2060.

✅ Wind and solar reach 80% of electricity; coal declines sharply.

✅ Hydrogen scales to 17 EJ; CCUS and carbon pricing expand.

 

China may triple electricity generation to supply 60 percent of the country's total energy under Beijing's carbon-neutral goal by 2060, up from the current 23 per cent, according to Royal Dutch Shell.

Shell is one of the largest global investors in China's energy sector, with business covering gas production, petrochemicals and a retail fuel network. A leading supplier of liquefied natural gas, it has recently expanded into low-carbon business such as hydrogen power and electric vehicle charging.

In a rare assessment of the country's energy sector by an international oil major, Shell said China needed to take quick action this decade to stay on track to reach the carbon-neutrality goal.

China has mapped out plans to reach peak emissions by 2030, and aims to reduce coal power production over the coming years, but has not yet revealed any detailed carbon roadmap for 2060.

This includes investing in a reliable and renewable power system, including compressed air generation, and demonstrating technologies that transform heavy industry using hydrogen, biofuel and carbon capture and utilization.

"With early and systematic action, China can deliver better environmental and social outcomes for its citizens while being a force for good in the global fight against climate change," Mallika Ishwaran, chief economist of Shell International, told a webinar hosted by the company's China business.

Shell expects China's electricity generation to rise three-fold to more than 60 exajoules (EJ) in 2060 from 20 EJ in 2020, even amid power supply challenges reported recently.

Solar and wind power are expected to surpass coal as the largest sources of electricity by 2034 in China, reflecting projections that renewables will eclipse coal globally by mid-decade, versus the current 10 percent, rising to 80 percent by 2060, Shell said.

Hydrogen is expected to scale up to 17 EJ, or equivalent to 580 million tonnes of coal by 2060, up from almost negligible currently, adding over 85 percent of the hydrogen will be produced through electrolysis, supported by PEM hydrogen R&D across the sector, powered by renewable and nuclear electricity, Shell said.

Hydrogen will meet 16 percent of total energy use in 2060 with heavy industry and long-distance transport as top hydrogen users, the firm added.

The firm also expects China's carbon price to rise to 1,300 yuan (CDN$256.36) per tonne in 2060 from 300 yuan in 2030.

Nuclear, on a steady development track, and biomass will have niche but important roles for power generation in the years to come, Shell said.

Electricity generated from biomass, combined with carbon, capture, utilization and storage (CCUS), provide a source of negative emissions for the rest of the energy system from 2053, it added.

 

Related News

View more

Cape Town to Build Own Power Plants, Buy Additional Electricity

Cape Town Renewable Energy Plan targets 450+ MW via solar, wind, and battery storage, cutting Eskom reliance, lowering greenhouse gas emissions, stabilizing electricity prices, and boosting grid resilience through municipal procurement, PPAs, and city-owned plants.

 

Key Points

A municipal plan to procure over 450 MW, cut Eskom reliance, stabilize prices, and reduce Cape Town emissions.

✅ Up to 150 MW from private plants within the city

✅ 300 MW to be purchased from outside Cape Town later

✅ City financing 100-200 MW of its own generation

 

Cape Town is seeking to secure more than 450 megawatts of power from renewable sources to cut reliance on state power utility Eskom Holdings SOC Ltd., where wind procurement cuts were considered during lockdown, and reduce greenhouse gas emissions.

South Africa’s second-biggest city is looking at a range of options, including geothermal exploration in comparable markets, and expects the bulk of the electricity to be generated from solar plants, Kadri Nassiep, the city’s executive director of energy and climate change, said in an interview.

On July 14 the city of 4.6 million people released a request for information to seek funding to build its own plants. This month or next it will seek proposals for the provision of as much as 150 megawatts from privately owned plants, largely solar additions, to be built and operated within the city, he said. As much as 300 megawatts may also be purchased at a later stage from plants outside of Cape Town, according to Nassiep.

The city could secure finance to build 100 to 200 megawatts of its own generation capacity, Nassiep said. “We realized that it is important for the city to be more in control around the pricing of the power,” he added.

Power Outages

Cape Town’s foray into the securing of power from sources other than Eskom comes after more than a decade of intermittent electricity outages, while elsewhere in Africa coal projects face scrutiny from lenders, because the utility can’t meet national demand. The government last year said municipalities could find alternative suppliers.

Earlier this month Ethekwini, the municipal area that includes the city of Durban, issued a request for information for the provision of 400 megawatts of power, similar to BC Hydro’s call for power driven by EV uptake.

The City of Johannesburg will in September seek information and proposals for the construction of a 150-megawatt solar plant, reflecting moves like Ontario’s new wind and solar procurements to tackle supply gaps, 50 megawatts of rooftop solar panels and the refurbishment of an idle gas-fired plant that could generate 20 megawatts, it said in June. It will also seek information for the installation of 100 megawatts of battery storage.

Cape Town, which uses a peak of 1,800 megawatts of electricity in winter, hopes to start generating some of its own power next year, aligning with SaskPower’s 2030 renewables plan seen in Canada, according to a statement that accompanied its request for financing proposals.
 

 

Related News

View more

U.S. Electricity Sales Projections Continue to Fall

US Electricity Demand Outlook examines EIA forecasts, GDP decoupling, energy efficiency, electrification, electric vehicles, grid load growth, and weather variability to frame long term demand trends and utility planning scenarios.

 

Key Points

An analysis of EIA projections showing demand decoupling from GDP, with EV adoption and efficiency shaping future grid load.

✅ EIA lowers load growth; demand decouples from GDP.

✅ Efficiency and sector shifts depress kWh sales.

✅ EV adoption could revive load and capacity needs.

 

Electricity producers and distributors are in an unusual business. The product they provide is available to all customers instantaneously, literally at the flip of a switch. But the large amount of equipment, both hardware and software to do this takes years to design, site and install.

From a long range planning perspective, just as important as a good engineering design is an accurate sales projections. For the US electric utility industry the most authoritative electricity demand projec-tions come from the Department of Energy’s Energy Information Administration (EIA). EIA's compre-hensive reports combine econometric analysis with judgment calls on social and economic trends like the adoption rate of new technologies that could affect future electricity demand, things like LED light-ing and battery powered cars, and the rise of renewables overtaking coal in generation.

Before the Great Recession almost a decade ago, the EIA projected annual growth in US electricity production at roughly 1.5 percent per year. After the Great Recession began, the EIA lowered its projections of US electricity consumption growth to below 1 percent. Actual growth has been closer to zero. While the EIA did not antici-pate the last recession or its aftermath, we cannot fault them on that.

After the event, though, the EIA also trimmed its estimates of economic growth. For the 2015-2030 period it now predicts 2.1 percent economic and 0.3 percent electricity growth, down from previously projections of 2.7 percent and 1.3 percent respectively. (See Figures 1 and 2.)



 

Table 1. EIA electric generation projections by year of forecast (kWh billions)

 


 

Table 2. EIA forecast of GDP by year of forecast (billion 2009 $)

Back in 2007, the EIA figured that every one percent increase in economic activity required a 0.48 percent in-crease in electric generation to support it. By 2017, the EIA calculated that a 1 percent growth in economic activity now only required a 0.14 percent increase in electric output. What accounts for such a downgrade or disconnect between electricity usage and economic growth? And what factors might turn the numbers 
around?

First, the US economy lost energy intensive heavy industry like smelting, steel mills and refineries; patterns in China's electricity sector highlight how industrial shifts can reshape power demand. A more service oriented economy (think health care) relies more heavily on the movement of data or information and uses far less power than a manufacturing-oriented economy.

A small volcano in Argentina is about to fuel the next tech boom – and a little known company is going to be right at the center. Early investors stand to gain incredible profits and you can too. Read the report.

Second, internet shopping has hurt so-called "brick and mortar" retailers. Despite the departure of heavy industry, in years past a burgeoning US commercial sector increased its demand and usage of electricity to offset the industrial decline. But not anymore. Energy efficiency measures as well as per-haps greater concern about global warming and greenhouse gas emissions and have cut into electricity sales. “Do more with less” has the right ring to it.

But there may be other components to the ongoing decline in electricity usage. Academic studies show that electricity usage seems to increase with income along an S curve, and flattens out after a certain income level. That is, if you earn $1 billion per year you do not (or cannot) use ten times a much electricity as someone earning only $100 million.

But people at typical, middle income levels increase or decrease electricity usage when incomes rise or fall. The squeeze on middle income families was discussed often in the late presidential campaign. In recent decades an increasing percentage of income has gone to a small percentage of the population at the top of the income scale. This trend probably accounts for some weakness in residential sales. This suggests that government policy addressing income inequality would also boost electricity sales.

Population growth affects demand for electricity as well as the economy as a whole. The EIA has made few changes in its projections, showing 0.7 percent per year population growth in 2015- 2030 in both the 2007 and 2017 forecasts. Recent studies, however, have shown a drop in the birth rate to record lows. More troubling, from a national health perspective is that the average age of death may have stopped rising. Those two factors point to lower population growth, especially if the government also restricts immi-gration. Thus, the US may be approaching a period of rather modest population growth.

All of the above factors point to minimal sales growth for electricity producers in the US--perhaps even lower than the seemingly conservative EIA estimates. But the cloud on the horizon has a silver lining in the shape of an electric car. Both the United Kingdom and France have set dates to end of production of automobiles with internal combustion engines. Several European car makers have declared that 20 percent of their output will be electric vehicles by the early 2020s. If we adopt automobiles powered by electricity and not gasoline or diesel, electricity sales would increase by one third. For the power indus-try, electric vehicles represent the next big thing.

We don’t pretend to know how electric car sales will progress. But assume vehicle turnover rates re-main at the current 7 percent per year and electric cars account for 5 percent of sales in the first five years (as op-posed to 1 percent now), 20 percent in the next five years and 50 percent in the third five year period. Wildly optimistic assumptions? Maybe. By 2030, electric cars would constitute 28 percent of the vehicle fleet. They would add about 10 percent to kilowatt hour sales by that date, assuming that battery efficiencies do not improved by then. Those added sales would require increased electric generation output, with low-emissions sources expected to cover almost all the growth globally. They would also raise long term growth rates for 2015-2030 from the present 0.3 percent to 1.0 percent. The slow upturn in demand should give the electric companies time to gear up so to speak.

In the meantime, weather will continue to play a big role in electricity consumption. Record heat-induced demand peaks are being set here in the US even as surging global demand puts power systems under strain worldwide.

Can we discern a pattern in weather conditions 15 years out? Maybe we can, but that is one topic we don’t expect a government agency to tackle in public right now. Meantime, weather will affect sales more than anything else and we cannot predict the weather. Or can we?

 

Related News

View more

Kenney holds the power as electricity sector faces profound change

Alberta Electricity Market Reform reshapes policy under the UCP, weighing a capacity market versus energy-only design, AESO reliability rules, renewables targets, coal phase-out, carbon pricing, consumer rates, and investment certainty before AUC decisions.

 

Key Points

Alberta Electricity Market Reform is the UCP plan to reassess capacity vs energy-only, renewables, and carbon pricing.

✅ Reviews capacity market timeline and AESO procurement

✅ Alters subsidies for renewables; slows wind and solar growth

✅ Adjusts industrial carbon levy; audits Balancing Pool losses

 

Hearings kicked off this week into the future of the province’s electricity market design, amid an electricity market reshuffle pledged by the province, but a high-stakes decision about the industry’s fate — affecting billions of dollars in investment and consumer costs — won’t be made inside the meeting room of the Alberta Utilities Commission.

Instead, it will take place in the office of Jason Kenney, as the incoming premier prepares to pivot away from the seismic reforms to Alberta’s electricity sector introduced by the Notley government.

The United Conservative Party has promised to adopt market-based policies, reflecting changes to how Alberta produces and pays for power, that will reset how the sector operates, from its approach to renewable energy and carbon pricing to re-evaluating the planned transition to an electricity “capacity market.”

“Every ball in electricity is up in the air right now,” Vittoria Bellissimo, of the Industrial Power Consumers Association of Alberta, said Tuesday during a break in the commission hearings.

Industry players are uncertain how quickly the UCP will change direction on power policies, but there’s little doubt Kenney’s government will take a strikingly different approach to the sector that keeps the lights on in Alberta.

“There’s some things they are going to change that are going to impact the electricity industry significantly,” said Duane Reid-Carlson, chief executive of consultancy EDC Associates.

“But I don’t think it’s going to be upheaval. I think the new government will proceed with caution because electricity is the foundation of our economy.”

Alberta’s electricity market has been turned on its head in recent years due to the recession, power prices dropping to near two-decade lows and several transformative policies initiated by the NDP.

The Notley government’s climate plan included an accelerated phase-out of all coal-fired generation and set targets for more renewable energy.

The most significant, but least-understood, move has been the planned shift to an electricity capacity market in 2021.

Under the strategy, generators will no longer solely be paid for the power produced and sold into the market; they will also receive payments for having electricity capacity available to the grid on demand.

The change was recommended by the Alberta Electric System Operator (AESO) as a way to reduce price volatility and provide more reliability than the current energy-only market, which some argue needs more competition to deliver better outcomes.

The independent system operator and industry officials have spent more than two years planning the transition since the switch was announced in late 2016. Proposed rules for the new system, outlining market changes, are now being discussed at the Alberta Utilities Commission hearings.

However, there is no ironclad guarantee the system remake will go ahead following the UCP’s election victory last week — amid calls to scrap the overhaul from a Calgary retailer — it plans to study the issue further — while other substantive electricity changes are already in store.

The UCP has promised to end “costly subsidies” to renewable energy developments and abandon the NDP’s pledge to have such energy sources make up 30 per cent of all power generation by 2030.

It will remove the planned phase-out of coal-fired electricity generation, although federal regulations for a 2030 prohibition remain in place.

It will also ask the auditor general to conduct a special audit of the massive losses sustained by the province’s Balancing Pool due to power purchase arrangements being handed back to the agency three years ago.

While Kenney has pledged to cancel the provincewide carbon tax, a levy on large industrial greenhouse gas emitters (such has power plants) will still be charged, although at a reduced rate of $20 a tonne.

The biggest unknown remains the power market’s structure, which underpins how the entire system operates.

The UCP has promised to consult on the shift to the capacity market and report back to Albertans within 90 days.

The complex issue may sound like an eye-glazer, but it will have a profound effect on industry investment, as well as how much consumers pay on their monthly electricity bills.

A number of industry players worry the capacity market will lead AESO to procure more power than is necessary, foisting unnecessary costs onto all Albertans.

“I still have concerns for what the impact on consumers is going to be,” said energy market consultant Sheldon Fulton. “I’d love to see the capacity market go away.”

An analysis by EDC Associates found the transition to a capacity market will procure additional electricity before it’s needed, requiring consumers to pay up to 40 per cent more — an extra $1.4 billion — for power in 2021-22 than under the existing market structure.

“I don’t think there’s any prejudged outcome,” said Blake Shaffer, former head trader at TransAlta Corp. and a fellow-in-residence at the C.D. Howe Institute.

“But it really matters about getting this right.”

Evan Bahry, executive director of the Independent Power Producers Society of Alberta, said the fact the UCP’s review was confined to just 90 days is helpful, as it avoids throwing the entire industry into a prolonged period of uncertainty.

As for the greening of Alberta’s power grid, amid growing attention to clean grids and storage, the demise of the NDP’s Renewable Electricity Program will likely slow down the rapid pace of wind and solar development. But it’s unlikely to stop the growth trend as costs continue to fall for such developments.

“Renewables over the last number of years have evolved to the point that they make sense on a subsidy-free basis,” said Dan Balaban, CEO of Greengate Power Corp., which has developed 480 MW of wind power in Alberta and Ontario.

“There is a path to clean electricity ahead.”

Chris Varcoe is a Calgary Herald columnist.

 

Related News

View more

Russian Strikes Threaten Ukraine's Power Grid

Ukraine Power Grid Attacks intensify as missile and drone strikes hit substations and power plants, causing blackouts, humanitarian crises, strained hospitals, and emergency repairs, with winter energy shortages and civilian infrastructure damage worsening nationwide.

 

Key Points

Strikes on energy infrastructure causing blackouts, service disruption, and heightened humanitarian risk in winter.

✅ Missile and drone strikes cripple plants, substations, and lines

✅ Blackouts disrupt water, heating, hospitals, and critical services

✅ Emergency repairs, generators, and aid mitigate winter shortages

 

Ukraine's energy infrastructure remains a primary target in Russia's ongoing invasion, with a recent wave of missile strikes causing power outages in western regions and disrupting critical services across the country. These attacks have devastating humanitarian consequences, leaving millions of Ukrainians without heat, water, and electricity as winter approaches.


Systematic Targeting of Energy Infrastructure

Russia's strategy of deliberately targeting Ukraine's power grid marks a significant escalation, directly affecting the lives of civilians. Power plants, substations, and transmission lines have been hit with missiles and drones, with the latest strikes in late April causing blackouts in cities across Ukraine, including the capital, Kyiv, as the country fights to keep the lights on amid relentless bombardment.


Humanitarian Catastrophe Looms

The damage to Ukraine's electrical system hinders essential services like water supply, sewage treatment, and heating. Hospitals and other critical facilities struggle to operate without reliable power. With winter around the corner, the ongoing attacks threaten a humanitarian catastrophe even as authorities outline plans to keep the lights on this winter for vulnerable communities.


Ukrainian Resolve Remains Unbroken

Despite the devastation, Ukrainian engineers and workers race against time to repair damaged infrastructure and restore power as quickly as possible, while communities adopt new energy solutions to overcome blackouts to maintain essential services. The nation's energy workers have been hailed as heroes for their tireless efforts to keep the lights on amidst relentless attacks. Officials have urged civilians to reduce energy consumption whenever possible to alleviate strain on the fragile grid.


International Condemnation and Support

The systematic attacks on Ukraine's power grid have been widely condemned by the international community.  Western nations have accused Russia of war crimes, highlighting the deliberate targeting of civilian infrastructure. Aid organizations and countries are coordinating efforts to provide emergency power supplies, including generators and transformers, to help Ukraine mitigate the immediate crisis, even as the U.S. ended support for grid restoration in a recent policy shift.


Implications Beyond Ukraine

The humanitarian crisis unfolding in Ukraine due to power grid attacks carries implications far beyond its borders. The disruption of energy supplies could lead to further instability in neighbouring countries dependent on Ukraine's power exports, although officials say electricity reserves are sufficient to prevent scheduled outages if attacks subside. Additionally, a surge in Ukrainian refugees fleeing the deteriorating conditions could put a strain on resources within the European Union.


War Crimes Allegations

International human rights organizations are documenting evidence of Russia's deliberate attacks on Ukraine's civilian infrastructure. Human Rights Watch (HRW) has stated that Russia's targeting of power stations could violate the laws of war and amount to war crimes. This documentation will be crucial for holding Russia accountable for its actions in the future.


Uncertain Future for Ukraine's Power Supply

The long-term consequences of Russia's sustained attacks on Ukraine's power grid remain uncertain. While Ukrainian workers demonstrate incredible resilience, the sheer scale of repeated damage may eventually overwhelm their ability to keep pace with repairs, and, as winter looms over the battlefront, electricity is civilization for frontline communities. Rebuilding destroyed infrastructure could take years and cost billions, a daunting task for a nation already ravaged by war.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.