California power grid cleared for renewable power

By Reuters


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The California power grid manager praised a decision taken by the U.S. Federal Energy Regulatory Commission FERC designed to alleviate bottlenecks in connecting new power generation projects to the transmission grid in California.

Related News

Ameren, Safe Electricity urge safety near downed lines

Downed Power Line Vehicle Safety: Follow stay-in-the-car protocol, call 911, avoid live wires and utility poles, and use the bunny hop to escape only for fire. Electrical hazards demand emergency response caution.

 

Key Points

Stay in the car, call 911, and use a bunny hop escape only if fire threatens during downed power line incidents.

✅ Stay in vehicle; tell bystanders to keep back and call 911.

✅ Exit only for fire; jump clear and bunny hop away.

✅ Treat all downed lines as live; avoid paths to ground.

 

Ameren Illinois and Safe Electricity are urging the public to stay in their cars and call 911 in the event of an accident involving a power pole that brings down power lines on or around the car.

In a media simulation Tuesday at the Ameren facility on West Lafayette Avenue, Ameren Illinois employees demonstrated the proper way to react if a power line has fallen on or around a vehicle, as some utilities consider on-site staffing measures during outbreaks. Although the situation might seem rare, Illinois motorists alone hit 3,000 power poles each year, said Krista Lisser, communications director for Safe Energy.

“We want to get the word out that, if you hit a utility pole and a live wire falls on your vehicle, stay in your car,” Lisser said. “Our first reaction is we panic and think we need to get out, a sign of the electrical knowledge gap many people have. That’s not the case, you need to stay in because, when that live wire comes down, electricity is all around you. You may not see it, it may not arc, it may not flash, you may not know if there’s electricity there.”

Should someoneinvolved in such an accident see a good Samaritan attempting to help, he should try to tell the would-be rescuer to stay back to prevent injury to the Samaritan, Ameren Illinois Communications Executive Brian Bretsch said.

“We have seen instances where someone comes up and wants to help you,” Bretsch said. “You want to yell, ‘Please stay away from the vehicle. Everyone is OK. Please stay away.’ You’ll see … instances every now and then where the Samaritan will come up, create that path to ground and get injured, and there are also climbers seeking social media glory who put themselves at risk.”

The only instance in which one should exit a car in the vicinity of a downed wire is if the vehicle is on fire and there is no choice but to exit. In that situation, those in the car should “bunny hop” out of the car by jumping from the car without touching the car and the ground at the same time, Bretsch and Lisser said.

After the initial jump, those escaping the vehicle should continue jumping with both feet together and hands tucked in and away from danger until they are safely clear of the downed wire.

It’s important for everyone to be informed, because an encounter with a live wire could easily result in serious injury, as in the Hydro One worker injury case, or death, Lisser said.

“They’re so close to our roads, especially in our rural communities, that it’s quite a common occurrence,” Lisser said. “Just stay away from (downed lines), especially after storms and amid grid oversight warnings that highlight reliability risks … Always treat a downed line as a live wire. Never assume the line is dead.”

 

Related News

View more

Egypt, Eni ink MoU on hydrogen production projects

Egypt-ENI Hydrogen MoU outlines joint feasibility studies for green and blue hydrogen using renewable energy, carbon capture, and CO2 storage, targeting domestic demand, exports, and net-zero goals within Egypt's energy transition.

 

Key Points

A pact to study green and blue hydrogen in Egypt, leveraging renewables, CO2 storage, and export/demand pathways.

✅ Feasibility study for green and blue hydrogen projects

✅ Uses renewables, SMR, carbon capture, and CO2 storage

✅ Targets local demand, exports, and net-zero alignment

 

The Egyptian Electricity Holding Company (EEHC) and the Egyptian Natural Gas Holding Company (EGAS) signed a memorandum of understanding (MoU) with the Italian energy giant Eni to assess the technical and commercial feasibility of green and blue hydrogen production projects in Egypt, which many see as central to power companies' future strategies worldwide today.

Under the MoU, a study will be conducted to assess joint projects for the production of green hydrogen using electricity generated from renewable energy and supported by regional electricity interconnections where relevant, and blue hydrogen using the storage of CO2 in depleted natural gas fields, according to a statement by the Ministry of Petroleum on Thursday.

The study will also estimate the potential local market consumption of hydrogen and export opportunities, taking cues from Ontario's hydrogen economy proposal to align electricity rates for growth.

This agreement is part of Eni's objective to achieve zero net emissions by 2050 and Egypt's strategy towards diversifying the energy mix and developing hydrogen projects in collaboration with major international companies, taking note of Italy's green hydrogen initiatives in Sicily as a comparable effort.

It signed the deal with Egyptian Natural Gas Holding (EGAS) and Egyptian Electricity Holding Co. (EEHC).

The companies will carry out a joint study on producing renewable energy powered green hydrogen, informed by electrolyzer investments in similar projects, where applicable. They will also work on blue hydrogen. This involves reforming natural gas and capturing the resulting CO2, in this instance in depleted natural gas fields.

The study will also consider domestic hydrogen use and export options, including funding models like the Hydrogen Innovation Fund now in Ontario.

Eni said the MoU was in line with its plans to eliminate net emissions and emissions cancel emission intensity by 2050. The company noted the agreement was in line with Egypt’s plan for the energy transition, in which it pursues hydrogen plans with major international companies, alongside broader clean-tech collaboration such as Tesla cooperation discussions in Dubai, to accelerate progress.

 

Related News

View more

How Energy Use Has Evolved Throughout U.S. History

U.S. Energy Transition traces the shift from coal and oil to natural gas, nuclear power, and renewables like wind and solar, driven by efficiency, grid modernization, climate goals, and economic innovation.

 

Key Points

The U.S. Energy Transition is the shift from fossil fuels to cleaner power, driven by tech, policy, and markets.

✅ Shift from coal and oil to gas, nuclear, wind, and solar

✅ Enabled by grid modernization, storage, and efficiency

✅ Aims to cut emissions while ensuring reliability and affordability

 

The evolution of energy use in the United States is a dynamic narrative that reflects technological advancements, economic shifts, environmental awareness, and societal changes over time. From the nation's early reliance on wood and coal to the modern era dominated by oil, natural gas, and renewable sources, the story of energy consumption in the U.S. is a testament to innovation and adaptation.

Early Energy Sources: Wood and Coal

In the early days of U.S. history, energy needs were primarily met through renewable resources such as wood for heating and cooking. As industrialization took hold in the 19th century, coal emerged as a dominant energy source, fueling steam engines and powering factories, railways, and urban growth. The widespread availability of coal spurred economic development and shaped the nation's infrastructure.

The Rise of Petroleum and Natural Gas

The discovery and commercialization of petroleum in the late 19th century transformed the energy landscape once again. Oil quickly became a cornerstone of the U.S. economy, powering transportation, industry, and residential heating, and informing debates about U.S. energy security in policy circles. Concurrently, natural gas emerged as a significant energy source, particularly for heating and electricity generation, as pipelines expanded across the country.

Electricity Revolution

The 20th century witnessed a revolution in electricity generation and consumption, and understanding where electricity comes from helps contextualize how systems evolved. The development of hydroelectric power, spurred by projects like the Hoover Dam and Tennessee Valley Authority, provided clean and renewable energy to millions of Americans. The widespread electrification of rural areas and the proliferation of appliances in homes and businesses transformed daily life and spurred economic growth.

Nuclear Power and Energy Diversification

In the mid-20th century, nuclear power emerged as a promising alternative to fossil fuels, promising abundant energy with minimal greenhouse gas emissions. Despite concerns about safety and waste disposal, nuclear power plants became a significant part of the U.S. energy mix, providing a stable base load of electricity, even as the aging U.S. power grid complicates integration of variable renewables.

Renewable Energy Revolution

In recent decades, the U.S. has seen a growing emphasis on renewable energy sources such as wind, solar, and geothermal power, yet market shocks and high fuel prices alone have not guaranteed a rapid green revolution, prompting broader policy and investment responses. Advances in technology, declining costs, and environmental concerns have driven investments in clean energy infrastructure and policies promoting renewable energy adoption. States like California and Texas lead the nation in wind and solar energy production, demonstrating the feasibility and benefits of transitioning to sustainable energy sources.

Energy Efficiency and Conservation

Alongside shifts in energy sources, improvements in energy efficiency and conservation have played a crucial role in reducing per capita energy consumption and greenhouse gas emissions. Energy-efficient appliances, building codes, and transportation innovations have helped mitigate the environmental impact of energy use while reducing costs for consumers and businesses, and weather and economic factors also influence demand; for example, U.S. power demand fell in 2023 on milder weather, underscoring the interplay between efficiency and usage.

Challenges and Opportunities

Looking ahead, the U.S. faces both challenges and opportunities in its energy future, as recent energy crisis effects ripple across electricity, gas, and EVs alike. Addressing climate change requires further investments in renewable energy, grid modernization, and energy storage technologies. Balancing energy security, affordability, and environmental sustainability remains a complex task that requires collaboration between government, industry, and society.

Conclusion

The evolution of energy use throughout U.S. history reflects a continuous quest for innovation, economic growth, and environmental stewardship. From wood and coal to nuclear power and renewables, each era has brought new challenges and opportunities in meeting the nation's energy needs. As the U.S. transitions towards a cleaner and more sustainable energy future, leveraging technological advancements and embracing policy solutions, amid debates over U.S. energy dominance, will be essential in shaping the next chapter of America's energy story.

 

Related News

View more

Sask. Party pledges 10% rebate on SaskPower electricity bills

SaskPower 10% Electricity Rebate promises one-year bill relief for households, farms, businesses, hospitals, schools, and universities in Saskatchewan, boosting affordability amid COVID-19, offsetting rate hikes, and countering carbon tax impacts under Scott Moe's plan.

 

Key Points

One-year 10% SaskPower rebate lowering bills for residents, farms, and institutions, funded by general revenue.

✅ Applies automatically to all customers for 12 months from Dec 2020.

✅ Average savings: $215 residential; $845 farm; broad sector coverage.

✅ Cost $261.6M, paid from the general revenue fund; separate from carbon tax.

 

Saskatchewan Party leader Scott Moe says SaskPower customers can expect a one-year, 10 per cent rebate on electricity if they are elected government.

Moe said the pledge aims to make life more affordable for people, including through lower electricity rates initiatives seen in other provinces. The rate would apply to everyone, including residential customers, farmers, businesses, hospitals, schools and universities.

The plan, which would cost government $261.6 million, expects to save the average residential customer $215 over the course of the year and the average farm customer $845.  

“This is a very equitable way to ensure that we are not only providing that opportunity for those dollars to go back into our economy and foster the economic recovery that we are working towards here, in Saskatchewan, across Canada and around the globe, but it also speaks to the affordability for our Saskatchewan families, reducing the dollars a day off to pay for their for their power bill,” Moe said.

The rebate would be applied automatically to all SaskPower bills for 12 months, starting in December 2020. 

Moe said residential customers who are net metering and generating their own power, such as solar power, would receive a $215 rebate over the 12-month period, which is the equivalent of the average residential rebate.

The $261.6 million in costs would be covered by the government’s general revenue fund.   

The Saskatchewan NDP said the proposed reduction is "a big change in direction from the Sask. Party’s long history of making life more expensive for Saskatchewan families." and recently took aim at a SaskPower rate hike approval as part of that critique.

Trent Wotherspoon, NDP candidate for Regina Rosemont and former finance critic, called the pledge criticized the one year time frame and said Saskatchewan people need long term, reliable affordability, noting that the Ontario-Quebec hydro deal has not reduced hydro bills for consumers. Something, he said, is reflected in the NDP plan.

“We've already brought about announcements that bring about affordability, such as the break on SGI auto insurance that'll happen, year after year after year, affordable childcare which has been already announced and committed to things like a decent minimum wage instead of having the lowest minimum wage in Canada,” Wotherspoon said.

The NDP pointed out SaskPower bills have increased by 57 per cent since 2007 for families with an average household income of $75,000, while Nova Scotia's 14% rate hike was recently approved by its regulator.

It said the average bill for such household was $901 in 2007-08 and is now $1,418 in 2019-20, while in neighbouring provinces Manitoba rate increases of 2.5 per cent annually have also been proposed for three years.

"This is on top of the PST increases that the Sask. Party put on everyday families – costing them more than $700 a year," the NDP said.

Moe took aim at the federal Liberal government’s carbon tax, citing concerns that electricity prices could soar under national policies.

He said if the Saskatchewan government wins its court fight against Ottawa, all SaskPower customers can expect to save an additional $150 million per year, and he questioned the federal 2035 net-zero electricity grid target in that context.

“As it stands right now, the Trudeau government plans to raise the carbon tax from $30 to $40 a tonne on Jan. 1,” Moe said. “Trudeau plans to raise taxes and your SaskPower bill, in the middle of a pandemic.  The Saskatchewan Party will give you a break by cutting your power bill.”

 

Related News

View more

Dubai Planning Large-Scale Solar Powered Hydrogen Production

Dubai Green Hydrogen advances electrolysis at the Mohammed Bin Rashid Al Maktoum Solar Park, with DEWA and Siemens enabling clean energy storage, re-electrification, and fuel-cell mobility for Expo 2020 Dubai and public transport.

 

Key Points

Dubai Green Hydrogen is a DEWA-Siemens project making solar hydrogen for storage, mobility, and reelectrification.

✅ Electrolysis at Mohammed Bin Rashid Al Maktoum Solar Park

✅ Partners: DEWA and Siemens; public-private demonstration plant

✅ Hydrogen for buses, re-electrification, and energy storage

 

Something you hear frequently if you are a clean tech aficionado is that excess solar and wind power can be used to split water into oxygen and hydrogen. The Dubai Supreme Council of Energy, the 2020 Dubai Higher Committee and the Dubai Electricity and Water Authority broke ground in early February on a solar power hydrogen electrolysis facility located in the Mohammed Bin Rashid Al Maktoum Solar Park, and related initiatives like the Solar Decathlon Middle East underscore Dubai's clean energy focus. Sheikh Ahmed bin Saeed Al Maktoum, chairman of the Dubai Supreme Council of Energy and chairman of the Expo 2020 Dubai Higher Committee, participated in the groundbreaking ceremony, according to a report by Khaleej Times.

Saeed Mohammed Al Tayer, CEO of DEWA, said at the groundbreaking ceremony the project is important to understanding the limits of green hydrogen technology and how it can contribute to the UAE’s vision of clean energy, and aligns with DEWA's latest renewable initiatives now progressing in the emirate. “This pioneering project is a role model for strategic partnerships between the public and private sectors. It will contribute to developing the green economy concept in the UAE and explore the potential of green hydrogen technology. The hydrogen produced at the facility will be stored and deployed for re-electrification, transportation and other uses.”

Siemens is providing much of the technology that will be used at the demonstration facility, while DEWA expands its China outreach to woo renewable energy firms that can contribute to the ecosystem. Joe Kaeser, president and CEO of Siemens, said the UAE was the perfect location for Siemens to test the technology, building on advances in offshore green hydrogen the company is pursuing. One of the primary uses of the hydrogen produced will be to power Dubai’s public transportation system.

“We are aware of the stress that is placed on vehicles in this region due to the high levels of heat; with hydrogen cells, you are not putting as much strain on the vehicle and that improves its longevity,” Kaeser said. “However, this is only the first step and we are eager to explore more ways in which we can adapt the technology to other sectors. The interest from various companies and partners has been immense and we are eager to work with all interested parties.”

“Dewa, Expo 2020 Dubai and Siemens are working together to help realize His Highness Sheikh Mohammed bin Rashid Al Maktoum, Vice-President and Prime Minister of the UAE and Ruler of Dubai’s, vision to identify new energy resources and provide sustainable power as part of a balanced approach that prioritizes the environment. Our aim is to make Dubai a model of energy efficiency and safety,” said Sheikh Ahmed.

Expo 2020 Dubai intends to use the hydrogen generated at the facility to transport visitors to the Expo 2020 Dubai and the Mohammed bin Rashid Al Maktoum Solar Park, reflecting regional momentum such as Saudi Arabia's clean energy plans over the next decade, in hydrogen fuel cell powered vehicles. Live data of the green hydrogen electrolysis will be displayed at Expo 2020 Dubai to help inform broader efforts like hydrogen hubs in the United States.

 

Related News

View more

Ontario Breaks Ground on First Small Modular Nuclear Reactor

Ontario SMR BWRX-300 leads Canada in next-gen nuclear energy at Darlington, with GE Vernova and Hitachi, delivering clean, reliable power via modular design, passive safety, scalability, and lower costs for grid integration.

 

Key Points

Ontario SMR BWRX-300 is a 300 MW modular boiling water reactor at Darlington with passive safety and clean power.

✅ 300 MW BWR supplies power for about 300,000 homes

✅ Passive safety enables safe shutdown without external power

✅ Modular design reduces costs and speeds grid integration

 

Ontario has initiated the construction of Canada's first small modular nuclear reactor (SMR), supported by OPG's SMR commitment to deployment, marking a significant milestone in the province's energy strategy. This development positions Ontario at the forefront of next-generation nuclear technology within the G7 nations.

The project, known as the Darlington New Nuclear Project, is being led by Ontario Power Generation (OPG) in collaboration with GE Vernova and Hitachi Nuclear Energy, and through its OPG-TVA partnership on new nuclear technology development. The chosen design is the BWRX-300, a 300-megawatt boiling water reactor that is approximately one-tenth the size and complexity of traditional nuclear reactors. The first unit is expected to be operational by 2029, with plans for additional units to follow.

Each BWRX-300 reactor is projected to supply electricity to about 300,000 homes, contributing to Ontario's efforts, which include the decision to refurbish Pickering B for additional baseload capacity, to meet the anticipated 75% increase in electricity demand by 2050. The compact design of the SMR allows for easier integration into existing infrastructure, reducing the need for extensive new transmission lines.

The economic impact of the project is substantial. The construction of four such reactors is expected to create up to 18,000 jobs and contribute approximately $38.5 billion CAD to the Canadian economy, reflecting the economic benefits of nuclear projects over 65 years. The modular nature of SMRs also allows for scalability, with each additional unit potentially reducing costs through economies of scale.

Safety is a paramount consideration in the design of the BWRX-300. The reactor employs passive safety features, meaning it can safely shut down without the need for external power or operator intervention. This design enhances the reactor's resilience to potential emergencies, aligning with stringent regulatory standards.

Ontario's commitment to nuclear energy is further demonstrated by its plans for four SMRs at the Darlington site. This initiative reflects a broader strategy to diversify the province's energy mix, incorporating clean and reliable power sources to complement renewable energy efforts.

While the development of SMRs in Ontario is a significant step forward, it also aligns with the Canadian nuclear initiative positioning Canada as a leader in the global nuclear energy landscape. The successful implementation of the BWRX-300 could serve as a model for other nations exploring advanced nuclear technologies.

Ontario's groundbreaking work on small modular nuclear reactors represents a forward-thinking approach to energy generation. By embracing innovative technologies, the province is not only addressing future energy demands but also, through the Pickering NGS life extension, contributing to the global transition towards sustainable and secure energy solutions.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.