India targets 10,500 megawatts of wind power

By Industrial Info Resources


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
In the span of six months, the Directorate of Industries of the western Indian state of Maharashtra has given its consent for land acquisition for wind power generation projects with a combined capacity of 100 megawatts (MW).

While several states in India are promoting power generation projects, the focus is not only on increasing power generation capacity, but also on harnessing renewable sources of energy for power projects. Since February 2008, four companies have secured land, estimated to be over 258 hectares, for their wind projects in Maharashtra.

Reliance Innoventures Private Limited, a part of the Reliance-Anil Dhirubhai Ambani Group, plans to set up a 45-MW wind power project at Chandrapur. Jaiprakash Associates will develop a 24-MW windfarm near Sholapur. Theolia Wind Energy Private Limited will set up a 20-MW windfarm at Sangli. Naman Developers, primarily an infrastructure firm, is building a 15-MW wind power project near Nasik.

Applications for three more power projects with a total capacity of 148 MW, including a 93-MW windfarm, are still pending with the state. The department is actively expediting the process by clearing land purchase applications for major projects within a record 15 days for each proposal. After securing clearance from the Directorate of Industries, each investor will have to obtain an infrastructure and feasibility clearance from the Maharashtra Energy Development Agency, which oversees development of renewable energy projects and monitors energy conservation in the state.

India has an estimated wind power potential of 45,000 MW, with Maharashtra accounting for 4,584 MW of this total. As of March 31, 2008, India has a total installed wind power capacity of 8,696 MW, while Maharashtra has 1,756 MW of installed capacity. India aims to achieve a target of 10,500 MW of installed wind power capacity by the end of the Eleventh Five-Year Plan (2007-2012). India is the world's fourth largest player in wind generation after Germany, the U.S. and Spain.

The Indian government is promoting commercial wind power projects in the country by offering incentives such as benefits of accelerated depreciation, concessions on import duty for wind power generator systems, exemption from excise duty, 10-year tax holidays, and availability of term loans from the Indian Renewable Energy Development Agency. The Centre for Wind Energy Technology is conducting a Wind Resource Assessment Program and has covered 25 states and union territories to identify potential locations for future wind power projects.

Domestic majors in other industries and sectors are also making forays into the power sector with primary interest in the wind energy sector. Gujarat Fluorochemicals Limited, the largest refrigeration gas producer in the country, plans to invest more than $1.5 billion during the next five years to develop an installed capacity of 1,000 MW of wind power. It has already invested $40 million in a pilot project at Gude Panchgani in Maharashtra.

It has set up a 23.1 MW windfarm at the site and has entered into an agreement with the Maharashtra State Electricity Board to supply electricity from the wind farm for a period of 13 years. JCT Limited, a textile and filament yarn producer, plans to diversify into the wind power sector through a 50:50 joint venture with Dakshidin Corporation, which manufactures low-wind-speed windmills.

R.S. India Group is setting up India's first integrated renewable energy farm with an investment of $175 million at Patan in Satara, Maharashtra. The company has already acquired 600 acres of land for Phase I of the project, during which it will develop an installed capacity of 100 MW of wind power and 5 MW of solar power and will also extract bio-diesel from a 225-hectare plantation of jatropha (a biofuel crop). In Phase II of the project, the group will develop an additional installed capacity of 200 MW of wind power and plans to cultivate jatropha on an additional 225 hectares of land.

Suzlon Energy Limited, Asia's largest wind turbine manufacturer, operates the 201-MW Vankusawade Wind Park in Satara, Maharashtra, and a 58-MW wind farm in the Western Ghats. It is also setting up a $60 million wind power project in China. The company has an annual production capacity of 600 MW of wind power. PTC India Limited, a power trading solutions provider, recently commissioned a 6-MW windfarm project comprising four Suzlon machines of 1.5 MW each at Sinnar, Nasik.

Conducive government policies, untapped market potential and availability of equipment at competitive prices are factors that have lured foreign investment into this sector. Hydro Tasmania and China Light & Power (CLP) are jointly developing a 50-MW wind farm in Maharashtra.

CLP is also developing wind farms in Gujarat and Karnataka with respective capacities of 100 MW and 82 MW, with a total investment of $248 million. The Asian Development Bank will partly fund the projects by extending a loan of $113 million to the Indian subsidiary of CLP Holdings.

Related News

Tracking Progress on 100% Clean Energy Targets

100% Clean Energy Targets drive renewable electricity, decarbonization, and cost savings through state policies, CCAs, RECs, and mandates, with timelines and interim goals that boost jobs, resilience, and public health across cities, counties, and utilities.

 

Key Points

Policies for cities and states to reach 100% clean power by set dates, using mandates, RECs, and interim goals.

✅ Define eligible clean vs renewable resources

✅ Mandate vs goal framework with enforcement

✅ Timelines with interim targets and escape clauses

 

“An enormous amount of authority still rests with the states for determining your energy future. So we can build these policies that will become a postcard from the future for the rest of the country,” said David Hochschild, chair of the California Energy Commission, speaking last week at a UCLA summit on state and local progress toward 100 percent clean energy.

According to a new report from the UCLA Luskin Center for Innovation, 13 states, districts and territories, as well as more than 200 cities and counties, with standout clean energy purchases by Southeast cities helping drive momentum, have committed to a 100 percent clean electricity target — and dozens of cities have already hit it.

This means that one of every three Americans, or roughly 111 million U.S. residents representing 34 percent of the population, live in a community that has committed to or has already achieved 100 percent clean electricity, including communities like Frisco, Colorado that have set ambitious targets.

“We’re going to look back on this moment as the moment when local action and state commitments began to push the entire nation toward this goal,” said J.R. DeShazo, director of the UCLA Luskin Center for Innovation.

Not all 100 percent targets are alike, however. The report notes that these targets vary based on 1) what resources are eligible, 2) how binding the 100 percent target is, and 3) how and when the target will be achieved.

These distinctions will carry a lot of weight as the policy discussion shifts from setting goals to actually meeting targets. They also have implications for communities in terms of health benefits, cost savings and employment opportunities.

 

100% targets come in different forms

One key attribute is whether a target is based on "renewable" or "clean" energy resources. Some 100 percent targets, like Hawaii’s and Rhode Island’s 2030 plan, are focused exclusively on renewable energy, or sources that cannot be depleted, such as wind, solar and geothermal. But most jurisdictions use the broader term “clean energy,” which can also include resources like large hydroelectric generation and nuclear power.

States also vary in their treatment of renewable energy certificates, used to track and assign ownership to renewable energy generation and use. Unbundled RECs allow for the environmental attributes of the renewable energy resource to be purchased separately from the physical electricity delivery.

The binding nature of these targets is also noteworthy. Seven states, as well as Puerto Rico and the District of Columbia, have passed 100 percent clean energy transition laws. Of the jurisdictions that have passed 100 percent legislation, all but one specifies that the target is a “mandate,” according to the report. Nevada is the only state to call the target a “goal.”

Governors in four other states have signed executive orders with 100 percent clean energy goals.

Target timelines also vary. Washington, D.C. has set the most ambitious target date, with a mandate to achieve 100 percent renewable electricity by 2032. Other states and cities have set deadline years between 2040 and 2050. All "100 percent" state laws, and some city and county policies, also include interim targets to keep clean energy deployment on track.

In addition, some locations have included some form of escape clause. For instance, Salt Lake City, which last month passed a resolution establishing a goal of powering the county with 100 percent clean electricity by 2030, included “exit strategies” in its policy in order to encourage stakeholder buy-in, said Mayor Jackie Biskupski, speaking last week at the UCLA summit.

“We don’t think they’ll get used, but they’re there,” she said.

Other locales, meanwhile, have decided to go well beyond 100 percent clean electricity. The State of California and 44 cities have set even more challenging targets to also transition their entire transportation, heating and cooling sectors to 100 percent clean energy sources, and proposals like requiring solar panels on new buildings underscore how policy can accelerate progress across sectors.

Businesses are simultaneously electing to adopt more clean and renewable energy. Six utilities across the United States have set their own 100 percent clean or carbon-free electricity targets. UCLA researchers did not include populations served by these utilities in their analysis of locations with state and city 100 percent clean commitments.

 

“We cannot wait”

All state and local policies that require a certain share of electricity to come from renewable energy resources have contributed to more efficient project development and financing mechanisms, which have supported continued technology cost declines and contributed to a near doubling of renewable energy generation since 2008.

Many communities are switching to clean energy in order to save money, now that the cost calculation is increasingly in favor of renewables over fossil fuels, as more jurisdictions get on the road to 100% renewables worldwide. Additional benefits include local job creation, cleaner air and electricity system resilience due to greater reliance on local energy resources.

Another major motivator is climate change. The electricity sector is responsible for 28 percent of U.S. greenhouse gas emissions, second only to transportation. Decarbonizing the grid also helps to clean up the transportation sector as more vehicles move to electricity as their fuel source.

“The now-constant threat of wildfires, droughts, severe storms and habitat loss driven by climate change signals a crisis we can no longer ignore,” said Carla Peterman, senior vice president of regulatory affairs at investor-owned utility Southern California Edison. “We cannot wait and we should not wait when there are viable solutions to pursue now.”

Prior to joining SCE on October 1, Peterman served as a member of the California Public Utilities Commission, which implements and administers renewable portfolio standard (RPS) compliance rules for California’s retail sellers of electricity. California’s target requires 60 percent of the state’s electricity to come from renewable energy resources by 2030, and all the state's electricity to come from carbon-free resources by 2045.  

 

How CCAs are driving renewable energy deployment

One way California communities are working to meet the state’s ambitious targets is through community-choice aggregation, especially after California's near-100% renewable milestone underscored what's possible, via which cities and counties can take control of their energy procurement decisions to suit their preferences. Investor-owned utilities no longer purchase energy for these jurisdictions, but they continue to operate the transmission and distribution grid for all electricity users.                           

A second paper released by the Luskin Center for Innovation in recent days examines how community-choice aggregators are affecting levels of renewable energy deployment in California and contributing to the state’s 100 percent target.

The paper finds that 19 CCAs have launched in California since 2010, growing to include more than 160 towns, cities and counties. Of those communities, 64 have a 100 percent renewable or clean energy policy as their default energy program.

Because of these policies, the UCLA paper finds that “CCAs have had both direct and indirect effects that have led to increases in the clean energy sold in excess of the state’s RPS.”

From 2011 to 2018, CCAs directly procured 24 terawatt-hours of RPS-eligible electricity, 11 TWh of which have been voluntary or in excess of RPS compliance, according to the paper.

The formation of CCAs has also had an indirect effect on investor-owned utilities. As customers have left investor-owned utilities to join CCAs, the utilities have been left holding contracts for more renewable energy than they need to comply with California’s clean energy targets, amid rising solar and wind curtailments that complicate procurement decisions. UCLA researchers estimate that this indirect effect of CCA formation has left IOUs holding 13 terawatt-hours in excess of RPS requirements.

The paper concludes that CCAs have helped to accelerate California’s ability to meet state renewable energy targets over the past decade. However, the future contributions of CCAs to the RPS are more uncertain as communities make new power-purchasing decisions and utilities seek to reduce their excess renewable energy contracts.

“CCAs offer a way for communities to put their desire for clean energy into action. They're growing fast in California, one of only eight states where this kind of mechanism is allowed," said UCLA's Kelly Trumbull, an author of the report. "State and federal policies could be reformed to better enable communities to meet local demand for renewable energy.”

 

Related News

View more

Annual U.S. coal-fired electricity generation will increase for the first time since 2014

U.S. coal-fired generation 2021 rose as higher natural gas prices, stable coal costs, and a recovering power sector shifted the generation mix; capacity factors rebounded despite low coal stocks and ongoing plant retirements.

 

Key Points

Coal output rose 22% on high gas prices and higher capacity factors; a 5% decline is expected in 2022.

✅ Natural gas delivered cost averaged $4.93/MMBtu, more than double 2020

✅ Coal capacity factor rose to ~51% from 40% in 2020

✅ 2022 coal generation forecast to fall about 5%

 

We expect 22% more U.S. coal-fired generation in 2021 than in 2020, according to our latest Short-Term Energy Outlook (STEO). The U.S. electric power sector has been generating more electricity from coal-fired power plants this year as a result of significantly higher natural gas prices and relatively stable coal prices, even as non-fossil sources reached 40% of total generation. This year, 2021, will yield the first year-over-year increase in coal generation in the United States since 2014, highlighted by a January power generation jump earlier in the year.

Coal and natural gas have been the two largest sources of electricity generation in the United States. In many areas of the country, these two fuels compete to supply electricity based on their relative costs and sensitivity to policies and gas prices as well. U.S. natural gas prices have been more volatile than coal prices, so the cost of natural gas often determines the relative share of generation provided by natural gas and coal.

Because natural gas-fired power plants convert fuel to electricity more efficiently than coal-fired plants, record natural gas generation has at times underscored that advantage, and natural gas-fired generation can have an economic advantage even if natural gas prices are slightly higher than coal prices. Between 2015 and 2020, the cost of natural gas delivered to electric generators remained relatively low and stable. This year, however, natural gas prices have been much higher than in recent years. The year-to-date delivered cost of natural gas to U.S. power plants has averaged $4.93 per million British thermal units (Btu), more than double last year’s price.

The overall decline in electricity demand in 2020 and record-low natural gas prices led coal plants to significantly reduce the percentage of time that they generated power. In 2020, the utilization rate (known as the capacity factor) of U.S. coal-fired generators averaged 40%. Before 2010, coal capacity factors routinely averaged 70% or more. This year’s higher natural gas prices have increased the average coal capacity factor to about 51%, which is almost the 2018 average, a year when wind and solar reached 10% nationally.

Although rising natural gas prices have resulted in more U.S. coal-fired generation than last year, this increase in coal generation will most likely not continue as solar and wind expand in the generation mix. The electric power sector has retired about 30% of its generating capacity at coal plants since 2010, and no new coal-fired capacity has come online in the United States since 2013. In addition, coal stocks at U.S. power plants are relatively low, and production at operating coal mines has not been increasing as rapidly as the recent increase in coal demand. For 2022, we forecast that U.S. coal-fired generation will decline about 5% in response to continuing retirements of generating capacity at coal power plants and slightly lower natural gas prices.

 

Related News

View more

UK electricity and gas networks making ‘unjustified’ profits

UK Energy Network Profits are under scrutiny as Ofgem price controls, Citizens Advice claims, and National Grid margins spark debate over monopolies, allowed returns, consumer bills, rebates, and future investment under tougher regulation.

 

Key Points

UK Energy Network Profits are returns set by Ofgem for regulated grid operators, shaping consumer bills and investment

✅ Ofgem sets allowed returns for monopoly networks via price controls

✅ Dispute over interest rates, bond yields, and risk premiums

✅ Reforms proposed: shorter controls, tougher investor incentives

 

Companies that run Britain’s electricity and gas networks, including National Grid, are making “eye-watering” profits at the expense of households, according to a well-known consumer group.

Citizens Advice believes £7.5bn in “unjustified” profits should be returned to consumers who pay for network costs via their electricity and gas bills, with parallels seen in a deferred BC Hydro costs report abroad, although its figures have been contested by the energy industry and regulator.

Ownership of electricity and gas networks came under the spotlight in the run-up to June’s general election, after the Labour party said in its manifesto it would bring both national and regional grid infrastructure to back into public ownership, amid wider debates about grid privatization concerns elsewhere, over time.

Electricity sector privatisation began in 1990 and the gas industry was privatised in 1986. Energy network companies — which own and operate the cables and wires that help deliver electricity and gas to homes and businesses — are in effect monopolies that are regulated by Ofgem. Ofgem evaluates what their costs, including the cost of capital to finance investments, might be over an eight-year “price control” period, similar to determinations like the OEB decision on Hydro One rates in Ontario, Canada. Citizens Advice claims many of the regulator’s calculations for the most recent price control went “considerably in networks’ financial favour”.

It believes assumptions Ofgem made about factors such as the future path of interest rates and returns on government bonds were too generous, with international contrasts like power theft challenges in India illustrating different risk contexts, as was the regulator’s assessment of the risk associated with operating a network company. 

These “generous” assumptions will lead to network companies making average profit margins of 19 per cent and an average return of 10 per cent for their investors at the expense of consumers, Citizens Advice claims in a report published on Wednesday, which recommends a shorter price control period to allow for more accurate forecasting.

“Decisions made by Ofgem have allowed gas and electricity network companies to make sky-high profits that we’ve found are not justified by their performance,” said Gillian Guy, chief executive of Citizens Advice. Ofgem defended its regulatory regime, saying it helped to cut costs, improve reliability and customer satisfaction. 

“Ofgem has already cut costs to consumers by 6 per cent in the current price control and secured a rebate of over £4.5bn from network companies and is engaging with the industry to deliver further savings, with some regions seeing Ontario electricity rate reductions for businesses as well,” said Dermot Nolan, chief executive of the energy regulator.

Mr Nolan insisted the next price controls would be “tougher for investors”. The current price controls for the gas and electricity transmission networks, plus gas distribution, run until 2021 and until 2023 for local electricity distribution networks.

“While we don’t agree with its modelling and the figures it has produced, the Citizens Advice report raises some important issues about network regulation which will be addressed in the next control,” Mr Nolan said.

The Energy Networks Association, a trade body, refuted the claims of Citizens Advice, insisting that costs had fallen by 17 per cent in real terms since privatisation. The current regulatory framework was established after a public consultation, it said, adding that today’s report repeated several old claims that had previously been rejected by the Competition and Markets Authority.

“Our energy networks are among the most reliable and lowest cost in the world and their performance has never been better. In the next six years energy network companies are forecasted to deliver £45bn of investment in the UK economy,” a spokesman for the networks association added. National Grid said that since 2013 it had generated savings of £460m for bill payers.

 

Related News

View more

Alberta's Rising Electricity Prices

Alberta Last-Resort Power Rate Reform outlines consumer protection against market volatility, price spikes, and wholesale rate swings, promoting fixed-rate plans, price caps, transparency, and stable pricing mechanisms within Alberta's deregulated power market.

 

Key Points

Alberta Last-Resort Power Rate Reform seeks stable, transparent pricing and stronger consumer protections.

✅ Caps or hedges shield bills from wholesale price spikes

✅ Expand fixed-rate options and enrollment nudges

✅ Publish clear, real-time pricing and market risk alerts

 

Alberta’s electricity market is facing growing instability, with rising prices leaving many consumers struggling. The province's rate of last resort, a government-set price for people who haven’t chosen a fixed electricity plan, has become a significant concern. Due to volatile market conditions, this rate has surged, causing financial strain for households. Experts, like energy policy analyst Blake Shaffer, argue that the current market structure needs reform. They suggest creating more stability in pricing, ensuring better protection for consumers against unexpected price spikes, and addressing the flaws that lead to market volatility.

As electricity prices climb, many consumers are feeling the pressure. In Alberta, where energy deregulation is the norm in the electricity market, people without fixed-rate plans are automatically switched to the last-resort rate when their contracts expire. This price is based on fluctuating wholesale market rates, which can spike unexpectedly, leaving consumers vulnerable to sharp price increases. For those on tight budgets, such volatility makes it difficult to predict costs, leading to higher financial stress.

Blake Shaffer, a prominent energy policy expert, has been vocal about the need to address these issues. He has highlighted that while some consumers benefit from fixed-rate plans, with experts urging Albertans to lock in rates when possible, those who cannot afford them or who are unaware of their options often find themselves stuck with the unpredictable last-resort rate. This rate can be substantially higher than what a fixed-plan customer would pay, often due to rapid shifts in energy demand and supply imbalances.

Shaffer suggests that the province’s electricity market needs a restructuring to make it more consumer-friendly and less vulnerable to extreme price hikes. He argues that introducing more transparency in pricing and offering more stable options for consumers through new electricity rules could help. In addition, there could be better incentives for consumers to stay informed about their electricity plans, which would help reduce the number of people unintentionally placed on the last-resort rate.

One potential solution proposed by Shaffer and others is the creation of a more predictable and stable pricing mechanism, though a Calgary electricity retailer has urged the government to scrap an overhaul, where consumers could have access to reasonable rates that aren’t so closely tied to the volatility of the wholesale market. This could involve capping prices or offering government-backed insurance against large price fluctuations, making electricity more affordable for those who are most at risk.

The increasing reliance on market-driven prices has also raised concerns about Alberta’s energy policy changes and overall direction. As a province with a large reliance on oil and gas, Alberta’s energy sector is tightly connected to global energy trends. While this has its benefits, it also means that Alberta’s electricity prices are heavily influenced by factors outside the control of local consumers, such as geopolitical issues or extreme weather events. This makes it hard for residents to predict and plan their energy usage and costs.

For many Albertans, the current state of the electricity market feels precarious. As more people face unexpected price hikes, calls for a market overhaul continue to grow louder across Alberta. Shaffer and others believe that a new framework is necessary—one that balances the interests of consumers, the government, and energy companies, while ensuring that basic energy needs are met without overwhelming households with excessive costs.

In conclusion, Alberta’s last-resort electricity rate system is an increasing burden for many. While some may benefit from fixed-rate plans, others are left exposed to market volatility. Blake Shaffer advocates for reform to create a more stable, transparent, and affordable electricity market, one that could better protect consumers from the high risks associated with deregulated pricing. Addressing these challenges will be crucial in ensuring that energy remains accessible and affordable for all Alberta residents.

 

Related News

View more

Yukon receives funding for new wind turbines

Yukon Renewable Energy Funding backs wind turbines, grid-scale battery storage, and transmission line upgrades, cutting diesel dependence, lowering greenhouse gas emissions, and strengthening Yukon Energy's isolated grid for remote communities, local jobs, and future growth.

 

Key Points

Federal support for Yukon projects adding wind, battery storage, and grid upgrades to cut diesel use and emissions.

✅ Three 100 kW wind turbines will power Destruction Bay.

✅ 8 MW battery storage smooths peaks and reduces diesel.

✅ Mayo-McQuesten 138 kV line upgrade boosts reliability.

 

Kluane First Nation in Yukon will receive a total of $3.1 million in funding from the federal government to install and operate wind turbines that will help reduce the community’s diesel reliance.

According to a release, the community will integrate three 100-kilowatt turbines in Destruction Bay, Yukon, providing a renewable energy source for their local power grid that will reduce greenhouse gas emissions and create local jobs in the community.

A $2-million investment from Natural Resources Canada came from the Clean Energy for Rural and Remote Communities Program, part of the Government of Canada’s Investing in Canada infrastructure plan, which supports green energy solutions across jurisdictions. Crown-Indigenous Relations’ and Northern Affairs Canada also contributed a $1.1-million investment from the Northern REACHE Program.

Also, the Government of Canada announced more than $39.2 million in funding for two Yukon Energy projects that will increase the reliability of Yukon’s electrical grid, including exploration of a potential connection to the B.C. grid to bolster resiliency, and help build the robust energy system needed to support future growth. The investment comes from the government’s Green Infrastructure Stream (GIS) of the Investing in Canada infrastructure plan.

 

Project 1: Grid-scale battery storage

The federal government is investing $16.5 million in Yukon Energy’s construction of a new battery storage system in Yukon. Once completed, the 8 MW battery will be the largest grid-connected battery in the North, and one of the largest in Canada, alongside major Ontario battery projects underway.

The new battery is a critical investment in Yukon Energy’s ability to meet growing demands for power and securing Yukon’s energy future. As an isolated grid, one of the largest challenges Yukon Energy faces is meeting peak demands for power during winter months, as electrification grows with EV adoption in the N.W.T. and beyond.

When complete, the new system will store excess electricity generated during off-peak periods, complementing emerging vehicle-to-grid integration approaches, and provide Yukoners with access to more power during peak periods. This new energy storage system will create a more reliable power supply and help reduce the territory’s reliance on diesel fuel. Over the 20-year life of project, the new battery is expected to reduce carbon emissions in Yukon by more than 20,000 tonnes.

A location for the new battery energy storage system has not been identified. Yukon Energy will begin permitting of the project in 2020 with construction targeted to be complete by mid-2023.

 

Project 2: Replacing and upgrading the Mayo to McQuesten Transmission Line

Yukon Energy has received $22.7 million in federal funding to proceed with Stage 1 of the Stewart to Keno City Transmission Project – replacing and upgrading the 65 year-old transmission line between Mayo and McQuesten. The project also includes the addition of system protection equipment at the Stewart Crossing South substation. The Yukon government, through the Yukon Development Corporation, has already provided $3.5 million towards planning for the project.

Replacing the Mayo to McQuesten transmission line is critical to Yukon Energy’s ability to deliver safe and reliable electricity to customers in the Mayo and Keno regions, mirroring broader regional transmission initiatives that enhance grid resilience, and to support economic growth in Yukon. The transmission line has reached end-of-life and become increasingly unreliable for customers in the area.

The First Nation of Na-Cho Nyak Dun has expressed their support of this project. The project has also been approved by the Yukon Environmental and Socio-Economic Assessment Board.

Yukon Energy will begin replacing and upgrading the 31 km transmission line between Mayo and McQuesten in 2020. Construction is expected to be complete in late 2020. When finished, the new 138 kV transmission line will provide more reliable electricity to customers in the Mayo and Keno regions and be equipped to support industrial growth and development in the area, including the Victoria Gold Mine, with renewable power from the Yukon grid.

Planning work for the remainder of the Stewart to Keno City Transmission Project has been completed. Yukon Energy continues to explore funding opportunities that are needed to proceed with other stages of the project.

 

Related News

View more

Alberta Faces Challenges with Solar Energy Expansion

Alberta Solar Energy Expansion confronts high installation costs, grid integration and storage needs, and environmental impact, while incentives, infrastructure upgrades, and renewable targets aim to balance reliability, land use, and emissions reductions provincewide.

 

Key Points

Alberta Solar Energy Expansion is growth in solar tempered by costs, grid limits, environmental impact, and incentives.

✅ High capex and financing challenge utility-scale projects

✅ Grid integration needs storage, transmission, and flexibility

✅ Site selection must mitigate land and wildlife impacts

 

Alberta's push towards expanding solar power is encountering significant financial and environmental hurdles. The province's ambitious plans to boost solar power generation have been met with both enthusiasm and skepticism as stakeholders grapple with the complexities of integrating large-scale solar projects into the existing energy framework.

The Alberta government has been actively promoting solar energy as part of its strategy to diversify the energy mix in a province that is a powerhouse for both green energy and fossil fuels today and reduce greenhouse gas emissions. Recent developments have highlighted the potential of solar power to contribute to Alberta's clean energy goals. However, the path forward is fraught with challenges related to costs, environmental impact, and infrastructure needs.

One of the primary issues facing the solar energy sector in Alberta is the high cost of solar installations. Despite decreasing costs for solar technology in recent years, the upfront investment required for large-scale solar farms remains substantial, even as some facilities have been contracted at lower cost than natural gas in Alberta today. This financial barrier has led to concerns about the economic viability of solar projects and their ability to compete with other forms of energy, such as natural gas and oil, which have traditionally dominated Alberta's energy landscape.

Additionally, there are environmental concerns associated with the development of solar farms. While solar energy is considered a clean and renewable resource, the construction of large solar installations can have environmental implications. These include potential impacts on local wildlife habitats, land use changes, where approaches like agrivoltaics can co-locate farming and solar, and the ecological effects of large-scale land clearing. As solar projects expand, balancing the benefits of renewable energy with the need to protect natural ecosystems becomes increasingly important.

Another significant challenge is the integration of solar power into Alberta's existing energy grid. Solar energy production is variable and dependent on weather conditions, especially with Alberta's limited hydro capacity for flexibility, which can create difficulties in maintaining a stable and reliable energy supply. The need for infrastructure upgrades and energy storage solutions is crucial to address these challenges and ensure that solar power can be effectively utilized alongside other energy sources.

Despite these challenges, the Alberta government remains committed to advancing solar energy as a key component of its renewable energy strategy. Recent initiatives include financial incentives and support programs aimed at encouraging investment in solar projects and supporting a renewable energy surge that could power thousands of jobs across Alberta today. These measures are designed to help offset the high costs associated with solar installations and make the technology more accessible to businesses and homeowners alike.

Local communities and businesses are also playing a role in the growth of solar energy in Alberta. Many are exploring opportunities to invest in solar power as a means of reducing energy costs and supporting sustainability efforts and, increasingly, to sell renewable energy into the market as demand grows. These smaller-scale projects contribute to the overall expansion of solar energy and demonstrate the potential for widespread adoption across the province.

The Alberta government has also been working to address the environmental concerns associated with solar energy development. Efforts are underway to implement best practices for minimizing environmental impacts and ensuring that solar projects are developed in an environmentally responsible manner. This includes conducting environmental assessments and working with stakeholders to address potential issues before projects are approved and built.

In summary, while Alberta's solar energy initiatives hold promise for advancing the province's clean energy goals, they are also met with significant financial and environmental challenges. Addressing these issues will be crucial to the successful expansion of solar power in Alberta. The government's ongoing efforts to support solar projects through incentives and infrastructure improvements, coupled with responsible environmental practices, will play a key role in determining the future of solar energy in the province.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.