Low-voltage electrical reconditioning standards introduced

By Electricity Forum


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Electrical supply houses and contractors interested in how to recondition, or test and inspect the quality of recycled low-voltage electrical apparatus now have 40 technical standards to guide them thanks to the Professional Electrical Apparatus Recyclers League (PEARL).

Founded in 1997, PEARL is an electrical apparatus recycling trade association that creates, collects, and disseminates information, policies, procedures, and standards to ensure the proper recycling and reuse of electrical power equipment.

PEARL reconditioned electrical goods are held to a higher testing standard than new electrical apparatus because each device is tested individually rather than batch tested. PEARL reconditioned apparatus also spare the planet from thousands of tons of unnecessary waste each year, and cut the U.S.Â’ energy consumption compared to manufacturing new product.

PEARLÂ’s Low-Voltage Apparatus recycling standards are available for free to the public from the PEARL website (www.pearl1.org).

PEARLÂ’s Low-Voltage Apparatus recycling standards cover:

• Low-Voltage Disconnect Switches (1100 PEARL Standard Series)

• Low-Voltage Circuit Breakers (1200 PEARL Standard Series)

• Low-Voltage Panelboards, Switchboards & Switchgear (1300 PEARL Standard Series)

• Low-Voltage Transformers (1400 PEARL Standard Series)

• Low-Voltage Motor Control Center Buckets & Assemblies (1500 PEARL Standard Series)

• Low-Voltage Motor Control Devices (1600 PEARL Standard Series)

• Low-Voltage Wire & Cable (4100 PEARL Standard Series)

• Low-Voltage Bus Duct (4300 PEARL Standard Series)

PEARLÂ’s electrical apparatus recycling standards fall into two categories:

• Reconditioning, which includes both Test & Inspection, and Reconditioning procedures; and

• Test & Inspect Standards, which do not include reconditioning procedures and documentation.

Only electrical apparatus that comply with these standards and come from companies that meet PEARLÂ’s business, ethics, and integrity requirements qualify to carry the associated PEARL Quality Seal (blue for Reconditioned devices, green for Test & Inspect).

Today, more than 70 dealers of new, reconditioned, and surplus electrical devices are members of the PEARL trade association.

Related News

Severe heat: 5 electricity blackout risks facing the entire U.S., not just Texas

Texas power grid highlights ERCOT reliability strains from extreme heat, climate change, and low wind, as natural gas and renewables balance tight capacity amid EV charging growth, heat pumps, and blackout risk across the U.S.

 

Key Points

Texas power grid is ERCOT-run and isolated, balancing natural gas and wind amid extreme weather and electrification.

✅ Isolated from other U.S. grids, limited import support

✅ Vulnerable to extreme heat, winter storms, low wind

✅ Demand growth from EVs and heat pumps stresses capacity

 

Texas has a unique state-run power grid facing a Texas grid crisis that has raised concerns, but its issues with extreme weather, and balancing natural gas and wind, hold lessons for an entire U.S. at risk for power outages from climate change.

Grid operator the Electric Reliability Council of Texas, or ERCOT, which has drawn criticism from Elon Musk recently, called on consumers to voluntarily reduce power use on Monday when dangerous heat gripped America’s second-most populous state.

The action paid off as the Texas grid avoided blackouts — and a repeat of its winter crisis — despite record or near-record temperatures that depleted electric supplies amid a broader supply-chain crisis affecting utilities this summer, and risked lost power to more than 26 million customers. ERCOT later on Monday lifted the call for conservation.

For sure, it’s a unique situation, as the state-run power grid system runs outside the main U.S. grids. Still, all Americans can learn from Texas about the fragility of a national power grid that is expected to be challenged more frequently by hot and cold weather extremes brought on by climate change, including potential reliability improvements policymakers are weighing.

The grid will also be tested by increased demand to power electric vehicles (EVs) and conversions to electric heat pumps — all as part of a transition to a “greener” future.

 

Why is Texas different?
ERCOT, the main, but not only, Texas grid, is unique in its state-run, and not regional, format used by the rest of the country. Because it’s an energy-rich state, Texas has been able to set power prices below those seen in other parts of the country, and its independence gives it more pricing authority, while lawmakers consider market reforms to avoid blackouts. But during unusual strain on the system, such as more people blasting their air conditioners longer to combat a record heat wave, it also has no where else to turn.

A lethal winter power shortage in February 2021, during a Texas winter storm that left many without power and water, notoriously put the state and its independent utility in the spotlight when ERCOT failed to keep residents warm and pipes from bursting. Texas’s 2021 outage left more than 200 people dead and rang up $20 billion in damage. Fossil-fuel CL00, 0.80% backers pointed to the rising use of intermittent wind power, which generates 23% of Texas’s electricity. Others said natural-gas equipment was frozen under the extreme conditions.

This week, ERCOT is asking for voluntary conservation between 2 p.m. and 8 p.m. local time daily due to record high electricity demand from the projected heat wave, and also because of low wind. ERCOT said current projections show wind generation coming in at less than 10% of capacity. ERCOT stressed that no systemwide outages are expected, and Gov. Greg Abbott has touted grid readiness heading into fall, but it was acting preemptively.

A report late last year from the North American Electric Reliability Corp. (NERC) said the Texas system without upgrades could see a power shortfall of 37% in extreme winter conditions. NERC’s outlook suggested the state and ERCOT isn’t prepared for a repeat of weather extremes.

 

Related News

View more

Climate change: Greenhouse gas concentrations again break records

Rising Greenhouse Gas Concentrations drive climate change, with CO2, methane, and nitrous oxide surging; WMO data show higher radiative forcing, elevated pre-industrial baselines, and persistent atmospheric concentrations despite Paris Agreement emissions pledges.

 

Key Points

Increasing atmospheric CO2, methane, and nitrous oxide levels that raise radiative forcing and drive warming.

✅ WMO data show CO2 at 407.8 ppm in 2018, above decade average

✅ Methane and nitrous oxide surged, elevating total radiative forcing

✅ Concentrations differ from emissions; sinks absorb about half

 

The World Meteorological Organization (WMO) says the increase in CO2 was just above the average rise recorded over the last decade.

Levels of other warming gases, such as methane and nitrous oxide, have also surged by above average amounts.

Since 1990 there's been an increase of 43% in the warming effect on the climate of long lived greenhouse gases.

The WMO report looks at concentrations of warming gases in the atmosphere rather than just emissions.

The difference between the two is that emissions refer to the amount of gases that go up into the atmosphere from the use of fossil fuels, such as burning coal for coal-fired electricity generation and from deforestation.

Concentrations are what's left in the air after a complex series of interactions between the atmosphere, the oceans, the forests and the land. About a quarter of all carbon emissions are absorbed by the seas, and a similar amount by land and trees, while technologies like carbon capture are being explored to remove CO2.

Using data from monitoring stations in the Arctic and all over the world, researchers say that in 2018 concentrations of CO2 reached 407.8 parts per million (ppm), up from 405.5ppm a year previously.

This increase was above the average for the last 10 years and is 147% of the "pre-industrial" level in 1750.

The WMO also records concentrations of other warming gases, including methane and nitrous oxide, and some countries have reported declines in certain potent gases, as noted in US greenhouse gas controls reports, though global levels remain elevated. About 40% of the methane emitted into the air comes from natural sources, such as wetlands, with 60% from human activities, including cattle farming, rice cultivation and landfill dumps.

Methane is now at 259% of the pre-industrial level and the increase seen over the past year was higher than both the previous annual rate and the average over the past 10 years.

Nitrous oxide is emitted from natural and human sources, including from the oceans and from fertiliser-use in farming. According to the WMO, it is now at 123% of the levels that existed in 1750.

Last year's increase in concentrations of the gas, which can also harm the ozone layer, was bigger than the previous 12 months and higher than the average of the past decade.

What concerns scientists is the overall warming impact of all these increasing concentrations. Known as total radiative forcing, this effect has increased by 43% since 1990, and is not showing any indication of stopping.

There is no sign of a slowdown, let alone a decline, in greenhouse gases concentration in the atmosphere despite all the commitments under the Paris agreement on climate change and the ongoing global energy transition efforts," said WMO Secretary-General Petteri Taalas.

"We need to translate the commitments into action and increase the level of ambition for the sake of the future welfare of mankind," he added.

"It is worth recalling that the last time the Earth experienced a comparable concentration of CO2 was three to five million years ago. Back then, the temperature was 2-3C warmer, sea level was 10-20m higher than now," said Mr Taalas.

The UN Environment Programme will report shortly on the gap between what actions countries are taking to cut carbon, for example where Australia's emissions rose 2% recently, and what needs to be done to keep under the temperature targets agreed in the Paris climate pact.

Preliminary findings from this study, published during the UN Secretary General's special climate summit last September, indicated that emissions continued to rise during 2018, although global emissions flatlined in 2019 according to the IEA.

Both reports will help inform delegates from almost 200 countries who will meet in Madrid next week for COP25, following COP24 in Katowice the previous year, the annual round of international climate talks.

 

Related News

View more

Renewables surpass coal in US energy generation for first time in 130 years

Renewables Overtake Coal in the US, as solar, wind, and hydro expand grid share; EIA data show an energy transition accelerated by COVID-19, slashing emissions, displacing fossil fuels, and reshaping electricity generation and climate policy.

 

Key Points

It refers to the milestone where US renewable energy generation surpassed coal, marking a pivotal energy transition.

✅ EIA data show renewables topped coal consumption in 2019.

✅ Solar, wind, and hydro displaced aging, costly coal plants.

✅ COVID-19 demand drop accelerated the energy transition.

 

Solar, wind and other renewable sources have toppled coal in energy generation in the United States for the first time in over 130 years, with the coronavirus pandemic accelerating a decline in coal that has profound implications for the climate crisis.

Not since wood was the main source of American energy in the 19th century has a renewable resource been used more heavily than coal, but 2019 saw a historic reversal, building on wind and solar reaching 10% of U.S. generation in 2018, according to US government figures.

Coal consumption fell by 15%, down for the sixth year in a row, while renewables edged up by 1%, even as U.S. electricity use trended lower. This meant renewables surpassed coal for the first time since at least 1885, a year when Mark Twain published The Adventures of Huckleberry Finn and America’s first skyscraper was erected in Chicago.

Electricity generation from coal fell to its lowest level in 42 years in 2019, with the US Energy Information Administration (EIA) forecasting that renewables will eclipse coal as an electricity source this year, while a global eclipse by 2025 is also projected. On 21 May, the year hit its 100th day in which renewables have been used more heavily than coal.

“Coal is on the way out, we are seeing the end of coal,” said Dennis Wamsted, analyst at the Institute for Energy Economics and Financial Analysis. “We aren’t going to see a big resurgence in coal generation, the trend is pretty clear.”

The ongoing collapse of coal would have been nearly unthinkable a decade ago, when the fuel source accounted for nearly half of America’s generated electricity, even as a brief uptick in 2021 was anticipated. That proportion may fall to under 20% this year, with analysts predicting a further halving within the coming decade.

A rapid slump since then has not been reversed despite the efforts of the Trump administration, which has dismantled a key Barack Obama-era climate rule to reduce emissions from coal plants and eased requirements that prevent coal operations discharging mercury into the atmosphere and waste into streams.

Coal releases more planet-warming carbon dioxide than any other energy source, with scientists warning its use must be rapidly phased out to achieve net-zero emissions globally by 2050 and avoid the worst ravages of the climate crisis.

Countries including the UK and Germany are in the process of winding down their coal sectors, and in Europe renewables are increasingly crowding out gas as well, although in the US the industry still enjoys strong political support from Trump.

“It’s a big moment for the market to see renewables overtake coal,” said Ben Nelson, lead coal analyst at Moody’s. “The magnitude of intervention to aid coal has not been sufficient to fundamentally change its trajectory, which is sharply downwards.”

Nelson said he expects coal production to plummet by a quarter this year but stressed that declaring the demise of the industry is “a very tough statement to make” due to ongoing exports of coal and its use in steel-making. There are also rural communities with power purchase agreements with coal plants, meaning these contracts would have to end before coal use was halted.

The coal sector has been beset by a barrage of problems, predominantly from cheap, abundant gas that has displaced it as a go-to energy source. The Covid-19 outbreak has exacerbated this trend, even as global power demand has surged above pre-pandemic levels. With plunging electricity demand following the shutting of factories, offices and retailers, utilities have plenty of spare energy to choose from and coal is routinely the last to be picked because it is more expensive to run than gas, solar, wind or nuclear.

Many US coal plants are ageing and costly to operate, forcing hundreds of closures over the past decade. Just this year, power companies have announced plans to shutter 13 coal plants, including the large Edgewater facility outside Sheboygan, Wisconsin, the Coal Creek Station plant in North Dakota and the Four Corners generating station in New Mexico – one of America’s largest emitters of carbon dioxide.

The last coal facility left in New York state closed earlier this year.

The additional pressure of the pandemic “will likely shutter the US coal industry for good”, said Yuan-Sheng Yu, senior analyst at Lux Research. “It is becoming clear that Covid-19 will lead to a shake-up of the energy landscape and catalyze the energy transition, with investors eyeing new energy sector plays as we emerge from the pandemic.”

Climate campaigners have cheered the decline of coal but in the US the fuel is largely being replaced by gas, which burns more cleanly than coal but still emits a sizable amount of carbon dioxide and methane, a powerful greenhouse gas, in its production, whereas in the EU wind and solar overtook gas last year.

Renewables accounted for 11% of total US energy consumption last year – a share that will have to radically expand if dangerous climate change is to be avoided. Petroleum made up 37% of the total, followed by gas at 32%. Renewables marginally edged out coal, while nuclear stood at 8%.

“Getting past coal is a big first hurdle but the next round will be the gas industry,” said Wamsted. “There are emissions from gas plants and they are significant. It’s certainly not over.”
 

 

Related News

View more

Solar PV and wind power in the US continue to grow amid favourable government plans

US Renewable Power Outlook 2030 projects surging capacity, solar PV and wind growth, grid modernization, and favorable tax credits, detailing market trends, CAGR, transmission expansion, and policy drivers shaping clean energy generation and consumption.

 

Key Points

A forecast of US power capacity, generation, and consumption, highlighting solar, wind, tax credits, and grid modernization.

✅ Targets 48.4% renewable capacity share by 2030

✅ Strong growth in solar PV and onshore wind installations

✅ Investment and tax credits drive grid and transmission upgrades

 

GlobalData’s latest report, ‘United States Power Market Outlook to 2030, Update 2021 – Market Trends, Regulations, and Competitive Landscape’ discusses the power market structure of the United States and provides historical and forecast numbers for capacity, generation and consumption up to 2030. Detailed analysis of the country’s power market regulatory structure, competitive landscape and a list of major power plants are provided. The report also gives a snapshot of the power sector in the country on broad parameters of macroeconomics, supply security, generation infrastructure, transmission and distribution infrastructure, about a quarter of U.S. electricity from renewables in recent years, electricity import and export scenario, degree of competition, regulatory scenario, and future potential. An analysis of the deals in the country’s power sector is also included in the report.

Renewable power held a 19% share of the US’s total power capacity in 2020, and in that year renewables became the second-most prevalent source in the U.S. electricity mix by generation; this share is expected to increase significantly to 48.4% by 2030. Favourable policies introduced by the US Government will continue to drive the country’s renewable sector, particularly solar photovoltaics (PV) and wind power, with wind now the most-used renewable source in the U.S. generation mix. Installed renewable capacity* increased from 16.5GW in 2000 to 239.2GW in 2020, growing at a compound annual growth rate (CAGR) of 14.3%. By 2030, the cumulative renewable capacity is expected to rise to 884.6GW, growing at a CAGR of 14% from 2020 to 2030. Despite increase in prices of renewable equipment, such as solar modules, in 2021, the US renewable sector will show strong growth during the 2021 to 2030 period as this increase in equipment prices are short term due to supply chain disruptions caused by the Covid-19 pandemic.

The expansion of renewable power capacity during the 2000 to 2020 period has been possible due to the introduction of federal schemes, such as Production Tax Credits, Investment Tax Credits and Manufacturing Tax Credits. These have massively aided renewable installations by bringing down the cost of renewable power generation and making it at par with power generated from conventional sources. Over the last few years, the cost of solar PV and wind power installations has declined sharply, and by 2023 wind, solar, and batteries made up most of the utility-scale pipeline across the US, highlighting investor confidence. Since 2010, the cost of utility-scale solar PV projects decreased by around 82% while onshore wind installations decreased by around 39%. This has supported the rapid expansion of the renewable market. However, the price of solar equipment has risen due to an increase in raw material prices and supply shortages. This may slightly delay the financing of some solar projects that are already in the pipeline.

The US will continue to add significant renewable capacity additions during the forecast period as industry outlooks point to record solar and storage installations over the coming years, to meet its target of reaching 80% clean energy by 2030. In November 2021, President Biden signed a $1tr Infrastructure Bill, within which $73bn is designated to renewables. This includes not just renewable capacity building, but also strengthening the country’s power grid and laying new high voltage transmission lines, both of which will be key to driving solar and wind power capacity additions as wind power surges in the U.S. electricity mix nationwide.

The US was one of the worst hit countries in the world due to the Covid-19 pandemic in 2020. With respect to the power sector, the electricity consumption in the country declined by 2.5% in 2020 as compared to 2019, even as renewable electricity surpassed coal in 2022 in the generation mix, highlighting continued structural change. Power plants that were under construction faced delays due to unavailability of components due to supply chain disruptions and unavailability of labour due to travel restrictions.

According to the US Energy Information Administration, 61 power projects, having a total capacity of 2.4GWm which were under construction during March and April 2020 were delayed because of the Covid-19 pandemic. Among renewable power technologies, solar PV and wind power projects were the most badly affected due to the pandemic.

In March and April 2020, 53 solar PV projects, having a total capacity of 1.3GW, and wind power projects, having a total capacity of 1.2GW, were delayed due to the Covid-19 pandemic. Moreover, several states suspended renewable energy auctions due to the pandemic.

For instance, New York State Energy Research and Development Authority (NYSERDA) had issued a new offshore wind solicitation for 1GW and up to 2.5GW in April 2020, but this was suspended due to the Covid-19 pandemic. In July 2020, the authority relaunched the tender for 2.5GW of offshore wind capacity, with a submission deadline in October 2020.

To ease the financial burden on consumers during the pandemic, more than 1,000 utilities in the country announced disconnection moratoria and implemented flexible payment plans. Duke Energy, American Electric Power, Dominion Power and Southern California Edison were among the major utilities that voluntarily suspended disconnections.

 

Related News

View more

Shell’s strategic move into electricity

Shell's Industrial Electricity Supply Strategy targets UK and US industrial customers, leveraging gas-to-power, renewables, long-term PPAs, and energy transition momentum to disrupt utilities, cut costs, and secure demand in the evolving electricity market.

 

Key Points

Shell will sell power directly to industrial clients, leveraging gas, renewables, and PPAs to secure demand and pricing.

✅ Direct power sales to industrials in UK and US

✅ Leverages gas-to-power, renewables, and flexible sourcing

✅ Targets long-term PPAs, price stability, and demand security

 

Royal Dutch Shell’s decision to sell electricity direct to industrial customers is an intelligent and creative one. The shift is strategic and demonstrates that oil and gas majors are capable of adapting to a new world as the transition to a lower carbon economy develops. For those already in the business of providing electricity it represents a dangerous competitive threat. For the other oil majors it poses a direct challenge on whether they are really thinking about the future sufficiently strategically.

The move starts small with a business in the UK that will start trading early next year, in a market where the UK’s second-largest electricity operator has recently emerged, signaling intensifying competition. Shell will supply the business operations as a first step and it will then expand. But Britain is not the limit — Shell recently announced its intention of making similar sales in the US. Historically, oil and gas companies have considered a move into electricity as a step too far, with the sector seen as oversupplied and highly politicised because of sensitivity to consumer price rises. I went through three reviews during my time in the industry, each of which concluded that the electricity business was best left to someone else. What has changed? I think there are three strands of logic behind the strategy.

First, the state of the energy market. The price of gas in particular has fallen across the world over the last three years to the point where the International Energy Agency describes the current situation as a “glut”. Meanwhile, Shell has been developing an extensive range of gas assets, with more to come. In what has become a buyer’s market it is logical to get closer to the customer — establishing long-term deals that can soak up the supply, while options such as storing electricity in natural gas pipes gain attention in Europe. Given its reach, Shell could sign contracts to supply all the power needed by the UK’s National Health Service or with the public sector as a whole as well as big industrial users. It could agree long-term contracts with big businesses across the US.

To the buyers, Shell offers a high level of security from multiple sources with prices presumably set at a discount to the market. The mutual advantage is strong. Second, there is the transition to a lower carbon world. No one knows how fast this will move, but one thing is certain: electricity will be at the heart of the shift with power demand increasing in transportation, industry and the services sector as oil and coal are displaced. Shell, with its wide portfolio, can match inputs to the circumstances and policies of each location. It can match its global supplies of gas to growing Asian markets, including China’s 2060 electricity share projections, while developing a renewables-based electricity supply chain in Europe. The new company can buy supplies from other parts of the group or from outside. It has already agreed to buy all the power produced from the first Dutch offshore wind farm at Egmond aan Zee.

The move gives Shell the opportunity to enter the supply chain at any point — it does not have to own power stations any more than it now owns drilling rigs or helicopters. The third key factor is that the electricity market is not homogenous. The business of supplying power can be segmented. The retail market — supplying millions of households — may be under constant scrutiny, as efforts to fix the UK’s electricity grid keep infrastructure in the headlines, with suppliers vilified by the press and governments forced to threaten price caps but supplying power to industrial users is more stable and predictable, and done largely out of the public eye. The main industrial and commercial users are major companies well able to negotiate long-term deals.

Given its scale and reputation, Shell is likely to be a supplier of choice for industrial and commercial consumers and potentially capable of shaping prices. This is where the prospect of a powerful new competitor becomes another threat to utilities and retailers whose business models are already under pressure. In the European market in particular, electricity pricing mechanisms are evolving and public policies that give preference to renewables have undermined other sources of supply — especially those produced from gas. Once-powerful companies such as RWE and EON have lost much of their value as a result. In the UK, France and elsewhere, public and political hostility to price increases have made retail supply a risky and low-margin business at best. If the industrial market for electricity is now eaten away, the future for the existing utilities is desperate.

Shell’s move should raise a flag of concern for investors in the other oil and gas majors. The company is positioning itself for change. It is sending signals that it is now viable even if oil and gas prices do not increase and that it is not resisting the energy transition. Chief executive Ben van Beurden said last week that he was looking forward to his next car being electric. This ease with the future is rather rare. Shareholders should be asking the other players in the old oil and gas sector to spell out their strategies for the transition.

 

Related News

View more

Cal ISO Warns Rolling Blackouts Possible, Calls For Conservation As Power Grid Strains

Cal ISO Flex Alert urges Southern California energy conservation as a Stage 2 emergency strains the power grid, with potential rolling blackouts during peak hours from 3 to 10 p.m., if demand exceeds supply.

 

Key Points

A statewide call to conserve power during high demand, issued by the grid operator to prevent rolling blackouts.

✅ Stage 2 emergency signals severe grid strain

✅ Peak Flex Alert hours: 3 to 10 p.m. statewide

✅ Set thermostats to 78 and avoid major appliances

 

Residents and businesses across Southern California were urged to conserve power Tuesday afternoon amid ongoing electricity inequities across the state as the manager of the state’s power grid warned rolling blackouts could be imminent for some power customers.

The California Independent System Operator (Cal ISO), which manages the state power grid, declared a Stage 2 emergency as of 2:30 p.m., indicating severe strain on the electrical system, similar to a recent grid alert in Alberta that relied on reserves.

ADVERTISING

Rolling blackouts for some customers could occur in a Stage 3 emergency, distinct from the intentional shut-offs some utilities use to reduce wildfire risk.

Cal ISO issued a statewide Flex Alert in effect from 3 to 10 p.m. Tuesday and Wednesday, with conservation considered especially critical during those hours, a concern heightened by pandemic-era grid operations this year.

Officials told reporters rolling blackouts might be avoided Tuesday evening if residents repeat the level of conservation seen Monday.
“If we can get the same sort of response we got yesterday, we can minimize this, or perhaps avoid it altogether,” Cal-ISO President/CEO Steve Berberich said, noting that some operators have even planned staff lockdowns during COVID-19 to maintain reliability.

Cal-ISO controls roughly 80% of the state’s power grid through Southern California Edison, Pacific Gas and Electric Co., with the utility recently restoring power after shut-offs in affected communities, and San Diego Gas & Electric.

Residents are urged to set thermostats at 78 in the afternoon and evening hours and avoiding the use of air conditioning and major appliances during the Flex Alert hours, as utilities like PG&E prepare for winter storms to improve resilience.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified