Study assesses risk and hazards in older homes

By Electricity Forum


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
A groundbreaking new study, just released by the Fire Protection Research Foundation, reveals that potentially hazardous electrical conditions can exist and often remain hidden in older homes, and may only be identified during a thorough electrical inspection conducted by a qualified electrician.

The study also shows that the vast majority of potentially hazardous electrical conditions identified are a result of a failure to meet well recognized, proven safety code provisions and failure to properly install or maintain electrical equipment.

The first-of-its-kind study closely examined electrical systems and devices from 30 older homes in 10 states across the United States. The majority of homes in the study ranged in age from 25 years to more than 90 years. Two of the homes were more than 100 years old. This is the first such study to look within and "behind the walls" of older homes and assess the electrical risks and hazards present. Previous studies have shown the frequency of fires in home residential electrical systems has been disproportionately high in homes more than 40 years old.

"Electricity is one of the leading causes of home fires in the United States," said Jack Wells, Chair of the FoundationÂ’s Technical Advisory Committee that has been working on the study. "Every day we put more and more of a burden on the electrical systems in our homes. Because of poor installation or maintenance, some older homes just are not capable of handling that burden. We hope this study will show homeowners the importance of having older homes inspected and, if needed, repaired by qualified electricians."

The Fire Protection Research FoundationÂ’s study examined each homeÂ’s wiring and electrical systems, along with specific devices. After examining the homes, key electrical system elements (receptacles, service entrance panels, lighting fixtures, junction boxes, etc.) were collected and sent to Underwriters Laboratories (UL) where detailed laboratory analyses were conducted. These analyses examined how the elements performed after years of service in the field.

The findings of the study included:

· Some older equipment and wiring appeared well-maintained, performing effectively and safely, but other older homes had dangerous electrical conditions.

· Some older "knob-and-tube" and rubber insulated wiring failed testing that was conducted with high voltage levels, especially after being subject to bending.

· Service panels in most of the homes surveyed had one or more significant safety problems due to aging, improper installation, or misuse.

· Circuit breakers that were not properly installed in boxes for their intended application (e.g. outdoors) showed signs of corrosion, insect infestation, or other potentially serious problems.

· Some of the electrical receptacles examined in the lab failed an important test which measured how hot the receptacle may get under certain conditions.

· Lighting fixtures in several houses showed evidence of potentially dangerous conditions including: improper installation; frayed or damaged wire insulation; improperly grounded boxes; and use of improper wiring and bulbs.

· A large percentage of older homes had improperly installed or maintained wire splices and junction or outlet boxes.

· A small but significant number of ground fault circuit interrupters (GFCI) did not test and function properly. Most of those that did not function had been installed improperly.

· Many of the homes had potentially dangerous electrical conditions that did not comply with the current safety provisions of the National Electrical Code (NEC). In addition, many of the problems identified in this study did not comply with the NEC that was in effect at the time the homes were built or remodeled.

The study reveals that the vast majority of potentially hazardous electrical conditions in these older homes were caused by not only the failure to meet well recognized, proven safety code provisions found in the NEC, but by the failure to properly install and maintain important electrical equipment. In many of the homes, the problems were directly related to the poor quality of electrical system retrofits or changes made after the homes were originally constructed.

"Homeowners can take simple steps to protect their homes and their families from electrical hazards," said Wells. "Have your home inspected by a qualified electrician who is looking specifically at the electrical system. Always use a professional electrician when you have electrical work completed and make certain the work complies with proven safety code provisions."

Based on the study, the Foundation also recommends that communities ensure all electrical work done in homes meets the safety provisions in the current edition of the NEC. That code has been developed over time to provide the highest level of safety through practical, proven safety provisions.

Related News

A tenth of all electricity is lost in the grid - superconducting cables can help

High-Temperature Superconducting Cables enable lossless, high-voltage, underground transmission for grid modernization, linking renewable energy to cities with liquid nitrogen cooling, boosting efficiency, cutting emissions, reducing land use, and improving resilience against disasters and extreme weather.

 

Key Points

Liquid-nitrogen-cooled power cables delivering electricity with near-zero losses, lower voltage, and greater resilience.

✅ Near-lossless transmission links renewables to cities efficiently

✅ Operate at lower voltage, reducing substation size and cost

✅ Underground, compact, and resilient to extreme weather events

 

For most of us, transmitting power is an invisible part of modern life. You flick the switch and the light goes on.

But the way we transport electricity is vital. For us to quit fossil fuels, we will need a better grid, with macrogrid planning connecting renewable energy in the regions with cities.

Electricity grids are big, complex systems. Building new high-voltage transmission lines often spurs backlash from communities, as seen in Hydro-Que9bec power line opposition over aesthetics and land use, worried about the visual impact of the towers. And our 20th century grid loses around 10% of the power generated as heat.

One solution? Use superconducting cables for key sections of the grid. A single 17-centimeter cable can carry the entire output of several nuclear plants. Cities and regions around the world have done this to cut emissions, increase efficiency, protect key infrastructure against disasters and run powerlines underground. As Australia prepares to modernize its grid, it should follow suit with smarter electricity infrastructure initiatives seen elsewhere. It's a once-in-a-generation opportunity.


What's wrong with our tried-and-true technology?
Plenty.

The main advantage of high voltage transmission lines is they're relatively cheap.

But cheap to build comes with hidden costs later. A survey of 140 countries found the electricity currently wasted in transmission accounts for a staggering half-billion tons of carbon dioxide—each year.

These unnecessary emissions are higher than the exhaust from all the world's trucks, or from all the methane burned off at oil rigs.

Inefficient power transmission also means countries have to build extra power plants to compensate for losses on the grid.

Labor has pledged A$20 billion to make the grid ready for clean energy, and international moves such as US-Canada cross-border approvals show the scale of ambition needed. This includes an extra 10,000 kilometers of transmission lines. But what type of lines? At present, the plans are for the conventional high voltage overhead cables you see dotting the countryside.

System planning by Australia's energy market operator shows many grid-modernizing projects will use last century's technologies, the conventional high voltage overhead cables, even as Europe's HVDC expansion gathers pace across its network. If these plans proceed without considering superconductors, it will be a huge missed opportunity.


How could superconducting cables help?
Superconduction is where electrons can flow without resistance or loss. Built into power cables, it holds out the promise of lossless electricity transfer, over both long and short distances. That's important, given Australia's remarkable wind and solar resources are often located far from energy users in the cities.

High voltage superconducting cables would allow us to deliver power with minimal losses from heat or electrical resistance and with footprints at least 100 times smaller than a conventional copper cable for the same power output.

And they are far more resilient to disasters and extreme weather, as they are located underground.

Even more important, a typical superconducting cable can deliver the same or greater power at a much lower voltage than a conventional transmission cable. That means the space needed for transformers and grid connections falls from the size of a large gym to only a double garage.

Bringing these technologies into our power grid offers social, environmental, commercial and efficiency dividends.

Unfortunately, while superconductors are commonplace in Australia's medical community (where they are routinely used in MRI machines and diagnostic instruments) they have not yet found their home in our power sector.

One reason is that superconductors must be cooled to work. But rapid progress in cryogenics means you no longer have to lower their temperature almost to absolute zero (-273℃). Modern "high temperature" superconductors only need to be cooled to -200℃, which can be done with liquid nitrogen—a cheap, readily available substance.

Overseas, however, they are proving themselves daily. Perhaps the most well-known example to date is in Germany's city of Essen. In 2014, engineers installed a 10 kilovolt (kV) superconducting cable in the dense city center. Even though it was only one kilometer long, it avoided the higher cost of building a third substation in an area where there was very limited space for infrastructure. Essen's cable is unobtrusive in a meter-wide easement and only 70cm below ground.

Superconducting cables can be laid underground with a minimal footprint and cost-effectively. They need vastly less land.

A conventional high voltage overhead cable requires an easement of about 130 meters wide, with pylons up to 80 meters high to allow for safety. By contrast, an underground superconducting cable would take up an easement of six meters wide, and up to 2 meters deep.

This has another benefit: overcoming community skepticism. At present, many locals are concerned about the vulnerability of high voltage overhead cables in bushfire-prone and environmentally sensitive regions, as well as the visual impact of the large towers and lines. Communities and farmers in some regions are vocally against plans for new 85-meter high towers and power lines running through or near their land.

Climate extremes, unprecedented windstorms, excessive rainfall and lightning strikes can disrupt power supply networks, as the Victorian town of Moorabool discovered in 2021.

What about cost? This is hard to pin down, as it depends on the scale, nature and complexity of the task. But consider this—the Essen cable cost around $20m in 2014. Replacing the six 500kV towers destroyed by windstorms near Moorabool in January 2020 cost $26 million.

While superconducting cables will cost more up front, you save by avoiding large easements, requiring fewer substations (as the power is at a lower voltage), and streamlining approvals.


Where would superconductors have most effect?
Queensland. The sunshine state is planning four new high-voltage transmission projects, to be built by the mid-2030s. The goal is to link clean energy production in the north of the state with the population centers of the south, similar to sending Canadian hydropower to New York to meet demand.

Right now, there are major congestion issues between southern and central Queensland, and subsea links like Scotland-England renewable corridors highlight how to move power at scale. Strategically locating superconducting cables here would be the best location, serving to future-proof infrastructure, reduce emissions and avoid power loss.

 

Related News

View more

Starting Texas Schools After Labor Day: Power Grid and Cost Benefits?

Texas After-Labor Day School Start could ease ERCOT's power grid strain by shifting peak demand, lowering air-conditioning loads in schools, improving grid reliability, reducing electricity costs, and curbing emissions during extreme heat the summer months.

 

Key Points

A proposed calendar shift to start school after Labor Day to lower ERCOT peak demand, costs, and grid risk.

✅ Cuts school HVAC loads during peak summer heat

✅ Lowers costly peaker plant use and electricity rates

✅ Requires calendar changes, testing and activities shifts

 

As Texas faces increasing demands on its power grid, a new proposal is gaining traction: starting the school year after Labor Day. This idea, reported by the Dallas News, suggests that delaying the start of the academic year could help alleviate some of the pressure on the state’s electricity grid during the peak summer months, potentially leading to both grid stability and financial savings. Here’s an in-depth look at how this proposed change could impact Texas’s energy landscape and education system.

The Context of Power Grid Strain

Texas's power grid, operated by the Electric Reliability Council of Texas (ERCOT), has faced significant challenges in recent years. Extreme weather events, record-breaking temperatures, and high energy demand have strained the grid, and some analyses argue that climate change, not demand is the biggest challenge today, leading to concerns about reliability and stability. The summer months are particularly taxing, as the demand for air conditioning surges, often pushing the grid to its limits.

In this context, the idea of adjusting the school calendar to start after Labor Day has been proposed as a potential strategy to help manage electricity demand. By delaying the start of school, proponents argue that it could reduce the load on the power grid during peak usage periods, thereby easing some of the stress on energy resources.

Potential Benefits for the Power Grid

The concept of delaying the school year is rooted in the potential benefits for the power grid. During the hottest months of summer, the demand for electricity often spikes as families use air conditioning to stay cool, and utilities warn to prepare for blackouts as summer takes hold. School buildings, typically large and energy-intensive facilities, contribute significantly to this demand when they are in operation.

Starting school later could help reduce this peak demand, as schools would be closed during the hottest months when the grid is under the most pressure. This reduction in demand could help prevent grid overloads and reduce the risk of power outages, at a time when longer, more frequent outages are afflicting the U.S. power grid, ultimately contributing to a more stable and reliable electricity supply.

Additionally, a decrease in peak demand could help lower electricity costs. Power plants, particularly those that are less efficient and more expensive to operate, are often brought online during periods of high demand. By reducing the peak load, the state could potentially minimize the need for these costly power sources, leading to lower overall energy costs.

Financial and Environmental Considerations

The financial implications of starting school after Labor Day extend beyond just the power grid. By reducing energy consumption during peak periods, the state could see significant savings on electricity costs. This, in turn, could lead to lower utility bills for schools, businesses, and residents alike, a meaningful relief as millions risk electricity shut-offs during summer heat.

Moreover, reducing the demand for electricity from fossil fuel sources can have positive environmental impacts. Lower peak demand may reduce the reliance on less environmentally friendly energy sources, and aligns with calls to invest in a smarter electricity infrastructure nationwide, thereby decreasing greenhouse gas emissions and contributing to overall environmental sustainability.

Challenges and Trade-offs

While the proposal offers potential benefits, it also comes with challenges and trade-offs. Adjusting the school calendar would require significant changes to the academic schedule, potentially affecting extracurricular activities, summer programs, and family plans, and comparisons to California's reliability challenges underscore the complexity. Additionally, there could be resistance from various stakeholders, including parents, educators, and students, who are accustomed to the current school calendar.

There are also logistical considerations to address, such as how a delayed start might impact standardized testing schedules and the academic calendar for higher education institutions. These factors would need to be carefully evaluated to ensure that the proposed changes do not adversely affect educational outcomes or create unintended consequences.

Looking Ahead

The idea of starting Texas schools after Labor Day represents an innovative approach to addressing the challenges facing the state’s power grid. By potentially reducing peak demand and lowering energy costs, and alongside efforts to connect Texas's grid to the rest of the nation, this proposal could contribute to greater grid stability and financial savings. However, careful consideration and planning will be essential to navigate the complexities of altering the school calendar and to ensure that the benefits outweigh the challenges.

As Texas continues to explore solutions for managing its power grid and energy resources, the proposal to shift the school year schedule provides an intriguing possibility. It reflects a broader trend of seeking creative and multifaceted approaches to balancing energy demand, environmental sustainability, and public needs.

In conclusion, starting schools after Labor Day could offer tangible benefits for Texas’s power grid and financial well-being. As discussions on this proposal advance, it will be important to weigh all factors and engage stakeholders to ensure a successful and equitable implementation.

 

Related News

View more

Vehicle-to-grid could be ‘capacity on wheels’ for electricity networks

Vehicle-to-Grid (V2G) enables EV batteries to provide grid balancing, flexibility, and demand response, integrating renewables with bidirectional charging, reducing peaker plant reliance, and unlocking distributed energy storage from millions of connected electric vehicles.

 

Key Points

Vehicle-to-Grid (V2G) lets EVs export power via bidirectional charging to balance grids and support renewables.

✅ Turns parked EVs into distributed energy storage assets

✅ Delivers balancing services and demand response to the grid

✅ Cuts peaker plant use and supports renewable integration

 

“There are already many Gigawatt-hours of batteries on wheels”, which could be used to provide balance and flexibility to electrical grids, if the “ultimate potential” of vehicle-to-grid (V2G) technology could be harnessed.

That’s according to a panel of experts and stakeholders convened by our sister site Current±, which covers the business models and technologies inherent to the low carbon transition to decentralised and clean energy. Focusing mainly on the UK grid but opening up the conversation to other territories and the technologies themselves, representatives including distribution network operator (DNO) Northern Powergrid’s policy and markets director and Nissan Europe’s director of energy services debated the challenges, benefits and that aforementioned ultimate potential.

Decarbonisation of energy systems and of transport go hand-in-hand amid grid challenges from rising EV uptake, with vehicle fuel currently responsible for more emissions than electricity used for energy elsewhere, as Ian Cameron, head of innovation at DNO UK Power Networks says in the Q&A article.

“Furthermore, V2G technology will further help decarbonisation by replacing polluting power plants that back up the electrical grid,” Marc Trahand from EV software company Nuvve Corporation added, pointing to California grid stability initiatives as a leading example.

While the panel states that there will still be a place for standalone utility-scale energy storage systems, various speakers highlighted that there are over 20GWh of so-called ‘batteries on wheels’ in the US, capable of powering buildings as needed, and up to 10 million EVs forecast for Britain’s roads by 2030.

“…it therefore doesn’t make sense to keep building expensive standalone battery farms when you have all this capacity on wheels that just needs to be plugged into bidirectional chargers,” Trahand said.

 

Related News

View more

Analysis: Out in the cold: how Japan's electricity grid came close to blackouts

Japan Electricity Crunch exposes vulnerabilities in a liberalised power market as LNG shortages, JEPX price spikes, snow-hit solar, and weak hedging strain energy security and retail providers amid cold snap demand and limited reserve capacity.

 

Key Points

A winter demand shock and LNG shortfalls sent JEPX to records, exposing gaps in hedging, data, and energy security.

✅ JEPX wholesale prices spiked to an all-time high

✅ LNG inventories and procurement proved insufficient

✅ Snow disabled solar; new entrants lacked hedging

 

Japan's worst electricity crunch since the aftermath of the Fukushima crisis has exposed vulnerabilities in the country's recently liberalised power market, although some of the problems appear self-inflicted.

Power prices in Japan hit record highs last month, mirroring UK peak power prices during tight conditions, as a cold snap across northeast Asia prompted a scramble for supplies of liquefied natural gas (LNG), a major fuel for the country's power plants. Power companies urged customers to ration electricity to prevent blackouts, although no outages occurred.

The crisis highlighted how many providers were unprepared for such high demand. Experts say LNG stocks were not topped up ahead of winter and snow disabled solar power farms, while China's power woes strained solar supply chains.

The hundreds of small power companies that sprang up after the market was opened in 2016 have struggled the most, saying the government does not disclose the market data they need to operate. The companies do not have their own generators, instead buying electricity on the wholesale market.

Prices on the Japan Electric Power Exchange (JEPX) hit a record high of 251 yen ($2.39) per kilowatt hour in January, equating to $2,390 per megawatt hour of electricity, above record European price surges seen recently and the highest on record anywhere in the world. One megawatt hour is roughly what an average home in the U.S. would consume over 35 days.

But the vast majority of the new, smaller companies are locked into low, fixed rates they set to lure customers from bigger players, crushing them financially during a price spike like the one in January.

More than 50 small power providers wrote on Jan. 18 to Japan's industry minister, Hiroshi Kajiyama, who oversees the power sector, asking for more accessible data on supply and demand, reserve capacity and fuel inventories.

"By organising and disclosing this information, retail electricity providers will be able to bid at more appropriate prices," said the companies, led by Looop Co.

They also called on Kajiyama to require transmission and distribution companies to pass on some of the unexpected profits from price spikes to smaller operators.

The industry ministry said it had started releasing more timely market data, and is reviewing the cause of the crunch and considering changes, echoing calls by Fatih Birol to keep electricity options open amid uncertainty.

Japan reworked its power markets after the Fukushima nuclear disaster in 2011, liberalizing the sector in 2016 while pushing for more renewables.

But Japan is still heavily reliant on LNG and coal, and only four of 33 nuclear reactors are operating. The power crisis has led to growing calls to restart more reactors.

Kazuno Power, a small retail provider controlled by a municipality of the same name in northern Japan, where abundant renewable energy is locally produced, buys electricity from hydropower stations and JEPX.

During the crunch, the company had to pay nearly 10 times the usual price, Kazuno Power president Takao Takeda said in an interview. Like most other new providers, it could not pass on the costs, lost money, and folded. The local utility has taken over its customers.

"There is a contradiction in the current system," Takeda said. "We are encouraged to locally produce power for local consumption as well as use more renewable energy, but prices for these power supplies are linked to wholesale prices, which depend on the overall power supply."

The big utilities, which receive most of their LNG on long-term contracts, blamed the power shortfall on a tight spot market and glitches at generation units.

"We were not able to buy as much supply as we wanted from the spot market because of higher demand from South Korea and China, where power cuts have tightened supply," Kazuhiro Ikebe, the head of the country's electricity federation, said recently.

Ikebe is also president of Kyushu Electric Power, which supplies the southern island of Kyushu.

Utilities took extreme measures - from burning polluting fuel oil in coal plants to scavenging the dregs from empty LNG tankers - to keep the grid from breaking down.

"There is too much dependence on JEPX for procurement," said Bob Takai, the local head of European Energy Exchange, where electricity pricing reforms are being discussed, and which started offering Japan power futures last year. He added that new entrants were not hedging against sharp price moves.

Three people, who requested anonymity because of the sensitivity of the matter, were more blunt. One called the utilities arrogant in assuming they could find LNG cargoes in a pinch. Prices were already rising as China snapped up supplies, the sources noted.

"You had volatility caused by people saying 'Oh, well, demand is going to be weak because of coronavirus impacts' and then saying 'we can rely more on solar than in the past,' but solar got snowed out," said a senior executive from one generator. "We have a problem of who is charge of energy security in Japan."

Inventories of LNG, generally about two weeks worth of supplies, were also not topped up enough to prepare for winter, a market analyst said.

The fallout from the crunch has become more apparent in recent days, with new power companies like Rakuten Inc suspending new sales and Tokyo Gas, along with traditional electricity utilities, issuing profit downgrades or withdrawing their forecasts.

Although prices have fallen sharply as temperatures warmed up slightly and more generation units have come back online, the power generator executive said, "we are not out of the woods yet."
 

 

Related News

View more

Quebec and other provinces heading toward electricity shortage: report

Canada Electricity Shortage threatens renewable energy transition as EV adoption and building decarbonization surge; Hydro-Quebec exports, wind power expansion, demand response, and smart grid resilience shape investment and capacity planning.

 

Key Points

A looming supply gap in central and eastern provinces driven by EVs, heating decarbonization, exports, and limited new hydro.

✅ Hydro-Quebec capacity pressured by exports and new loads

✅ Wind power prioritized; new mega-dams deemed unworkable

✅ Smart meters boost flexibility but raise cyber risk

 

Quebec and other provinces in central and eastern Canada are heading toward a significant shortage of electricity to respond to the various needs of a transition to renewable energy, and Ontario's energy storage push underscores how supply is tightening across the region.

This is according to Polytechnique Montréal’s Institut de l’énergie Trottier, which published a report titled A Strategic Perspective on Electricity in Central and Eastern Canada last week.

The white paper says that at the current rate, most provinces will be incapable of meeting the electricity needs created by the increase in the number of electric vehicles, including the federal 2035 EV sales mandate that will amplify demand, and the decarbonization of building heating by 2030. “The situation worsens if we consider carbon neutrality objectives of the federal government and some provinces for 2050,” the institute says.

The researchers called on public utilities to immediately review their investment plans for the coming years in light of examples such as B.C.'s power supply challenges that accompany rapid green ambitions.

In a news conference Wednesday, Premier François Legault said the province could indeed be short on electricity as debates over Quebec's EV push continue. “We’re open to exploiting green hydrogen, if the price is good and also based on the electrical capacity we have. Because currently, we predict that in the coming years we’re going to lack electricity, so we must be prudent.”

Quebec is in a better position than other provinces because it is the largest hydroelectricity producer in the country. But that energy source also attracts new clients that have contributed to increased demand over the coming years, including data centres, cryptocurrency miners and greenhouses.

Report co-author Normand Mousseau said that while Hydro-Québec largely has the capacity to meet demand from electric vehicles, even amid EV shortages and wait times for buyers, heating and manufacturers, export contracts to the United States “risk reducing its leeway.”

Hydro-Québec will therefore have to find new sources of electricity, and Mousseau said the answer isn’t new dams.

“The reservoirs give an immense flexibility to the network, but we don’t have the capacity today to flood territories like we have done in the past,” said Mousseau, the institute’s scientific director. “From an environmental viewpoint and a social accessibility one, it’s unworkable.”

The solution would be more wind turbines, he said, adding construction could happen at “very competitive rates” and if there’s a surplus, “we can sell it without issue because other provinces are in an even worse situation than ours,” a reality echoed by eco groups in Northern Ontario sustainability discussions focused on the grid’s future.

The researchers propose solutions based on six themes: regulations, pricing, demand management, data, support for implementation and resilience.

In the resilience category, the report notes that innovative technology like smart meters makes the network more flexible, with pilots such as EV-to-grid integration in Nova Scotia illustrating emerging options, but also increases the risk of cyberattacks. The more extreme weather caused by climate change also increases the risks of damage to infrastructure while at the same time increasing demand.

 

Related News

View more

Tracking Progress on 100% Clean Energy Targets

100% Clean Energy Targets drive renewable electricity, decarbonization, and cost savings through state policies, CCAs, RECs, and mandates, with timelines and interim goals that boost jobs, resilience, and public health across cities, counties, and utilities.

 

Key Points

Policies for cities and states to reach 100% clean power by set dates, using mandates, RECs, and interim goals.

✅ Define eligible clean vs renewable resources

✅ Mandate vs goal framework with enforcement

✅ Timelines with interim targets and escape clauses

 

“An enormous amount of authority still rests with the states for determining your energy future. So we can build these policies that will become a postcard from the future for the rest of the country,” said David Hochschild, chair of the California Energy Commission, speaking last week at a UCLA summit on state and local progress toward 100 percent clean energy.

According to a new report from the UCLA Luskin Center for Innovation, 13 states, districts and territories, as well as more than 200 cities and counties, with standout clean energy purchases by Southeast cities helping drive momentum, have committed to a 100 percent clean electricity target — and dozens of cities have already hit it.

This means that one of every three Americans, or roughly 111 million U.S. residents representing 34 percent of the population, live in a community that has committed to or has already achieved 100 percent clean electricity, including communities like Frisco, Colorado that have set ambitious targets.

“We’re going to look back on this moment as the moment when local action and state commitments began to push the entire nation toward this goal,” said J.R. DeShazo, director of the UCLA Luskin Center for Innovation.

Not all 100 percent targets are alike, however. The report notes that these targets vary based on 1) what resources are eligible, 2) how binding the 100 percent target is, and 3) how and when the target will be achieved.

These distinctions will carry a lot of weight as the policy discussion shifts from setting goals to actually meeting targets. They also have implications for communities in terms of health benefits, cost savings and employment opportunities.

 

100% targets come in different forms

One key attribute is whether a target is based on "renewable" or "clean" energy resources. Some 100 percent targets, like Hawaii’s and Rhode Island’s 2030 plan, are focused exclusively on renewable energy, or sources that cannot be depleted, such as wind, solar and geothermal. But most jurisdictions use the broader term “clean energy,” which can also include resources like large hydroelectric generation and nuclear power.

States also vary in their treatment of renewable energy certificates, used to track and assign ownership to renewable energy generation and use. Unbundled RECs allow for the environmental attributes of the renewable energy resource to be purchased separately from the physical electricity delivery.

The binding nature of these targets is also noteworthy. Seven states, as well as Puerto Rico and the District of Columbia, have passed 100 percent clean energy transition laws. Of the jurisdictions that have passed 100 percent legislation, all but one specifies that the target is a “mandate,” according to the report. Nevada is the only state to call the target a “goal.”

Governors in four other states have signed executive orders with 100 percent clean energy goals.

Target timelines also vary. Washington, D.C. has set the most ambitious target date, with a mandate to achieve 100 percent renewable electricity by 2032. Other states and cities have set deadline years between 2040 and 2050. All "100 percent" state laws, and some city and county policies, also include interim targets to keep clean energy deployment on track.

In addition, some locations have included some form of escape clause. For instance, Salt Lake City, which last month passed a resolution establishing a goal of powering the county with 100 percent clean electricity by 2030, included “exit strategies” in its policy in order to encourage stakeholder buy-in, said Mayor Jackie Biskupski, speaking last week at the UCLA summit.

“We don’t think they’ll get used, but they’re there,” she said.

Other locales, meanwhile, have decided to go well beyond 100 percent clean electricity. The State of California and 44 cities have set even more challenging targets to also transition their entire transportation, heating and cooling sectors to 100 percent clean energy sources, and proposals like requiring solar panels on new buildings underscore how policy can accelerate progress across sectors.

Businesses are simultaneously electing to adopt more clean and renewable energy. Six utilities across the United States have set their own 100 percent clean or carbon-free electricity targets. UCLA researchers did not include populations served by these utilities in their analysis of locations with state and city 100 percent clean commitments.

 

“We cannot wait”

All state and local policies that require a certain share of electricity to come from renewable energy resources have contributed to more efficient project development and financing mechanisms, which have supported continued technology cost declines and contributed to a near doubling of renewable energy generation since 2008.

Many communities are switching to clean energy in order to save money, now that the cost calculation is increasingly in favor of renewables over fossil fuels, as more jurisdictions get on the road to 100% renewables worldwide. Additional benefits include local job creation, cleaner air and electricity system resilience due to greater reliance on local energy resources.

Another major motivator is climate change. The electricity sector is responsible for 28 percent of U.S. greenhouse gas emissions, second only to transportation. Decarbonizing the grid also helps to clean up the transportation sector as more vehicles move to electricity as their fuel source.

“The now-constant threat of wildfires, droughts, severe storms and habitat loss driven by climate change signals a crisis we can no longer ignore,” said Carla Peterman, senior vice president of regulatory affairs at investor-owned utility Southern California Edison. “We cannot wait and we should not wait when there are viable solutions to pursue now.”

Prior to joining SCE on October 1, Peterman served as a member of the California Public Utilities Commission, which implements and administers renewable portfolio standard (RPS) compliance rules for California’s retail sellers of electricity. California’s target requires 60 percent of the state’s electricity to come from renewable energy resources by 2030, and all the state's electricity to come from carbon-free resources by 2045.  

 

How CCAs are driving renewable energy deployment

One way California communities are working to meet the state’s ambitious targets is through community-choice aggregation, especially after California's near-100% renewable milestone underscored what's possible, via which cities and counties can take control of their energy procurement decisions to suit their preferences. Investor-owned utilities no longer purchase energy for these jurisdictions, but they continue to operate the transmission and distribution grid for all electricity users.                           

A second paper released by the Luskin Center for Innovation in recent days examines how community-choice aggregators are affecting levels of renewable energy deployment in California and contributing to the state’s 100 percent target.

The paper finds that 19 CCAs have launched in California since 2010, growing to include more than 160 towns, cities and counties. Of those communities, 64 have a 100 percent renewable or clean energy policy as their default energy program.

Because of these policies, the UCLA paper finds that “CCAs have had both direct and indirect effects that have led to increases in the clean energy sold in excess of the state’s RPS.”

From 2011 to 2018, CCAs directly procured 24 terawatt-hours of RPS-eligible electricity, 11 TWh of which have been voluntary or in excess of RPS compliance, according to the paper.

The formation of CCAs has also had an indirect effect on investor-owned utilities. As customers have left investor-owned utilities to join CCAs, the utilities have been left holding contracts for more renewable energy than they need to comply with California’s clean energy targets, amid rising solar and wind curtailments that complicate procurement decisions. UCLA researchers estimate that this indirect effect of CCA formation has left IOUs holding 13 terawatt-hours in excess of RPS requirements.

The paper concludes that CCAs have helped to accelerate California’s ability to meet state renewable energy targets over the past decade. However, the future contributions of CCAs to the RPS are more uncertain as communities make new power-purchasing decisions and utilities seek to reduce their excess renewable energy contracts.

“CCAs offer a way for communities to put their desire for clean energy into action. They're growing fast in California, one of only eight states where this kind of mechanism is allowed," said UCLA's Kelly Trumbull, an author of the report. "State and federal policies could be reformed to better enable communities to meet local demand for renewable energy.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified