Offshore wind industry slowly improving

By United Press International


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
After a terrible year for the European offshore wind industry, it appears some projects are receiving the financial push they needed.

Belgian consortium Belwind said it had completed financing for the first phase of a 330 megawatt offshore wind farm in the North Sea. The European Investment Bank granted Belwind a $425 million loan, the company said. A consortium of six companies plans the offshore farm, which would be Belgium's largest. Construction work on 55 3 MW turbines is to start this summer, with the park going online by early 2011, the company said.

This is good news for the offshore wind industry, which has been hit hard by delays and money problems as a result of the financial crisis.

Banks have been axing funding because they have little cash to loan and because they have been put off by insecurities linked to some offshore projects, which often cost several hundred million to a few billion dollars.

While winds at sea are stronger and able to yield higher output, construction costs for offshore wind farms are roughly twice as high because companies need to build an entirely new infrastructure — transformer stations, sea cables — to deliver the power to land.

"Offshore wind has a serious financing problem," Ralf Bischof, the managing director of the German Wind Energy Association, an industry group, said earlier this year in Berlin.

But several projects are now going ahead, boosted in part by money from governments eager to support offshore wind power, seen in European capitals as a key tool to reach the continent's ambitious climate protection and renewable energy targets.

The world's biggest offshore project, the 1 GW London Array, was about to go under when the British government gave it a live-saving shot in the arm.

London in its 2009 budget, released in May, increased the subsidies for offshore wind to $864 million and doubled the number of renewable energy certificates for power from offshore wind.

In Germany, a prestigious 60 MW offshore wind farm project called Alpha Ventus received the go-ahead in June after several years of delay.

Alpha Ventus was initially to go online in 2008 but weather issues delayed a first construction attempt last year. This summer construction has begun with 12 tripod foundations that will hold the turbines to be constructed this summer already installed in the seabed off the German Baltic Sea coast. A company spokesman said the blades will be turning by October.

The decision to build Alpha Ventus was prompted in part by government support. As part of its economic aid package, Berlin handed the offshore industry around $130 million in subsidies. As an additional measure, starting this year, the guaranteed feed-in-tariff for power from offshore wind was boosted to 22 cents per kWh, compared to 13 cents for onshore.

Related News

Notley announces plans to move Alberta's electricity grid to net-zero by 2035 if elected

Alberta NDP Net-Zero Electricity Plan targets a 2035 clean grid, expands renewable energy, cuts emissions, creates jobs, and boosts economic diversification and rural connectivity, aligning Alberta with Canada's 2050 climate goals.

 

Key Points

A policy to achieve a net-zero electricity grid by 2035, advance renewable energy, cut emissions, and grow jobs.

✅ Net-zero electricity grid target set for 2035

✅ Scales renewable energy and emissions reductions

✅ Focus on jobs, rural connectivity, and diversification

 

Ahead of the NDP’s weekend convention, Alberta’s Opposition leader has committed to transforming the province’s energy sector and moving the province’s electricity grid to net-zero by 2035, despite debate over the federal 2035 net-zero electricity grid target in other provinces, should an orange crush wash over Alberta in the next election.

NDP Leader Rachel Notley said they would achieve this as part of the path towards Canada’s 2050 net-zero emissions goal, aligning with broader clean grids trends, which will help preserve and create jobs in the province.

“I think it’s an important goal. It’s a way of framing the work that we’re going to do within our energy industry and our energy sector, including how Alberta produces and pays for electricity going forward,” said Notley. “We know the world is moving toward different objectives and we still have the ability to lead on that front, but we need to lay down the markers early and focus on reaching those goals.”

Premier Jason Kenney has previously called the 2050 target “aspirational,” and, as the electricity sector faces profound change in Alberta, Notley said, once the work begins, it’s likely they would meet the objective earlier than proposed to reduce greenhouse gas emissions that contribute to global warming.

This is just one key issue that will be addressed at the party’s online convention, which is the first since the NDP’s defeat by the UCP in the last provincial election. Notley said other key issues will address economic diversification, economic recovery, job creation and social issues, as Alberta’s electricity market is headed for a reshuffle too. The focus, as she puts it, is “jobs, jobs, jobs.”

Attendees will also debate more than 140 policy resolutions over the weekend, including the development of a safe supply drug policy, banning coal mining in the Rocky Mountains and providing paid sick leave for workers.

Outside the formal agenda, debate over electricity market competition continues in Alberta as stakeholders weigh options.

Notley said an area of growing focus for the NDP will be rural Alberta, which is typically a conservative stronghold. One panel presentation during the convention will focus on connecting and building relationships with rural Albertans and growing the NDP profile in those areas.

“We think that we have a lot to offer rural Alberta and that, quite frankly, the UCP and (Kenney), in particular, have profoundly taken rural Alberta for granted,” she said. “Because of that, we think with a renewed energy amongst our membership to go out to parts of the province where we haven’t been previously as active, and talk about what they have been subjected to in the last two years, that we have huge opportunities there.”

Delegates will be asked to support a call for high-speed internet coverage across Alberta, which would remove barriers to access in rural Alberta and Indigenous communities, said the convention guidebook.

The convention comes as the NDP has a wide lead on the UCP, according to the latest polls. A Leger online survey of 1,001 Albertans conducted between March 5 to 8 found 40 per cent of respondents support the NDP, compared to just 20 per cent for the UCP.

Notley said it’s “encouraging” to see, but they aren’t taking anything for granted.

“I’ve always believed that Alberta Democrats have to work twice as hard as anybody else in the political spectrum, or the political arena,” she said. “So what we’re going to do is continue to do exactly what we have been, not only being a strong and I would argue fearless Opposition, but also trying to match every oppositional position with something that is propositional — offering Albertans a different vision, including an Alberta path to clean electricity where possible.”

 

Related News

View more

A tenth of all electricity is lost in the grid - superconducting cables can help

High-Temperature Superconducting Cables enable lossless, high-voltage, underground transmission for grid modernization, linking renewable energy to cities with liquid nitrogen cooling, boosting efficiency, cutting emissions, reducing land use, and improving resilience against disasters and extreme weather.

 

Key Points

Liquid-nitrogen-cooled power cables delivering electricity with near-zero losses, lower voltage, and greater resilience.

✅ Near-lossless transmission links renewables to cities efficiently

✅ Operate at lower voltage, reducing substation size and cost

✅ Underground, compact, and resilient to extreme weather events

 

For most of us, transmitting power is an invisible part of modern life. You flick the switch and the light goes on.

But the way we transport electricity is vital. For us to quit fossil fuels, we will need a better grid, with macrogrid planning connecting renewable energy in the regions with cities.

Electricity grids are big, complex systems. Building new high-voltage transmission lines often spurs backlash from communities, as seen in Hydro-Que9bec power line opposition over aesthetics and land use, worried about the visual impact of the towers. And our 20th century grid loses around 10% of the power generated as heat.

One solution? Use superconducting cables for key sections of the grid. A single 17-centimeter cable can carry the entire output of several nuclear plants. Cities and regions around the world have done this to cut emissions, increase efficiency, protect key infrastructure against disasters and run powerlines underground. As Australia prepares to modernize its grid, it should follow suit with smarter electricity infrastructure initiatives seen elsewhere. It's a once-in-a-generation opportunity.


What's wrong with our tried-and-true technology?
Plenty.

The main advantage of high voltage transmission lines is they're relatively cheap.

But cheap to build comes with hidden costs later. A survey of 140 countries found the electricity currently wasted in transmission accounts for a staggering half-billion tons of carbon dioxide—each year.

These unnecessary emissions are higher than the exhaust from all the world's trucks, or from all the methane burned off at oil rigs.

Inefficient power transmission also means countries have to build extra power plants to compensate for losses on the grid.

Labor has pledged A$20 billion to make the grid ready for clean energy, and international moves such as US-Canada cross-border approvals show the scale of ambition needed. This includes an extra 10,000 kilometers of transmission lines. But what type of lines? At present, the plans are for the conventional high voltage overhead cables you see dotting the countryside.

System planning by Australia's energy market operator shows many grid-modernizing projects will use last century's technologies, the conventional high voltage overhead cables, even as Europe's HVDC expansion gathers pace across its network. If these plans proceed without considering superconductors, it will be a huge missed opportunity.


How could superconducting cables help?
Superconduction is where electrons can flow without resistance or loss. Built into power cables, it holds out the promise of lossless electricity transfer, over both long and short distances. That's important, given Australia's remarkable wind and solar resources are often located far from energy users in the cities.

High voltage superconducting cables would allow us to deliver power with minimal losses from heat or electrical resistance and with footprints at least 100 times smaller than a conventional copper cable for the same power output.

And they are far more resilient to disasters and extreme weather, as they are located underground.

Even more important, a typical superconducting cable can deliver the same or greater power at a much lower voltage than a conventional transmission cable. That means the space needed for transformers and grid connections falls from the size of a large gym to only a double garage.

Bringing these technologies into our power grid offers social, environmental, commercial and efficiency dividends.

Unfortunately, while superconductors are commonplace in Australia's medical community (where they are routinely used in MRI machines and diagnostic instruments) they have not yet found their home in our power sector.

One reason is that superconductors must be cooled to work. But rapid progress in cryogenics means you no longer have to lower their temperature almost to absolute zero (-273℃). Modern "high temperature" superconductors only need to be cooled to -200℃, which can be done with liquid nitrogen—a cheap, readily available substance.

Overseas, however, they are proving themselves daily. Perhaps the most well-known example to date is in Germany's city of Essen. In 2014, engineers installed a 10 kilovolt (kV) superconducting cable in the dense city center. Even though it was only one kilometer long, it avoided the higher cost of building a third substation in an area where there was very limited space for infrastructure. Essen's cable is unobtrusive in a meter-wide easement and only 70cm below ground.

Superconducting cables can be laid underground with a minimal footprint and cost-effectively. They need vastly less land.

A conventional high voltage overhead cable requires an easement of about 130 meters wide, with pylons up to 80 meters high to allow for safety. By contrast, an underground superconducting cable would take up an easement of six meters wide, and up to 2 meters deep.

This has another benefit: overcoming community skepticism. At present, many locals are concerned about the vulnerability of high voltage overhead cables in bushfire-prone and environmentally sensitive regions, as well as the visual impact of the large towers and lines. Communities and farmers in some regions are vocally against plans for new 85-meter high towers and power lines running through or near their land.

Climate extremes, unprecedented windstorms, excessive rainfall and lightning strikes can disrupt power supply networks, as the Victorian town of Moorabool discovered in 2021.

What about cost? This is hard to pin down, as it depends on the scale, nature and complexity of the task. But consider this—the Essen cable cost around $20m in 2014. Replacing the six 500kV towers destroyed by windstorms near Moorabool in January 2020 cost $26 million.

While superconducting cables will cost more up front, you save by avoiding large easements, requiring fewer substations (as the power is at a lower voltage), and streamlining approvals.


Where would superconductors have most effect?
Queensland. The sunshine state is planning four new high-voltage transmission projects, to be built by the mid-2030s. The goal is to link clean energy production in the north of the state with the population centers of the south, similar to sending Canadian hydropower to New York to meet demand.

Right now, there are major congestion issues between southern and central Queensland, and subsea links like Scotland-England renewable corridors highlight how to move power at scale. Strategically locating superconducting cables here would be the best location, serving to future-proof infrastructure, reduce emissions and avoid power loss.

 

Related News

View more

Hot Houston summer and cold winter set new electricity records

US Electricity Demand 2018-2050 projects slower growth as energy consumption, power generation, air conditioning, and electric heating shift with efficiency standards, commercial floor space, industrial load, and household growth across the forecast horizon.

 

Key Points

A forecast of US power use across homes, commercial space, industrial load, and efficiency trends from 2018 to 2050.

✅ 2018 generation hit record; residential sales up 6%.

✅ Efficiency curbs demand; growth lags population and floor space.

✅ Commercial sales up 2%; industrial demand fell 3% in 2018.

 

Last year's Houston cold winter and hot summer drove power use to record levels, especially among households that rely on electricity for air conditioning during extreme weather conditions.

Electricity generation increased 4 per cent nationwide in 2018 and produced 4,178 million megawatt hours, driven in part by record natural gas generation across the U.S., surpassing the previous peak of 4,157 megawatt hours set in 2007, the Energy Department reported.

U.S. households bought 6 percent more electricity in 2018 than they did the previous year, despite longer-term declines in national consumption, reflecting the fact 87 percent of households cool their homes with air conditioning and 35 percent use electricity for heating.

Electricity sales to the commercial sector increased 2 percent in 2018 compared to the previous year while the industrial sector bought 3 percent less last year.

Going forward, the Energy Department forecasts that electricity consumption will grow at a slower pace than in recent decades, aligning with falling sales projections as technology improves and energy efficiency standards moderate consumption.

The economy and population growth are primary drivers of demand and the government predicts the number of households will grow at 0.7 percent per year from now until 2050 but electricity demand will grow only by 0.4 percent annually.

Likewise, commercial floor space is expected to increase 1 percent per year from now until 2050 but electricity sales will increase only by half that amount.

Globally, surging electricity demand is putting power systems under strain, providing context for these domestic trends.

 

Related News

View more

Ontario hydro rates set to increase Nov. 1, Ontario Energy Board says

Ontario Electricity Rebate clarifies hydro rates as OEB aligns bills with inflation, shows true cost per kilowatt hour, and replaces Fair Hydro Plan; transparent on-bill credit offsets increases tied to nuclear refurbishment and supply costs.

 

Key Points

A line-item credit on Ontario hydro bills that offsets higher electricity costs and reflects OEB-set rates.

✅ Starts Nov. 1 with rates in line with inflation

✅ Shows true per-kWh cost plus separate rebate line

✅ Driven by nuclear refurbishment and supply costs

 

The Ontario Energy Board says electricity rate changes for households and small businesses will be going up starting next week.

The agency says rates are scheduled to increased by about $1.99 or nearly 2% for a typical residential customer who uses 700 kilowatt hours per month.

The provincial government said in March it would continue to subsidize hydro rates, through legislation to lower rates, and hold any increases to the rate of inflation.

The OEB says the new rates, which the board says are “in line” with inflation, will take effect Nov. 1 as changes for electricity consumers roll out and could be noticed on bills within a few weeks of that date.

Prices are increasing partly due to government legislation aimed at reflecting the actual cost of supply on bills, and partly due to the refurbishment of nuclear facilities, contributing to higher hydro bills for some consumers.

So, effective November 1, Ontario electricity bills will show the true cost of power, after a period of a fixed COVID-19 hydro rate, and will include the new Ontario Electricity Rebate.

Previously the electricity rebate was concealed within the price-per-kilowatt-hour line item on electricity statements, prompting Hydro One bill redesign discussions to improve clarity. This meant customers could not see how much the government rebate was reducing their monthly costs, and bills did not display the true cost of electricity used.

"People deserve facts and accountability, especially when it comes to hydro costs," said Energy Minister Rickford.

The new Ontario Electricity Rebate will appear as a transparent on-bill line item and will replace the former government's Fair Hydro Plan says a government news release. This change comes in response to the Auditor General's special report on the former government's Fair Hydro Plan which revealed that "the government created a needlessly complex accounting/financing structure for the electricity rate reduction in order to avoid showing a deficit or an increase in net debt."

"The Electricity Distributors Association commends the government's commitment to making Ontario's electricity bills more transparent," said Teresa Sarkesian, President of the Electricity Distributors Association. "As the part of our electricity system that is closest to customers, local hydro utilities appreciated the opportunity to work with the government on implementing this important initiative. We worked to ensure that customers who receive their electricity bill will have a clear understanding of the true cost of power and the amount of their on-bill rebate. Local hydro utilities are focused on making electricity more affordable, reducing red tape, and providing customers with a modern and reliable electricity system that works for them."

The average customer will see the electricity line on their bill rise, showing the real cost per kilowatt hour. The new Ontario Electricity Rebate will compensate for that rise, and will be displayed as a separate line item on hydro bills. The average residential bill will rise in line with the rate of inflation.

 

Related News

View more

The Phillipines wants nuclear power to be included in the country's energy mix as the demand for electricity is expected to rise.

Philippines Nuclear Energy Policy aims to add nuclear power to the energy mix via executive order, meeting rising electricity demand with 24/7 baseload while balancing safety, renewables, and imported fuel dependence in the Philippines.

 

Key Points

A government plan to include nuclear power in the energy mix to meet demand, ensure baseload, and uphold safety.

✅ Executive order proposed by Energy Secretary Alfonso Cusi

✅ Targets 24/7 baseload, rising electricity demand

✅ Balances safety, renewables, and energy security

 

Phillipines Presidential spokesman Salvador Panelo said Energy Secretary Alfonso Cusi made the proposal during last Monday's Cabinet meeting in Malacaaang. "Secretary Cusi likewise sought the approval of the issuance of a proposed executive order for the inclusion of nuclear power, including next-gen nuclear options in the country's energy mix as the Philippines is expected to the rapid growth in electricity and electricity demand, in which, 24/7 power is essential and necessary," Panelo said in a statement.

Panelo said Duterte would study the energy chief's proposal, as China's nuclear development underscores regional momentum. In the 1960s until the mid 80s, the late president Ferdinand Marcos adopted a nuclear energy program and built the Bataan Nuclear Plant.

The nuclear plant was mothballed after Corazon Aquino became president in 1986. There have been calls to revive the nuclear plant, saying it would help address the Philippines' energy supply issues. Some groups, however, said such move would be expensive and would endanger the lives of people living near the facility, citing Three Mile Island as a cautionary example.

Panelo said proposals to revive the Bataan Nuclear Plant were not discussed during the Cabinet meeting, even as debates like California's renewable classification continue to shape perceptions. Indigenous energy sources natural gas, hydro, coal, oil, geothermal, wind, solar, biomassand ethanol constitute more than half or 59.6%of the Philippines' energy mix.

Imported oil make up 31.7% while imported coal, reflecting the country's coal dependency, contribute about 8.7%.

Imported ethanol make up 0.1% of the energy mix, even as interest in atomic energy rises globally.

In 2018, Duterte said safety should be the priority when deciding whether to tap nuclear energy for the country's power needs, as countries like India's nuclear restart proceed with their own safeguards.

 

Related News

View more

Senate Committee Advised by WIRES Counsel That Electric Transmission Still Faces Barriers to Development

U.S. Transmission Grid Modernization underscores FERC policy certainty, high-voltage infrastructure upgrades, renewables integration, electrification, and grid resilience to cut congestion and enable distributed energy resources, safeguarding against extreme weather, cyber threats, and market volatility.

 

Key Points

A plan to expand, upgrade, and secure high-voltage networks for renewables integration, electrification, reliability.

✅ Replace aging lines to cut congestion and customer costs

✅ Integrate renewables and distributed energy resources at scale

✅ Enhance resilience to weather, cyber, and physical threats

 

Today, in a high-visibility hearing on U.S. energy delivery infrastructure before the United States Senate Committee on Energy and Natural Resources, WIRES Executive Director and Former FERC Chairman Jim Hoecker addressed the challenges and opportunities that confront the modern high-voltage grid as the industry strives to upgrade and expand it to meet the demands of consumers and the economy.

In prepared testimony and responses to Senators' questions, Hoecker urged the Committee to support industry efforts to expand and upgrade the transmission network and to help regulators, especially the Federal Energy Regulatory Commission (FERC action on aggregated DERs), promote certainty and predictability in energy policy and regulation. 

 

His testimony stressed these points:

Significant transmission investment is needed now to replace aging infrastructure like the aging grid risks to clean energy, reduce congestion costs, and deliver widespread benefits to customers.

Increasingly, the role of the transmission grid is to integrate new distributed resources and renewable energy into the electric system and make them available to the market.

The changing electric generation mix, including needed nuclear innovation, and the coming electrification of transportation, heating, and other segments of the American economy in the next quarter century will depend on a strong and adaptable electric system. A robust transmission grid will be the linchpin that will enable us to meet those demands.

"Transmission is the common element that will support all future electricity needs and provide a hedge against uncertainties and potential costly outcomes. The time is now to be proactive in encouraging additional investments in our nation's most crucial infrastructure: the electric transmission system," Hoecker said. 

Hoecker's testimony also emphasized that transmission investment will contribute to the overall resilience of the electric system by bringing multiple resources and technologies to bear on threats to the power system, including extreme weather and proposals like a wildfire-resilient grid bill, cyber or physical attacks, or other events. Visit WIRES website for recently filed comments on the subject (supported by a Brattle Group study). 

"Transmission gives us the optionality to adapt to whatever the future holds, and a modern and resilient transmission system, informed by Texas reliability improvements, will be the most valuable energy asset we have," says Nina Plaushin, president of WIRES and vice president of federal affairs, regulatory and communications for ITC Holdings Corp. 

Hoecker closed his testimony by emphasizing that the "electrification" scenario that is being discussed across multiple industries demands action now in order to ensure policy and regulatory certainty that will support needed transmission investment. More studies need to be conducted to better understand and define how this delivery network must be configured and planned in anticipation of this potential transformation in how we use electrical energy. A full copy of the WIRES testimony can be found here.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified