Synchrophasor data improving reliability through early risk detection

subscribe

Recently, ISO New England wrapped up the two-year observation phase of the Synchrophasor Infrastructure and Data Utilization SIDU project. The project was a major smart-grid initiative to deploy synchrophasor technology in collaboration with regional transmission owners and with a grant from the US Department of Energy.

Synchrophasor technology uses phasor measurement units PMUs to measure power grid voltage, current, frequency, and phase angle at 30 times per second. These measurements are time-synchronized to global positioning system GPS satellites.

Since implementation in 2013, the high-speed synchrophasor data and advanced data analytics have been proven to provide valuable information on the regional power system by enabling the monitoring of system dynamics that was previously not possible fast and accurate post-event analysis and validating and improving power system models. For more about the immediate benefits of the synchrophasor technology read the September 2013 article, “ISO New England successfully implements three-year DOE Smart Grid Project.”

Results during the observation phase have continued to highlight ways the synchrophasor data will help ensure the reliability of the regional power system and also be of assistance to regional power resources.

One real-world example of success and practical application

In the course of its data analysis, the ISO identified abnormal power system oscillations resulting in potentially dangerous fluctuations of power flows on the grid. The new “high-resolution” synchrophasor measurements enabled the ISO to not only detect but determine the origin of these oscillations: a regional power plant.

The ISO team shared their observations and synchrophasor data with plant management to help them research the cause of the problem. The joint efforts resulted in almost immediate upgrades at the plant that significantly decreased the oscillations, and the plant owner plans on making additional investments to further improve plant performance. The early detection and resolution of this issue is a win for New England, too, since eliminating abnormal oscillations is essential for maintaining reliability of the regional power grid.

Eugene Litvinov, ISO Chief Technologist, notes, “The detection of this issue and its successful, collaborative resolution is just a preview of the many regional benefits that the ISO expects from this new technology.”

Next steps

The ISO continues to improve its understanding of the benefits that this new technology can provide, with the goal of incorporating PMU data into real-time operations.

The ISO has started experimenting with integrating PMU data into the conventional data acquisition system SCADA and is also working with the regionÂ’s transmission and generating companies to install more PMUs.

Looking ahead, the ISO is starting planning efforts for real-time exchange of PMU data with neighboring systems to improve situational awareness through wide-area monitoring.

Related News

Port Hawkesbury Paper

Nova Scotia's last paper mill seeks new discount electricity rate

HALIFAX - Nova Scotia Power is scheduled to appear before government regulators Tuesday morning seeking approval for a unique discount rate for its largest customer.

Under the four-year plan, Nova Scotia Power would control the supply of electricity to Port Hawkesbury Paper, with the right to direct the company to increase or reduce daily consumption throughout the year.

The rate proposal is supported by the mill, which says it needs to lower its power bill to keep its operation viable.

The rate went into effect on Jan. 1 on a temporary basis, pending the outcome of a hearing this week before the Nova…

READ MORE
electric vehicle charging

Michigan utilities propose more than $20M in EV charging programs

READ MORE

hydrogen electricity

Green hydrogen, green energy: inside Brazil's $5.4bn green hydrogen plant

READ MORE

smart grid headquarters

Tunisia moves ahead with smart electricity grid

READ MORE

wind power

Wind Leading Power

READ MORE