FPL customers not getting money's worth from green program

By Associated Press


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Nearly 39,000 Florida Power & Light customers gave the company $11.4 million over four years to develop green energy, but a report shows most of the money went toward administrative and marketing costs.

According to a 19-page report written by the staff of Florida's Public Service Commission, FPL's Sunshine Energy Program suffers from several problems and "does not currently serve the interest of the program's participants."

The voluntary program charges FPL customers $9.75 per month — on top of the regular energy bill — to help develop alternative power sources. Nearly 39,000 FPL customers participate in it.

According to FPL's web site, for every 10,000 subscribers, the company will develop 150 kilowatts of solar energy in Florida and buy 1,000 kilowatt hours of renewable energy credits.

Public Service Commission staff said only 24 percent of the $11.4 million collected from customers went toward developing renewable energy. The rest went to marketing and administrative costs.

The PSC staff wrote in the report that the program "must be redesigned to address state renewable energy policies and to better serve the interest of the program's participants." The staff will discuss its findings with the commission during a meeting in Tallahassee on July 1.

The report also criticized FPL's handling of promised solar power projects. One of the few projects actually completed was the installation of solar panels on an upscale residential neighborhood in Naples.

"There could have been other projects that would have provided greater benefits to the program's participants," wrote Public Service Commission staff.

FPL spokeswoman Amy Brunjes says the company is evaluating the report and has already filed paperwork with the Public Service Commission to modify the Sunshine Energy Program.

Holly Binns, field director for the Tallahassee-based group Environment Florida, is dismayed by the findings.

"This report is really disappointing for customers, who, I think in good faith, spent their hard earned money to jump start renewable energy in Florida."

Related News

Report: Solar ITC Extension Would Be ‘Devastating’ for US Wind Market

Solar ITC Impact on U.S. Wind frames how a 30% solar investment tax credit could undercut wind PTC economics, shift corporate procurement, and, without transmission and storage, slow onshore builds despite offshore wind momentum.

 

Key Points

It is how a solar ITC extension may curb U.S. wind growth absent PTC parity, transmission, storage, and offshore backing.

✅ ITC at 30% risks shifting corporate procurement to solar.

✅ Post-PTC wind faces grid, transmission, and curtailment headwinds.

✅ Offshore wind, storage pairing, TOU demand could offset.

 

The booming U.S. wind industry, amid a wind power surge, faces an uncertain future in the 2020s. Few factors are more important than the fate of the solar ITC.

An extension of the solar investment tax credit (ITC) at its 30 percent value would be “devastating” to the future U.S. wind market, according to a new Wood Mackenzie report.

The U.S. is on track to add a record 14.6 gigawatts of new wind capacity in 2020, despite Covid-19 impacts, and nearly 39 gigawatts during a three-year installation boom from 2019 to 2021, according to Wood Mackenzie’s 2019 North America Wind Power Outlook.

But the market’s trajectory begins to look highly uncertain from the early 2020s onward, and solar is one of the main reasons why.

Since the dawn of the modern American renewables market, the wind and solar sectors have largely been allies on the national stage, benefiting from many of the same favorable government plans and sharing big-picture goals. Until recently, wind and solar companies rarely found themselves in direct competition.

But the picture is changing as solar catches up to wind on cost and the grid penetration of renewables surges. What was once a vague alliance between the two fastest growing renewables technologies could morph into a serious rivalry.

While many project developers are now active in both sectors, including NextEra Energy Resources, Invenergy and EDF, the country’s thriving base of wind manufacturers could face tougher days ahead.

 

The ITC's inherent advantage

At this point, wind remains solar’s bigger sibling in many ways.

The U.S. has nearly 100 gigawatts of installed wind capacity today, compared to around 67 gigawatts of solar. With their substantially higher capacity factors, wind farms generated four times more power for the U.S. grid last year than utility-scale solar plants, for a combined wind-solar share of 8.2 percent, according to government figures, even as renewables are projected to reach one-fourth of U.S. electricity generation. (Distributed PV systems further add to solar’s contribution.)

But it's long been clear that wind would lose its edge at some point. The annual solar market now regularly tops wind. The cost of solar energy is falling more rapidly, and appears to have more runway for further reduction. Solar’s inherent generation pattern is more valuable in many markets, delivering power during peak-demand hours, while the wind often blows strongest at night.

 

And then there’s the matter of the solar ITC.

In 2015, both wind and solar secured historic multi-year extensions to their main federal subsidies. The extensions gave both industries the longest period of policy clarity they’ve ever enjoyed, setting in motion a tidal wave of installations set to crest over the next few years.

Even back in 2015, however, it was clear that solar got the better deal in Washington, D.C.

While the wind production tax credit (PTC) began phasing down for new projects almost immediately, solar developers were given until the end of 2019 to qualify projects for the full ITC.

And critically, while the wind PTC drops to nothing after its sunset, commercially owned solar projects will remain eligible for a 10 percent ITC forever, based on the existing legislation. Over time, that amounts to a huge advantage for solar.

In another twist, the solar industry is now openly fighting for an extension of the 30 percent ITC, while the wind industry seemingly remains cooler on the prospect of pushing for a similar prolongation — having said the current PTC extension would be the last.

 

Plenty of tailwinds, too

Wood Mackenzie's report catalogues multiple factors that could work for or against the wind market in the "uncharted" post-PTC years, many of them, including the Covid-19 crisis, beyond the industry’s direct control.

If things go well, annual installations could bounce back to near-record levels by 2027 after a mid-decade contraction, the report says. But if they go badly, installations could remain depressed at 4 gigawatts or below from 2022 through most of the coming decade, and that includes an anticipated uplift from the offshore market.

An extension of the solar ITC without additional wind support would “severely compound” the wind market’s struggle to rebound in the 2020s, the report says. The already-evident shift in corporate renewables procurement from wind to solar could intensify dramatically.

The other big challenge for wind in the 2020s is the lack of progress on transmission infrastructure that would connect potentially massive low-cost wind farms in interior states with bigger population centers. A hoped-for national infrastructure package that might address the issue has not materialized.

Even so, many in the wind business remain cautiously optimistic about the post-PTC years, with a wind jobs forecast bolstering sentiment, and developers continue to build out longer-term project pipelines.

Turbine technology continues to improve. And an extension of the solar ITC is far from assured.

Other factors that could work in wind’s favor in the years ahead include:

The nascent offshore sector, which despite lingering regulatory uncertainty at the federal level looks set to blossom into a multi-gigawatt annual market by the mid-2020s, in line with an offshore wind forecast that highlights substantial growth potential. Lobbying efforts for an offshore wind ITC extension are gearing up, offering a potential area for cooperation between wind and solar.

The potential linkage of policy support for energy storage to wind projects, building on the current linkage with solar.

Growing electric vehicle sales and a shift toward time-of-use retail electricity billing, which could boost power demand during off-peak hours when wind generation is strong.

The land-use advantages wind farms have over solar in some agricultural regions.

 

Related News

View more

London Underground Power Outage Disrupts Rush Hour

London Underground Power Outage 2025 disrupted Tube lines citywide, with a National Grid voltage dip causing service suspensions, delays, and station closures; TfL recovery efforts spotlight infrastructure resilience, contingency planning, and commuter safety communications.

 

Key Points

A citywide Tube disruption on May 12, 2025, triggered by a National Grid voltage dip, exposing resilience gaps.

✅ Bakerloo, Waterloo & City, Northern suspended; Jubilee disrupted.

✅ Cause: brief National Grid fault leading to a voltage dip.

✅ TfL focuses on recovery, communication, and resilience upgrades.

 

On May 12, 2025, a significant power outage disrupted the London Underground during the afternoon rush hour, affecting thousands of commuters across the city. The incident highlighted vulnerabilities in the city's transport infrastructure, echoing a morning outage in London reported earlier, and raised concerns about the resilience of urban utilities.

The Outage and Its Immediate Impact

The power failure occurred around 2:30 PM, leading to widespread service suspensions and delays on several key Tube lines. The Bakerloo and Waterloo & City lines were completely halted, while the Jubilee line experienced disruptions between London Bridge and Finchley Road. The Northern line was also suspended between Euston and Kennington, as well as south of Stockwell. Additionally, Elizabeth Line services between Abbey Wood and Paddington were suspended. Some stations were closed for safety reasons due to the lack of power.

Commuters faced severe delays, with many stranded in tunnels or on platforms. The lack of information and communication added to the confusion, as passengers were left uncertain about the cause and duration of the disruptions.

Cause of the Power Failure

Transport for London (TfL) attributed the outage to a brief fault in the National Grid's transmission network. Although the fault was resolved within seconds, it caused a voltage dip that affected local distribution networks, leading to the power loss in the Underground system.

The incident underscored the fragility of the city's transport infrastructure, particularly the aging electrical and signaling systems that are vulnerable to such faults, as well as weather-driven events like a major windstorm outage that can trigger cascading failures. While backup systems exist, their capacity to handle sudden disruptions remains a concern.

Broader Implications for Urban Infrastructure

This power outage is part of a broader pattern of infrastructure challenges facing London. In March 2025, a fire at an electrical substation in Hayes led to the closure of Heathrow Airport, affecting over 200,000 passengers, while similar disruptions at BWI Airport have underscored aviation vulnerabilities. These incidents have prompted discussions about the resilience of the UK's energy and transport networks.

Experts argue that aging infrastructure, coupled with increasing demand and climate-related stresses, poses significant risks to urban operations, as seen in a North Seattle outage and in Toronto storm-related outages that tested local grids. There is a growing call for investment in modernization and diversification of energy sources to ensure reliability and sustainability.

TfL's Response and Recovery Efforts

Following the outage, TfL worked swiftly to restore services. By 11 PM, all but one line had resumed operations, with only the Elizabeth Line continuing to experience severe delays. TfL officials acknowledged the inconvenience caused to passengers and pledged to investigate the incident thoroughly, similar to the Atlanta airport blackout inquiry conducted after a major outage, to prevent future occurrences.

In the aftermath, TfL emphasized the importance of clear communication with passengers during disruptions and committed to enhancing its contingency planning and infrastructure resilience.

Public Reaction and Ongoing Concerns

The power outage sparked frustration among commuters, many of whom took to social media to express their dissatisfaction, echoing sentiments during Houston's extended outage about communication gaps and delays. Some passengers reported being trapped in tunnels for extended periods without clear guidance from staff.

The incident has reignited debates about the adequacy of London's transport infrastructure and the need for comprehensive upgrades. While TfL has initiated reviews and improvement plans, the public remains concerned about the potential for future disruptions and the city's preparedness to handle them.

The May 12 power outage serves as a stark reminder of the vulnerabilities inherent in urban infrastructure. As London continues to grow and modernize, ensuring the resilience of its transport and energy networks will be crucial. This includes investing in modern technologies, enhancing communication systems, and developing robust contingency plans to mitigate the impact of future disruptions. For now, Londoners are left reflecting on the lessons learned from this incident and hoping for a more reliable and resilient transport system in the future.

 

 

Related News

View more

Why electric buses haven't taken over the world—yet

Electric Buses reduce urban emissions and noise, but require charging infrastructure, grid upgrades, and depot redesigns; they offer lower operating costs and simpler maintenance, with range limits influencing routes, schedules, and on-route fast charging.

 

Key Points

Battery-electric buses cut emissions and noise while lowering operating and maintenance costs for transit agencies.

✅ Lower emissions, noise; improved rider experience

✅ Requires charging, grid upgrades, depot redesigns

✅ Range limits affect routes; on-route fast charging helps

 

In lots of ways, the electric bus feels like a technology whose time has come. Transportation is responsible for about a quarter of global emissions, and those emissions are growing faster than in any other sector. While buses are just a small slice of the worldwide vehicle fleet, they have an outsize effect on the environment. That’s partly because they’re so dirty—one Bogotá bus fleet made up just 5 percent of the city’s total vehicles, but a quarter of its CO2, 40 percent of nitrogen oxide, and more than half of all its particulate matter vehicle emissions. And because buses operate exactly where the people are concentrated, we feel the effects that much more acutely.

Enter the electric bus. Depending on the “cleanliness” of the electric grid into which they’re plugged, e-buses are much better for the environment. They’re also just straight up nicer to be around: less vibration, less noise, zero exhaust. Plus, in the long term, e-buses have lower operating costs, and related efforts like US school bus electrification are gathering pace too.

So it makes sense that global e-bus sales increased by 32 percent last year, according to a report from Bloomberg New Energy Finance, as the age of electric cars accelerates across markets worldwide. “You look across the electrification of cars, trucks—it’s buses that are leading this revolution,” says David Warren, the director of sustainable transportation at bus manufacturer New Flyer.

Today, about 17 percent of the world’s buses are electric—425,000 in total. But 99 percent of them are in China, where a national mandate promotes all sorts of electric vehicles. In North America, a few cities have bought a few electric buses, or at least run limited pilots, to test the concept out, and early deployments like Edmonton's first e-bus offer useful lessons as systems ramp up. California has even mandated that by 2029 all buses purchased by its mass transit agencies be zero-emission.

But given all the benefits of e-buses, why aren’t there more? And why aren’t they everywhere?

“We want to be responsive, we want to be innovative, we want to pilot new technologies and we’re committed to doing so as an agency,” says Becky Collins, the manager of corporate initiative at the Southeastern Pennsylvania Transportation Authority, which is currently on its second e-bus pilot program. “But if the diesel bus was a first-generation car phone, we’re verging on smartphone territory right now. It’s not as simple as just flipping a switch.”

One reason is trepidation about the actual electric vehicle. Some of the major bus manufacturers are still getting over their skis, production-wise. During early tests in places like Belo Horizonte, Brazil, e-buses had trouble getting over steep hills with full passenger loads. Albuquerque, New Mexico, canceled a 15-bus deal with the Chinese manufacturer BYD after finding equipment problems during testing. (The city also sued). Today’s buses get around 225 miles per charge, depending on topography and weather conditions, which means they have to re-up about once a day on a shorter route in a dense city. That’s an issue in a lot of places.

If you want to buy an electric bus, you need to buy into an entire electric bus system. The vehicle is just the start.

The number one thing people seem to forget about electric buses is that they need to get charged, and emerging projects such as a bus depot charging hub illustrate how infrastructure can scale. “We talk to many different organizations that get so fixated on the vehicles,” says Camron Gorguinpour, the global senior manager for the electric vehicles at the World Resources Institute, a research organization, which last month released twin reports on electric bus adoption. “The actual charging stations get lost in the mix.”

But charging stations are expensive—about $50,000 for your standard depot-based one. On-route charging stations, an appealing option for longer bus routes, can be two or three times that. And that’s not even counting construction costs. Or the cost of new land: In densely packed urban centers, movements inside bus depots can be tightly orchestrated to accommodate parking and fueling. New electric bus infrastructure means rethinking limited space, and operators can look to Toronto's TTC e-bus fleet for practical lessons on depot design. And it’s a particular pain when agencies are transitioning between diesel and electric buses. “The big issue is just maintaining two sets of fueling infrastructure,” says Hanjiro Ambrose, a doctoral student at UC Davis who studies transportation technology and policy.

“We talk to many different organizations that get so fixated on the vehicles. The actual charging stations get lost in the mix as the American EV boom gathers pace across sectors.”

Then agencies also have to get the actual electricity to their charging stations. This involves lengthy conversations with utilities about grid upgrades, rethinking how systems are wired, occasionally building new substations, and, sometimes, cutting deals on electric output, since electric truck fleets will also strain power systems in parallel. Because an entirely electrified bus fleet? It’s a lot to charge. Warren, the New Flyer executive, estimates it could take 150 megawatt-hours of electricity to keep a 300-bus depot charged up throughout the day. Your typical American household, by contrast, consumes 7 percent of that—per year. “That’s a lot of work by the utility company,” says Warren.

For cities outside of China—many of them still testing out electric buses and figuring out how they fit into their larger fleets—learning about what it takes to run one is part of the process. This, of course, takes money. It also takes time. Optimists say e-buses are more of a question of when than if. Bloomberg New Energy Finance projects that just under 60 percent of all fleet buses will be electric by 2040, compared to under 40 percent of commercial vans and 30 percent of passenger vehicles.

Which means, of course, that the work has just started. “With new technology, it always feels great when it shows up,” says Ambrose. “You really hope that first mile is beautiful, because the shine will come off. That’s always true.”

 

Related News

View more

ATCO Electric agrees to $31 million penalty following regulator's investigation

ATCO Electric administrative penalty underscores an Alberta Utilities Commission probe into a sole-sourced First Nation contract, Jasper transmission line overpayments, and nondisclosure to ratepayers, sparked by a whistleblower and pending settlement approval.

 

Key Points

A $31M AUC settlement over alleged overpayment, sole-sourcing, and nondisclosure tied to a Jasper transmission line.

✅ $31M administrative penalty; AUC settlement pending approval

✅ Sole-sourced First Nation contract to protect related ATCO deal

✅ Overpayment concealed when seeking recovery from ratepayers

 

Regulated Alberta utility ATCO Electric has agreed to pay a $31 million administrative penalty after an Alberta Utilities Commission utilities watchdog investigation found it deliberately overpaid a First Nation group for work on a new transmission line, and then failed to disclose the reasons for it when it applied to be reimbursed by ratepayers for the extra cost.

An agreed statement of facts contained in a settlement agreement between ATCO Electric Ltd. and the commission's enforcement staff says the company sole-sourced a contract in 2018 for work that was necessary for an electric transmission line to Jasper, Alta., even as BC Hydro marked a Site C transmission line milestone elsewhere.

The company that won the contract was co-owned by the Simpcw First Nation in Barriere, B.C., while debates over a First Nations electricity line in Ontario underscore related issues, and the agreement says one of the reasons for the sole-sourcing was that another of Calgary-based ATCO's subsidiaries had a prior deal with the First Nation for infrastructure projects that included the provision of work camps on the Trans Mountain Pipeline expansion project.

The statement of facts says ATCO Electric feared that if it didn't grant the contract to the First Nation group and instead put the work to tender, amid legal pressures such as a treaty rights challenge, the group might back out of its deal with ATCO Structures and Logistics and partner with another, non-ATCO company on the Trans Mountain work.

The agreed statement says ATCO Electric paid several million dollars more than market value for some of the Jasper line work, while a Manitoba-Minnesota line delay was being weighed in another jurisdiction, and staff attempted to conceal the reasons for the overpayment when they sought to recover the extra money from Alberta consumers.

It states the investigation was sparked by a whistleblower, and notes the agreement between the utility commission's enforcement staff and ATCO Electric must still be approved by the Alberta Utilities Commission, a process comparable to hearings that consider oral traditional evidence on interprovincial lines.

The commission must be satisfied the settlement is in the public interest, a consideration often informed by concerns from Site C opponents in other regions.

 

Related News

View more

Tariffs on Chinese Electric Vehicles

Canada EV Tariffs weigh protectionism, import duties, and trade policy against affordable electric vehicles, climate goals, and consumer costs, balancing domestic manufacturing, critical minerals, battery supply chains, and China relations amid US-EU actions.

 

Key Points

Canada EV Tariffs are proposed duties on Chinese EV imports to protect jobs vs. prices, climate goals, and trade risks.

✅ Shield domestic automakers; counter subsidies

✅ Raise EV prices; slow adoption, climate targets

✅ Spark China retaliation; hit exports, supply chains

 

Canada, a rising star in critical EV battery minerals, finds itself at a crossroads. The question: should they follow the US and EU and impose tariffs on Chinese electric vehicles (EVs), after the U.S. 100% tariff on Chinese EVs set a precedent?

The Allure of Protectionism

Proponents see tariffs as a shield for Canada's auto industry, supported by recent EV assembly deals that put Canada in the race, a vital job creator. They argue that cheaper Chinese EVs, potentially boosted by government subsidies, threaten Canadian manufacturers. Tariffs, they believe, would level the playing field.

Consumer Concerns and Environmental Impact

Opponents fear tariffs will translate to higher prices, deterring Canadians from buying EVs, especially amid EV shortages and wait times already affecting the market. This could slow down Canada's transition to cleaner transportation, crucial for meeting climate goals. A slower EV adoption could also impact Canada's potential as an EV leader.

The Looming Trade War Shadow

Tariffs risk escalating tensions with China, Canada's second-largest trading partner. China might retaliate with tariffs on Canadian exports, jeopardizing sectors like oil and lumber. This could harm the Canadian economy and disrupt critical mineral and battery development, areas where Canada is strategically positioned, even as opportunities to capitalize on the U.S. EV pivot continue to emerge across North America.

Navigating a Charged Path

The Canadian government faces a complex decision. Protecting domestic jobs is important, but so is keeping EVs affordable for a greener future and advancing EV sales regulations that shape the market. Canada must carefully consider the potential benefits of tariffs against the risks of higher consumer costs and a potential trade war.

This path forward could involve exploring alternative solutions. Canada could invest in its domestic EV industry, providing incentives for both consumers and manufacturers. Additionally, collaborating with other countries, including Canada-U.S. collaboration as companies turn to EVs, to address China's alleged unfair trade practices might be a more strategic approach.

Canada's decision on EV tariffs will have far-reaching consequences. Striking a balance between protecting its domestic industry and fostering a robust, environmentally friendly transportation sector, and meeting ambitious EV goals set by policymakers, is crucial. Only time will tell which path Canada chooses, but the stakes are high, impacting not just jobs, but also the environment and Canada's position in the global EV race.

 

Related News

View more

Climate change poses high credit risks for nuclear power plants: Moody's

Nuclear Plant Climate Risks span flood risk, heat stress, and water scarcity, threatening operations, safety systems, and steam generation; resilience depends on mitigation investments, cooling-water management, and adaptive maintenance strategies.

 

Key Points

Climate-driven threats to nuclear plants: floods, heat, and water stress requiring resilience and mitigation.

✅ Flooding threats to safety and cooling systems

✅ Heat stress reduces thermal efficiency and output

✅ Water scarcity risks limit cooling capacity

 

 

Climate change can affect every aspect of nuclear plant operations like fuel handling, power and steam generation and the need for resilient power systems planning, maintenance, safety systems and waste processing, the credit rating agency said.

However, the ultimate credit impact will depend upon the ability of plant operators to invest in carbon-free electricity and other mitigating measures to manage these risks, it added.
Close proximity to large water bodies increase the risk of damage to plant equipment that helps ensure safe operation, the agency said in a note.

Moody’s noted that about 37 gigawatts (GW) of U.S. nuclear capacity is expected to have elevated exposure to flood risk and 48 GW elevated exposure to combined rising heat, extreme heat costs and water stress caused by climate change.

Parts of the Midwest and southern Florida face the highest levels of heat stress, while the Rocky Mountain region and California face the greatest reduction in the availability of future water supply, illustrating the need for adapting power generation to drought strategies, it said.

Nuclear plants seeking to extend their operations by 20, or even 40 years, beyond their existing 40-year licenses in support of sustaining U.S. nuclear power and decarbonization face this climate hazard and may require capital investment adjustments, Moody’s said, as companies such as Duke Energy climate report respond to investor pressure for climate transparency.

“Some of these investments will help prepare for the increasing severity and frequency of extreme weather events, highlighting that the US electric grid is not designed for climate impacts today.”

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.