Abu Dhabi to invest in thin-film photovoltaic technology

By Industrial Info Resources


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The Abu Dhabi Future Energy Company (Masdar) is investing $2 billion in thin-film photovoltaic (PV) solar technology manufacture. In a three-phase manufacturing and expansion strategy, the first $600 million phase of the project will see the development of two manufacturing facilities.

The first to be established will be in Erfurt, Germany, that will be operational by the third quarter of 2009, and the second in Abu Dhabi will begin production by the second quarter of 2010.

The German site was chosen for the launch plant as Germany is currently at the center of the global PV industry. The Erfurt plant will provide a reference base for technology and knowledge transfer by a joint German/Abu Dhabi team to the larger Abu Dhabi plant.

The two plants will have a combined annual production capacity of 210 megawatts (MW) that will go to major PV system installers in Europe and to Masdar's domestic generation requirements.

The third phase of the project has a target of 1,000 MW of annual production by 2014. This will be achieved by expanding the first two plants' capacities and building plants internationally to enable Masdar to become a global leader in the thin-film PV market.

This will form part of Masdar's total strategy to make Abu Dhabi into a developer and exporter of technology as opposed to being reliant on imports.

Masdar CEO Sultan Al Jaber said thin-film PV is a part of the group's build-deploy-develop strategy to build a strong position in alternative energy. He said the investment in PV solar energy would complement Abu Dhabi's energy market. As Abu Dhabi is a global energy leader it made sense to engage these new energy technologies to maintain leadership and become a global energy hub, he said.

"This marks a major milestone for Masdar and Abu Dhabi. It will not only establish Masdar as a major global PV player but will be the first high-tech semiconductor nano-manufacturing facility of its kind in the entire region positioning Abu Dhabi as a developer and producer of clean technology," Al Jaber said.

Masdar's plants will utilize state-of-the-art equipment capable of processing high volumes of ultra-large glass substrates. With an area of 5.7 square meters, these products are eight times larger and five times more powerful than those currently in the market.

The manufacture of high-volume thin-film PV requires less than 1% of high-cost semiconductor material when compared with traditional PV, and this is key to driving down the cost and increasing the application of PV technology.

Related News

KHNP is being considered for Bulgarian Nuclear Power Plant Project

KHNP Shortlisted for Belene Nuclear Power Plant, named by the Bulgarian Energy Ministry alongside Rosatom and CNNC; highlights APR1400 reactor expertise, EPC credentials, and expansion into the European nuclear energy market.

 

Key Points

KHNP is a strategic investor candidate for Bulgaria's Belene NPP, leveraging APR1400 and European market entry.

✅ Selected with Rosatom and CNNC by Bulgarian Energy Ministry

✅ Builds on APR1400 reactor design and EPC track record

✅ Positions KHNP for EU nuclear projects and O&M services

 

Korea Hydro & Nuclear Power (KHNP) has been selected as one of the three strategic investor candidates for a Bulgarian nuclear power plant project amid global nuclear project milestones worldwide.

The Bulgarian Energy Ministry selected KHNP of Korea, RosAtom of Russia and CNNC of China as strategic investor candidates for the construction of the Belene Nuclear Power Plant, KHNP said on Dec. 20. The Belene Nuclear Power Plant is the second nuclear power plant that Bulgaria plans to build following the 2,000-megawatt Kozloduy Nuclear Power Plant built in 1991 during the Soviet Union era. The project budget is estimated at 10 billion euros.

By being included in the shortlist for the Bulgarian project, KHNP has boosted the possibility of making a foray into the European nuclear power plant market, as India takes steps to get nuclear back on track worldwide. KHNP began to export nuclear power plants in 2009 by winning the UAE Barakah Nuclear Power Plant Project, with Barakah Unit 1 reaching 100% power as it moves toward commercial operations. The UAE plant will be based on the APR1400, a next-generation Korean nuclear reactor that is used in Shin Kori Units 3 and 4 in Korea.

The ARP1400 is a Korean nuclear reactor developed by KHNP with investment of about 230 billion won for 10 years from 1992. The nuclear reactor became the first non-U.S. type reactor to receive a design certificate (DC) from the U.S. Nuclear Regulatory Commission (NRC), as China's nuclear energy program continues on a steady development track globally. By receiving the DC, its safety was internationally recognized. In June, the company also won the maintenance project for the Barakah Nuclear Power Plant, completing the entire cycle from the construction of the nuclear power plant to its design, operation and maintenance. However, U.S. and U.K. companies took part of the maintenance project for the nuclear power plant.

In July, KHNP officials visited Turkey and contacted local energy officials to prepare for nuclear power plant projects to be launched in that country, as Bangladesh develops nuclear power with IAEA assistance in the region. Earlier in May, the company also submitted a proposal to participate in the construction of a new nuclear power plant in Kazakhstan, while Kenya moves forward with plans for a $5 billion plant.

 

Related News

View more

Ontario energy minister asks for early report exploring a halt to natural gas power generation

Ontario Natural Gas Moratorium gains momentum as IESO weighs energy storage, renewables, and demand management to meet rising electricity demand, ensure grid reliability, and advance zero-emissions goals while long-term capacity procurements proceed.

 

Key Points

A proposed halt on new gas plants as IESO assesses storage and renewables to maintain reliability and cut emissions.

✅ Minister seeks interim IESO report by Oct. 7

✅ Near-term contracts extend existing gas plants for reliability

✅ Long-term procurements emphasize storage, renewables, conservation

 

Ontario's energy minister says he doesn't think the province needs any more natural gas generation and has asked the electricity system regulator to speed up a report exploring a moratorium.

Todd Smith had previously asked the Independent Electricity System Operator (IESO) to report back by November on the feasibility of a moratorium and a plan to get to zero emissions in the electricity sector.

He has asked them today for an interim report by Oct. 7 so he can make a decision on a moratorium before the IESO secures contracts over the long term for new power generation.

"I've asked the IESO to speed up that report back to us so that we can get the information from them as to what the results would be for our grid here in Ontario and whether or not we actually need more natural gas," Smith said Tuesday after question period.

"I don't believe that we do."

Smith said that is because of the "huge success" of two updates provided Tuesday by the IESO to its attempts to secure more electricity supply for both the near term and long term. Demand is growing by nearly two per cent a year, while Ontario is set to lose a significant amount of nuclear generation, including the planned shutdown of the Pickering nuclear station over the next few years.

'For the near term, we need them,' regulator says
The regulator today released a list of 55 qualified proponents for those long-term bids and while it says there is a significant amount of proposed energy storage projects on that list, there are some new gas plants on it as well.

Chuck Farmer, the vice-president of planning, conservation and resource adequacy at the IESO, said it's hoped that the minister makes a decision on whether or not to issue a moratorium on new gas generation before the regulator proceeds with a request for proposals for long-term contracts.

The IESO also announced six new contracts — largely natural gas, with a small amount of wind power and storage — to start in the next few years. Farmer noted that these contracts were specifically for existing generators whose contracts were ending, while the province is exploring new nuclear plants for the longer term.

"When you look at the pool of generation resources that were in that situation, the reality is most of them were actually natural gas plants, and that we are relying on the continued use of the natural gas plants in the transition," he said in an interview. 

"So for the near term, we need them for the reliability of the system."

The upcoming request for proposals for more long-term contracts hopes to secure 3,500 megawatts of capacity, as Ontario faces an electricity shortfall in the coming years, and Farmer said the IESO plans to run a series of procurements over the next few years.

Opposition slams reliance on natural gas
The NDP and Greens on Tuesday criticized Ontario's reliance in the near term on natural gas because of its environmental implications.

The IESO has said that due to natural gas, greenhouse gas emissions from the electricity sector are set to increase for the next two decades, but by about 2038 it projects the net reductions from electric vehicles will offset electricity sector emissions.

Green Party Leader Mike Schreiner said it makes no sense to ramp up natural gas, both for the climate and for people's wallets.

"The cost of wind and solar power is much lower than gas," he said.

Ontario quietly revises its plan for hitting climate change targets
"We're in a now-or-never moment to address the climate crisis and the government is failing to meet this moment."

Interim NDP Leader Peter Tabuns said Ontario wouldn't be in as much of a supply crunch if the Progressive Conservative government hadn't cancelled 750 green energy contracts during their first term.

The Tories argued the province didn't need the power and the contracts were driving up costs for ratepayers, amid debate over whether greening the grid would be affordable.

The IESO said it is also proposing expanding conservation and demand management programs, as a "highly cost-effective" way to reduce strain on the system, though it couldn't say exactly what is on the table until the minister accepts the recommendation.

 

Related News

View more

Disruptions in the U.S. coal, nuclear power industries strain the economy and invite brownouts

Electric power market crisis highlights grid reliability risks as coal and nuclear retire amid subsidies, mandates, and cheap natural gas; intermittent wind and solar raise blackout concerns, resilience costs, and pricing distortions across regulated markets.

 

Key Points

Reliability and cost risks as coal and nuclear retire; subsidies distort prices; intermittent renewables strain grid.

✅ Coal and nuclear retirements reduce baseload capacity

✅ Subsidies and mandates distort market pricing signals

✅ Intermittent renewables increase blackout and grid risk

 

Is anyone paying any attention to the crisis that is going on in our electric power markets?

Over the past six months at least four major nuclear power plants have been slated for shutdown, including the last one in operation in California. Meanwhile, dozens of coal plants have been shuttered as well — despite low prices and cleaner coal. Some of our major coal companies may go into bankruptcy.

This is a dangerous game we are playing here with our most valuable resource — outside of clean air and water. Traditionally, we've received almost half our electric power nationwide from coal and nuclear power, and for good reason. They are cheap sources of power and they are highly resilient and reliable.

The disruption to coal and nuclear power wouldn't be disturbing if this were happening as a result of market forces. That's only partially the case.

#google#

The amazing shale oil and gas revolution is providing Americans with cheap gas for home heating and power generation. Hooray. The price of natural gas has fallen by nearly two-thirds over the last decade and this has put enormous price pressure on other forms of power generation.

But this is not a free-market story of Schumpeterian creative destruction. If it were, then wind and solar power would have been shutdown years ago. They can't possibly compete on a level playing field with $3 natural gas.

In most markets solar and wind power survive purely because the states mandate that as much as 30 percent of residential and commercial power come from these sources. The utilities have to buy it regardless of price, even as electricity demand is flat in many regions. What a sweet deal. The California state legislature just mandated that every new home spend $10,000 on solar panels on the roof.

Well over $100 billion of subsidies to big wind and big solar were doled out over the last decade, and even with the avalanche of taxpayer subsidies and bailout funds many of these companies like Solyndra (which received $500 million in handouts) failed, underscoring why a green revolution hasn't materialized as promised.

These industries are not anywhere close to self sufficiency. In 2017 amid utility trends to watch the wind industry admitted that without a continuation of a multi-billion tax credit, the wind turbines would stop turning.

This combines with the left's war on coal through regulations that have destroyed coal plants in many areas. (Thank goodness for the exports of coal or the industry would be in much bigger trouble.)

Bottom line: Our power market is a Soviet central planner's dream come true and it is extinguishing our coal and nuclear industries.

 

Why should anyone care?

First, because government subsidies, regulations and mandates make electric power more expensive. Natural gas prices have fallen by two-thirds, but electric power costs have still risen in most areas — thanks to the renewable mandates.

More importantly, the electric power market isn't accurately pricing in the value of resilience and reliability. What is the value of making sure the lights don't go off? What is the cost to the economy and human health if we have rolling brownouts and blackouts because the aging U.S. grid doesn't have enough juice during peak demand.

Politicians, utilities and federal regulators are shortsightedly killing our coal and nuclear capacities without considering the risk of future energy shortages and power disruptions. Once a nuclear plant is shutdown, you can't just fire it back up again when you need it.

Wind and solar are notoriously unreliable. Most places where wind power is used, coal plants are needed to back up the system during peak energy use and when the wind isn't blowing.

The first choice to fix energy markets is to finally end the tangled web of layers and layers of taxpayer subsidies and mandates and let the market choose. Alas, that's nearly impossible given the political clout of big wind and solar.

The second best solution is for the regulators and utilities to take into account the grid reliability and safety of our energy. Would people be willing to pay a little more for their power to ensure against brownouts? I sure would. The cost of having too little energy far exceeds the cost of having too much.

A glass of water costs pennies, but if you're in a desert dying of thirst, that water may be worth thousands of dollars.

I'll admit I'm not sure what the best solution is to the power plant closures. But if we have major towns and cities in the country without electric power for stretches of time because of green energy fixation, Americans are going to be mighty angry and our economy will take a major hit.

When our manufacturers, schools, hospitals, the internet and iPhones shut down, we're not going to think wind and solar power are so chic.

If the lights start to go out five or 10 years from now, we will look back at what is happening today and wonder how we could have been so darn stupid.

 

Related News

View more

94,000 lose electricity in LA area after fire at station

Los Angeles Power Station Fire prompts LADWP to shut a Northridge/Reseda substation, causing a San Fernando Valley outage amid a heatwave; high-voltage equipment and mineral oil burned as 94,000 customers lost power, elevator rescues reported.

 

Key Points

An LADWP substation fire in Northridge/Reseda caused a major outage; 94,000 customers affected as crews restore power.

✅ Fire started around 6:52 p.m.; fully extinguished by 9 p.m.

✅ High-voltage gear and mineral oil burned; no injuries reported.

✅ Outages hit Porter Ranch, Reseda, West Hills, Granada Hills.

 

About 94,000 customers were without electricity Saturday night after the Los Angeles Department of Water and Power shut down a power station in the northeast San Fernando Valley that caught fire, the agency said.

The fire at the station in the Northridge/Reseda area of Los Angeles started about 6:52 p.m. and involved equipment that carries high-voltage electricity and distributes it at lower voltages to customers in the surrounding area, the department said, even as other utilities sometimes deploy wildfire safety shut-offs to reduce risk during dangerous conditions.

The department shut off power to the station as a precautionary move, and it is restoring power now that the fire has been put out, similar to restoration after intentional shut-offs in other parts of California. Initially, 140,000 customers were without power. That number had been cut to 94,000 by 11 p.m.

The power outage comes as much of California baked in heat that broke records, and rolling blackout warnings were issued as the grid strained. A record that stood 131 years in Los Angeles was snapped when the temperature spiked at 98 degrees downtown.

People reported losing power in Porter Ranch, Winnetka, West Hills, Canoga Park, Woodland Hills, Granada Hills, North Hills, Reseda and Chatsworth, KABC TV reported, highlighting electricity inequality across communities.

Shortly after the blaze broke out, firefighters found a huge container of mineral oil that is used to cool electrical equipment on fire, Los Angeles Fire Department spokesman Brian Humphrey told the Los Angeles Times. The incident underscores infrastructure risks that in some regions have required a complete grid rebuild after severe storms.

Firefighters had the blaze under control by 8:30 p.m. and were able to put it out by 9 p.m., Humphrey said. "These were fierce flames, with smoke towering more than 300 feet into the sky," he told the newspaper.

No one was injured.

Firefighters rescued people who were stranded in elevators, Humphrey said.

 

Related News

View more

British Columbia Halts Further Expansion of Self-Driving Vehicles

BC Autonomous Vehicle Ban freezes new driverless testing and deployment as BC develops a regulatory framework, prioritizing safety, liability clarity, and road sharing with pedestrians and cyclists while existing pilot projects continue.

 

Key Points

A moratorium pausing new driverless testing until a safety-first regulatory framework and clear liability rules exist.

✅ Freezes new AV testing and deployment provincewide

✅ Current pilot shuttles continue under existing approvals

✅ Focus on safety, liability, and road-user integration

 

British Columbia has halted the expansion of fully autonomous vehicles on its roads. The province has announced it will not approve any new applications for testing or deployment of vehicles that operate without a human driver until it develops a new regulatory framework, even as it expands EV charging across the province.


Safety Concerns and Public Questions

The decision follows concerns about the safety of self-driving vehicles and questions about who would be liable in the event of an accident. The BC government emphasizes the need for robust regulations to ensure that self-driving cars and trucks can safely share the road with traditional vehicles, pedestrians, and cyclists, and to plan for infrastructure and power supply challenges associated with electrified fleets.

"We want to make sure that British Columbians are safe on our roads, and that means putting the proper safety guidelines in place," said Rob Fleming, Minister of Transportation and Infrastructure. "As technology evolves, we're committed to developing a comprehensive framework to address the issues surrounding self-driving technology."


What Does the Ban Mean?

The ban does not affect current pilot projects involving self-driving vehicles that already operate in BC, such as limited shuttle services and segments of the province's Electric Highway that support charging and operations.


Industry Reaction

The response from industry players working on autonomous vehicle technology has been mixed, amid warnings of a potential EV demand bottleneck as adoption ramps up. While some acknowledge the need for clear regulations, others express concern that the ban could stifle innovation in the province.

"We understand the government's desire to ensure safety, but a blanket ban risks putting British Columbia behind in the development of this important technology," says a spokesperson for a self-driving vehicle start-up.


Debate Over Self-Driving Technology

The BC ban highlights a larger debate about the future of autonomous vehicles. While proponents point to potential benefits such as improved safety, reduced traffic congestion, and increased accessibility, and national policies like Canada's EV goals aim to accelerate adoption, critics raise concerns about liability, potential job losses in the transportation sector, and the ability of self-driving technology to handle complex driving situations.


BC Not Alone

British Columbia is not the only jurisdiction grappling with the regulation of self-driving vehicles. Several other provinces and states in both Canada and the U.S. are also working to develop clear legal and regulatory frameworks for this rapidly evolving technology, even as studies suggest B.C. may need to double its power output to fully electrify road transport.


The Road Ahead

The path forward for fully autonomous vehicles in BC depends on the government's ability to create a regulatory framework that balances safety considerations with fostering innovation, and align with clean-fuel investments like the province's hydrogen project to support zero-emission mobility.  When and how that framework will materialize remains unclear, leaving the future of self-driving cars in the province temporarily uncertain.

 

Related News

View more

New Electricity Auctions Will Drive Down Costs for Ontario's Consumers

IESO Capacity Auctions will competitively procure resources for Ontario electricity needs, boosting reliability and resource adequacy through market-based bidding, enabling demand response, energy storage, and flexible supply to meet changing load and regional grid conditions.

 

Key Points

A competitive, technology-neutral auction buys capacity at lowest cost to keep Ontario's grid reliable and flexible.

✅ Market-based procurement reduces system costs.

✅ Enables demand response, storage, and hybrid resources.

✅ Increases flexibility and regional reliability in Ontario.

 

The Independent Electricity System Operator (IESO) is introducing changes to Ontario's electricity system that will help save Ontarians about $3.4 billion over a 10-year period. The changes include holding annual capacity auctions to acquire electricity resources at lowest cost that can be called upon when and where they are needed to meet Ontario electricity needs. 

Today's announcement marks the release of a high level design for future auctions, with changes for electricity consumers expected as the first is set to be held in late 2022.

"These auctions will specify how much electricity we need, and introduce a competitive process to determine who can meet that need. It's a competition among all eligible resources, and it's the Ontario consumer, including industrial electricity ratepayers, who benefits through lower costs and a more flexible system better able to respond to changing demand and supply conditions," says IESO President and CEO Peter Gregg.

In the past decade, electricity supply was typically acquired through very prescriptive means with defined targets for specific types of resources such as wind and solar, and secured through 20-year contracts.  While these long-term commitments helped Ontario transform its generation fleet over the last decade, electricity cost allocation also played a role, but longer term contracts provide limited flexibility in dealing with unexpected changes in the power system. 

"Imagine signing a 20-year contract for your cable TV service. In five years' time, electricity rates could be lower, new competitors may have entered the market, or entirely new and innovative platforms and services like Netflix may have emerged. You miss out on opportunities for improvement by being locked-in," says Gregg.

Provincial electricity demand has traditionally fluctuated over time due to factors like economic growth, conservation and the introduction of generating resources on local distribution systems, with occasional issues such as phantom demand affecting customers' costs as well. Technological changes are adding another layer of uncertainty to future demand as electric vehicles, energy storage and low-cost solar panels become more common.

"Our planners do their best to forecast electricity demand, but the truth is there's no such thing as certainty in electricity planning. That's why flexibility is so important. We don't want Ontarians to have to pay more on the typical Ontario electricity bill for electricity resources than are needed to ensure a reliable power system that can continue to meet Ontario's needs," says IESO Vice President and COO Leonard Kula.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.