Chilean plant to use coal

By MercoPress


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
CanadaÂ’s Methanex plant in the extreme south of Chile is planning to generate electricity from coal thus sparing more natural gas to convert into methanol, announced the company in Punta Arenas.

The huge complex a few miles away from Punta Arenas is one of the worldÂ’s leading producers of methanol but has seen output drop considerably because of limited supply of natural gas from Argentine providers.

“Generating electricity from coal will enable us to divert that natural gas to the production of methanol”, said a company source quoted in the local Prensa Austral.

The energy savings would help increase methanol output by 300 metric tons per day. The coal boiler is estimated would demand an investment of 40 million US dollars.

Coal is to be supplied by a local mine Loayza which has 10 million tons in proven reserves which at current extraction means a horizon of 30 years.

Company sources said that once the investment has been approved by headquarters in Canada and the environment impact assessment study is finished and approved “we can begin moving”.

Methanex is the major investment in Magallanes region and originally was to be supplied from the abundant natural gas resources of neighboring Tierra del Fuego and Santa Cruz provinces in Argentina.

However Argentina has frozen gas prices and because of insufficient investment and production has decided to privilege domestic consumption and only pumps to Chile when thereÂ’s a surplus.

Related News

3-layer non-medical masks now recommended by Canada's top public health doctor

Canada Three-Layer Mask Recommendation advises non-medical masks with a polypropylene filter layer and tightly woven cotton, aligned with WHO guidance, to curb COVID-19 aerosols indoors through better fit, coverage, and public health compliance.

 

Key Points

PHAC advises three-layer non-medical masks with a polypropylene filter to improve indoor COVID-19 protection.

✅ Two fabric layers plus a non-woven polypropylene filter

✅ Ensure snug fit: cover nose, mouth, chin without gaps

✅ Aligns with WHO guidance for aerosols and droplets

 

The Public Health Agency of Canada is now recommending Canadians choose three-layer non-medical masks with a filter layer to prevent the spread of COVID-19, even as an IEA report projects higher electricity needs for net-zero, as they prepare to spend more time indoors over the winter.

Chief Public Health Officer Dr. Theresa Tam made the recommendation during her bi-weekly pandemic briefing in Ottawa Tuesday, as officials also track electricity grid security amid critical infrastructure concerns.

"To improve the level of protection that can be provided by non-medical masks or face coverings, we are recommending that you consider a three-layer nonmedical mask," she said.

 

Trust MedProtect For All Your Mask Protection

www.medprotect.ca/collections/protective-masks

According to recently updated guidelines, two layers of the mask should be made of a tightly woven fabric, such as cotton or linen, and the middle layer should be a filter-type fabric, such as non-woven polypropylene fabric, as Canada explores post-COVID manufacturing capacity for PPE.

"We're not necessarily saying just throw out everything that you have," Tam told reporters, suggesting adding a filter can help with protection.

The Public Health website now includes instructions for making three-layer masks, while national goals like Canada's 2050 net-zero target continue to shape recovery efforts.

The World Health Organization has recommended three layers for non-medical masks since June, and experts note that cleaning up Canada's electricity is critical to broader climate resilience. When pressed about the sudden change for Canada, Tam said the research has evolved.

"This is an additional recommendation just to add another layer of protection. The science of masks has really accelerated during this particular pandemic. So we're just learning again as we go," she said.

"I do think that because it's winter, because we're all going inside, we're learning more about droplets and aerosols, and how indoor comfort systems from heating to air conditioning costs can influence behaviors."

She also urged Canadians to wear well-fitted masks that cover the nose, mouth and chin without gaping, as the federal government advances emissions and EV sales regulations alongside public health guidance.

Trust MedProtect For All Your Mask Protection

www.medprotect.ca/collections/protective-masks

 

 

Related News

View more

Minnesota bill mandating 100% carbon-free electricity by 2040

Minnesota 100% Carbon-Free Electricity advances renewable energy: wind, solar, hydropower, hydrogen, biogas from landfill gas and anaerobic digestion; excludes incineration in environmental justice areas; uses renewable energy credits and streamlined permitting.

 

Key Points

Minnesota's mandate requires utilities to deliver 100% carbon-free power by 2040 with targets and EJ safeguards.

✅ Utilities must hit 90% carbon-free by 2035; 100% by 2040.

✅ Incineration in EJ areas excluded; biogas, wind, solar allowed.

✅ Compliance via renewable credits; streamlined permitting.

 

Minnesota Gov. Tim Walz, D, is expected to soon sign a bill establishing a clean electricity standard requiring utilities in the state to provide electricity from 100% carbon-free sources by 2040. The bill also calls for utilities to generate at least 55% of their electricity from renewable energy sources by 2035, a trajectory similar to New Mexico's clean electricity push underway this decade.

Electricity generated from landfill gas and anaerobic digestion are named as approved renewable energy technologies, but electricity generated from incinerators operating in “environmental justice areas”, reflecting concerns about renewable facilities violating pollution rules in some states, will not be counted toward the goal. Wind, solar, and certain hydropower and hydrogen energy sources are also considered renewable in the bill. 

The bill defines EJ areas as places where at least 40% of residents are not white, 35% of households have an income that’s below 200% of the federal poverty line, and 40% or more of residents over age 5 have “limited” English proficiency. Areas the U.S. state defines as “Indian country” are also considered EJ areas.

Some of the state’s largest electric utilities, like Xcel Energy and Minnesota Power, have already pledged to move to carbon-free energy, and utilities such as Alliant Energy have outlined carbon-neutral plans in the region, but this bill speeds up that goal by 10 years, Minnesota Public Radio reported. The bill calls for public utilities operating in the state to be 80% carbon-free and other electric utilities to be 60% carbon-free by 2030. All utilities must be 90% carbon-free by 2035 before ultimately hitting the 100% mark in 2040, according to the bill.  

The bill gives utilities some leniency if they demonstrate to state regulators that they can’t offer affordable power while working toward the benchmarks, acknowledging reliability challenges seen in places like California's grid during the clean energy transition. It also allows utilities to buy renewable energy credits to meet the standard instead of generating the energy themselves. 

Patrick Serfass, executive director of the American Biogas Council, said the bill will incentivize more biogas-related electricity projects, “which means the recycling of more organic material and more renewable electricity in the state. Those are all good things,” he said. ABC sees significant potential for biogas production in Minnesota, though the federal climate law has delivered mixed results for accelerating clean power deployment.

The bill also aims to streamline the permitting process for new energy projects in the state, even as some states consider limits on clean energy that would constrain utility use, and calls for higher minimum wage requirements for workers.

 

Related News

View more

Britain got its cleanest electricity ever during lockdown

UK Clean Electricity Record as wind, solar, and biomass boost renewable energy output, slashing carbon emissions and wholesale power prices during lockdown, while lower demand challenges grid balancing and drives a drop to 153 g/kWh.

 

Key Points

A milestone where wind, solar and biomass lifted renewables, cutting carbon intensity to 153 g/kWh during lockdown.

✅ Carbon intensity averaged 153 g/kWh in Q2 2020.

✅ Renewables output rose 32% via wind, solar, biomass.

✅ Wholesale power prices slumped 42% amid lower demand.

 

U.K electricity has never been cleaner. As wind, solar and biomass plants produced more power than ever in the second quarter, with a new wind generation record set, carbon emissions fell by a third from a year earlier, according to Drax Electric Insight’s quarterly report. Power prices slumped 42 per cent as demand plunged during lockdown. Total renewable energy output jumped 32 per cent in the period, as wind became the main source of electricity at times.

“The past few months have given the country a glimpse into the future for our power system, with higher levels of renewable energy, as wind led the power mix, and lower demand making for a difficult balancing act,”said  Iain Staffell, from Imperial College London and lead author of the report.

The findings of the report point to the impact energy efficiency can have on reducing emissions, as coal's share fell to record lows across the electricity system. Millions of people furloughed or working from home and shuttered shops up and down the country resulted in daily electricity demand dropping about 10% and being about four gigawatts lower than expected in the three months through June.

Average carbon emissions fell to a new low of 153 grams per kWh of electricity consumed over the quarter, as coal-free generation records were extended, even though low-carbon generation stalled in 2019, according to the report.

 

Related News

View more

Experts Advise Against Cutting Quebec's Energy Exports Amid U.S. Tariff War

Quebec Hydropower Export Retaliation examines using electricity exports to counter U.S. tariffs amid Canada-U.S. trade tensions, weighing clean energy supply, grid reliability, energy security, legal risks, and long-term market impacts.

 

Key Points

Using Quebec electricity exports as leverage against U.S. tariffs, and its economic, legal, and diplomatic consequences.

✅ Revenue loss for Quebec and higher costs for U.S. consumers

✅ Risk of legal disputes under trade and energy agreements

✅ Long-term erosion of market share and grid cooperation

 

As trade tensions between Canada and the United States continue to escalate, with electricity exports at risk according to recent reporting, discussions have intensified around potential Canadian responses to the imposition of U.S. tariffs. One of the proposals gaining attention is the idea of reducing or even halting the export of energy from Quebec to the U.S. This measure has been suggested by some as a potential countermeasure to retaliate against the tariffs. However, experts and industry leaders are urging caution, emphasizing that the consequences of such a decision could have significant economic and diplomatic repercussions for both Canada and the United States.

Quebec plays a critical role in energy trade, particularly in supplying hydroelectric power to the United States, especially to the northeastern states, including New York where tariffs may spike energy prices according to analysts, strengthening the case for stable cross-border flows. This energy trade is deeply embedded in the economic fabric of both regions. For Quebec, the export of hydroelectric power represents a crucial source of revenue, while for the U.S., it provides access to a steady and reliable supply of clean, renewable energy. This mutually beneficial relationship has been a cornerstone of trade between the two countries, promoting economic stability and environmental sustainability.

In the wake of recent U.S. tariffs on Canadian goods, some policymakers have considered using energy exports as leverage, echoing threats to cut U.S. electricity exports in earlier disputes, to retaliate against what is viewed as an unfair trade practice. The idea is to reduce or stop the flow of electricity to the U.S. as a way to strike back at the tariffs and potentially force a change in U.S. policy. On the surface, this approach may appear to offer a viable means of exerting pressure. However, experts warn that such a move would be fraught with significant risks, both economically and diplomatically.

First and foremost, Quebec's economy is heavily reliant on revenue from hydroelectric exports to the U.S. Any reduction in these energy sales could have serious consequences for the province's economic stability, potentially resulting in job losses and a decrease in investment. The hydroelectric power sector is a major contributor to Quebec's GDP, and recent events, including a tariff threat delaying a green energy bill in Quebec, illustrate how trade tensions can ripple through the policy landscape, while disrupting this source of income could harm the provincial economy.

Additionally, experts caution that reducing energy exports could have long-term ramifications on the energy relationship between Quebec and the northeastern U.S. These two regions have developed a strong and interconnected energy network over the years, and abruptly cutting off the flow of electricity could damage this vital partnership. Legal challenges could arise under existing trade agreements, and even as tariff threats boost support for Canadian energy projects among some stakeholders, the situation would grow more complex. Such a move could also undermine trust between the two parties, making future negotiations on energy and other trade issues more difficult.

Another potential consequence of halting energy exports is that U.S. states may seek alternative sources of energy, diminishing Quebec's market share in the long run. As the U.S. has a growing demand for clean energy, especially as it looks to transition away from fossil fuels, and looks to Canada for green power in several regions, cutting off Quebec’s electricity could prompt U.S. states to invest in other forms of energy, including renewables or even nuclear power. This could have a lasting effect on Quebec's position in the U.S. energy market, making it harder for the province to regain its footing.

Moreover, reducing or ceasing energy exports could further exacerbate trade tensions, leading to even greater economic instability. The U.S. could retaliate by imposing additional tariffs on Canadian goods or taking other measures that would negatively impact Canada's economy. This could create a cycle of escalating trade barriers that would hurt both countries and undermine the broader North American trade relationship.

While the concept of using energy exports as a retaliatory tool may seem appealing to some, the experts' advice is clear: the potential economic and diplomatic costs of such a strategy outweigh the short-term benefits. Quebec’s role as an energy supplier to the U.S. is crucial to its own economy, and maintaining a stable, reliable energy trade relationship is essential for both parties. Rather than escalating tensions further, it may be more prudent for Canada and the U.S. to seek diplomatic solutions that preserve trade relations and minimize harm to their economies.

While the idea of using Quebec’s energy exports as leverage in response to U.S. tariffs may appear attractive on the surface, and despite polls showing support for tariffs on energy and minerals among Canadians, it carries significant risks. Experts emphasize the importance of maintaining a stable energy export strategy to protect Quebec’s economy and preserve positive diplomatic relations with the U.S. Both countries have much to lose from further escalating trade tensions, and a more measured approach is likely to yield better outcomes in the long run.

 

Related News

View more

Canada Makes Historic Investments in Tidal Energy in Nova Scotia

Canada Tidal Energy Investment drives Nova Scotia's PLAT-I floating tidal array at FORCE, advancing renewable energy, clean electricity, emissions reductions, and green jobs while delivering 9 MW of predictable ocean power to the provincial grid.

 

Key Points

Federal funding for a floating tidal array delivering 9 MW of clean power in Nova Scotia, cutting annual CO2 emissions.

✅ $28.5M for Sustainable Marine's PLAT-I floating array

✅ Delivers 9 MW to Nova Scotia's grid via FORCE

✅ Cuts 17,000 tonnes CO2 yearly and creates local jobs

 

Canada has an abundance of renewable energy sources that are helping power our country's clean growth future and the Government of Canada is investing in renewable energy and grid modernization to reduce emissions, create jobs and invigorate local economies in a post COVID-19 pandemic world.

The Honourable Seamus O'Regan, Canada's Minister of Natural Resources, today announced one of Canada's largest-ever investments in tidal energy development — $28.5 million to Sustainable Marine in Nova Scotia to deliver Canada's first floating tidal energy array.

Sustainable Marine developed an innovative floating tidal energy platform called PLAT-I as part of advances in ocean and river power technologies that has undergone rigorous testing on the waters of Grand Passage for nearly two years. A second platform is currently being assembled in Meteghan, Nova Scotia and will be launched in Grand Passage later this year for testing before relocation to the Fundy Ocean Research Centre for Energy (FORCE) in 2021. These platforms will make up the tidal energy array.  

The objective of the project is to provide up to nine megawatts of predictable and clean renewable electricity to Nova Scotia's electrical grid infrastructure. This will reduce greenhouse gas emissions by 17,000 tonnes of carbon dioxide a year while creating new jobs in the province. The project will also demonstrate the ability to harness tides as a reliable source of renewable electricity to power homes, vehicles and businesses.

Tidal energy — a clean, renewable energy source generated by ocean tides and currents, alongside evolving offshore wind regulations that support marine renewables — has the potential to significantly reduce Canada's greenhouse gas emissions and improve local air quality by displacing electricity generated from fossil fuels.

Minister O'Regan made the announcement at the Marine Renewables Canada 2020 Fall Forum, which brings together its members and industry to identify opportunities and strategize a path forward for marine renewable energy sources.

Funding for the project comes from Natural Resources Canada's Emerging Renewables Power Program, part of Canada's more than $180-billion Investing in Canada infrastructure plan for public transit projects, green infrastructure, social infrastructure, trade and transportation routes and Canada's rural and northern communities, as Prairie provinces' renewable growth accelerates nationwide.

 

Related News

View more

Renewable power developers discover more energy sources make better projects

Hybrid renewable energy projects integrate wind, solar, and battery storage to enhance grid reliability, reduce curtailment, and provide dispatchable power in markets like Alberta, leveraging photovoltaic tracking, overbuilt transformers, and improved storage economics.

 

Key Points

Hybrid renewable energy projects combine wind, solar, and storage to deliver reliable, dispatchable clean power.

✅ Combine wind, solar, and batteries for steady, dispatchable output

✅ Lower curtailment by using shared transformers and smart inverters

✅ Boost farm income via leases; diversify risk from oil and gas

 

Third-generation farmer James Praskach has been burned by the oil and gas sector and watched wicked weather pound his crops flat, but he is hoping a new kind of energy -- the renewable kind -- will pay dividends.

The 39-year-old is part of a landowner consortium that is hosting the sprawling 300-megawatt Blackspring Ridge wind power project in southeastern Alberta.

He receives regular lease payments from the $600-million project that came online in 2014, even though none of the 166 towering wind turbines that surround his land are actually on it.

His lease payments stand to rise, however, when and if the proposed 77-MW Vulcan Solar project, which won regulatory approval in 2016, is green-lighted by developer EDF Renewables Inc.

The panels would cover about 400 hectares of his family's land with nearly 300,000 photovoltaic solar panels in Alberta, installed on racks designed to follow the sun. It would stand in the way of traditional grain farming of the land, but that wouldn't have been a problem this year, Praskach says.

"This year we actually had a massive storm roll through. And we had 100 per cent hail damage on all of (the Vulcan Solar lands). We had canola, peas and barley on it this year," he said, adding the crop was covered by insurance.

Meanwhile, poor natural gas prices and a series of oilpatch financial failures mean rents aren't being paid for about half of the handful of gas wells on his land, showing how a province that is a powerhouse for both fossil and green energy can face volatility -- he's appealed to the Alberta surface Rights Board for compensation.

"(Solar power) would definitely add a level of security for our farming operations," said Praskach.

Hybrid power projects that combine energy sources are a growing trend as selling renewable energy gains traction across markets. Solar only works during the day and wind only when it is windy so combining the two -- potentially with battery storage or natural gas or biomass generation -- makes the power profile more reliable and predictable.

Globally, an oft-cited example is on El Hierro, the smallest of the Canary Islands, where wind power is used to pump water uphill to a reservoir in a volcanic crater so that it can be released to provide hydroelectric power when needed. At times, the project has provided 100 per cent of the tiny island's energy needs.

Improvements in technology such as improving solar and wind power and lower costs for storage mean it is being considered as a hybrid add-on for nearly all of its renewable power projects, said Dan Cunningham, manager of business development at Greengate Power Corp. of Calgary.

Grant Arnold, CEO of developer BluEarth Renewables, agreed.

"The barrier to date, I would say, has been cost of storage but that is changing rapidly," he said. "We feel that wind and storage or solar and storage will be a fundamental way we do business within five years. It's changing very, very rapidly and it's the product everybody wants."

Vulcan Solar was proposed after Blackspring Ridge came online, said David Warner, associate director of business development for EDF Renewables, which now co-owns the wind farm with Enbridge Inc.

"Blackspring actually had incremental capacity in the main power transformers," he said. "Essentially, it was capable of delivering more energy than Blackspring was producing. It was overbuilt."

Vulcan Solar has been sized to utilize the shortfall without producing so much energy that either will ever have to be constrained, he said. Much of the required environmental work has already been done for the wind farm.

Storage is being examined as a potential addition to the project but implementing it depends on the regulatory system. At present, Alberta's regulators are still working on how to permit and control what they call "dispatchable renewables and storage" systems.

EDF announced last spring it would proceed with the Arrow Canyon Solar Project in Nevada which is to combine 200 MW of solar with 75 MW of battery storage by 2022 -- the batteries are to soak up the sun's power in the morning and dispatch the electricity in the afternoon when Las Vegas casinos' air conditioning is most needed.

What is clear is that renewable energy will continue to grow, with Alberta renewable jobs expected to follow -- in a recent report, the International Energy Agency said global electricity capacity from renewables is set to rise by 50 per cent over the next five years, an increase equivalent to adding the current total power capacity of the United States.

The share of renewables is expected to rise from 26 per cent now to 30 per cent in 2024 but will remain well short of what is needed to meet long-term climate, air quality and energy access goals, it added.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.