European solar power will start to become economically competitive compared to mainstream electricity from next year, a report by the European Photovoltaic Industry Association (EPIA) said.
EPIA President Winfried Hoffmann said that in sun-bathed southern Italy investments in photovoltaics would next year start to compete with electricity from the national power grid.
But problems with the administrative burden and difficulties connecting to the grid are holding the industry back.
If given sufficient initial support, photovoltaic would become competitive with other power sources in nearly three-quarters of the European Union by 2020, and could then stand on its own without subsidies, Hoffmann added.
He said solar power currently cost around 0.2-0.4 euros per kilowatt, four to eight times more expensive than fossil-fuel based power.
But the photovoltaic industry has cut costs in half every eight years and would continue to do so, while fossil-fuel based electricity will become increasingly expensive as the sector has to start buying permits to emit CO2 under the EU Emissions Trading Scheme from 2013.
EPIA expects photovoltaic power to supply between 4 percent and 6 percent of European electricity needs by 2020, up from less than 1 percent at present.
But with improved government support, that share could increase to 12 percent by 2020, helping the EU meet its goal of getting a fifth of its energy from renewable sources by the same date.
Louisiana Grid Rebuild After Hurricane Laura will overhaul transmission lines and distribution networks in Lake Charles, as Entergy restores power after catastrophic outages, replacing poles, transformers, and spans to stabilize critical electric infrastructure.
Key Points
Entergy's project replacing transmission and distribution in Lake Charles to restore power after the Cat 4 storm
✅ 1,000+ transmission structures and 6,637 poles damaged
✅ Entergy targets first energized line into Lake Charles in 2 weeks
✅ Full rebuild of Calcasieu and Cameron lines will take weeks
The main power utility for southwest Louisiana will need to "rebuild" the region's grid after Hurricane Laura blasted the region with 150 mph winds last week, top officials said.
The Category 4 hurricane made landfall last Thursday just south of Lake Charles near Cameron, damaging or destroying thousands of electric poles as well as leaving "catastrophic damages" to the transmission system for southwest Louisiana, similar to impacts seen during Typhoon Mangkhut outages in Hong Kong that left many without electricity.
“This is not a restoration," Entergy Louisiana president and CEO Phillip May said in a statement. "It’s almost a complete rebuild of our transmission and distribution system that serves Calcasieu and Cameron parishes.”
According to Entergy, all nine transmission lines that deliver power into the Lake Charles area are currently out service due to storm damage to multiple structures and spans of wire.
The transmission system is a critical component in the delivery of power to customers’ homes, and failures at substations can trigger large outages, as seen in Los Angeles station fire outage reported recently, according to the company.
Of those structures impacted, many were damaged "beyond repair" and require complete replacement.
Broken electrical poles are seen in Holly Beach, La., in the aftermath of Hurricane Laura, Saturday, Aug. 29, 2020. (AP Photo/Gerald Herbert)
Entergy said the damage in southwest Louisiana includes 1,000 transmission structures, 6,637 broken poles, 2,926 transformers and 338 miles of downed distribution wire, highlighting why proactive reliability investments in Hamilton are being pursued by other utilities.
Some 8,300 workers are now in the area working to rebuild the transmission lines, but Entergy said that it will be about two to three weeks before power is available to customers in the Lake Charles area, a timeline similar to Tennessee outages after severe storms reported recently in other states.
"Restoring power will take longer to customers in inaccessible areas of the region," the company said. "While not impacting the expected restoration of service to residential customers, initial estimates are it will take weeks to rebuild all transmission lines in Calcasieu and Cameron parishes."
Entergy Louisiana expects to energize the first of its transmission lines into Lake Charles in two weeks.
“We understand going without power for this extended period will be challenging, and this is not the news customers want to hear. But we have thousands of workers dedicated to rebuilding our grid as quickly as they safely can to return some normalcy to our customers’ lives,” May said.
According to power outage tracking website poweroutage.us, over 164,000 customers remain without service in Louisiana as of Thursday morning, while a Carolinas outage update shows hundreds of thousands affected there as well.
On Wednesday, the Edison Electric Institute, the association of investor-owned electric companies in the U.S., said in a statement to FOX Business that electricity has been restored to approximately 737,000 customers, or 75% of those impacted by the storm across Louisiana, eastern Texas, Mississippi, and Arkansas, even as utilities adapt to climate change to improve resilience.
At least 29,000 workers from 29 states, the District of Columbia and Canada are working to restore power in the region, according to the Electricity Subsector Coordinating Council (ESCC), which is coordinating efforts from government and power industry.
“The transmission loss in Louisiana is significant, with more than 1,000 transmission structures damaged or destroyed by the storm," Department of Energy (DOE) Deputy Secretary Mark Menezes said in a statement. Rebuilding the transmission system is essential to the overall restoration effort and will take weeks given the massive scale and complexity of the work. We will continue to coordinate closely to ensure the full capabilities of the industry and government are marshaled to rebuild this critical infrastructure as quickly as possible.”
At least 17 deaths in Louisiana have been attributed to the storm; more than half of those killed by carbon monoxide poisoning from the unsafe operation of generators, and residents are urged to follow generator safety tips to reduce these risks. Two additional deaths were verified on Wednesday in Beauregard Parish, which health officials said were due to heat-related illness following the storm.
UK Electricity-Gas Price Decoupling aims to reform wholesale electricity pricing under the Energy Security Bill, shielding households from gas price spikes, supporting renewables, and easing the cost-of-living crisis through market redesign and transparent tariffs.
Key Points
Policy to decouple power prices from gas via the Energy Security Bill, stabilizing bills and reflecting renewables
✅ Breaks gas-to-power pricing link to cut electricity costs
✅ Reduces volatility; shields households from global gas shocks
✅ Highlights benefits of renewables and market transparency
Britons could be handed relief on rocketing household bills under Government plans to sever the link between the prices of gas and electricity, including proposals to restrict energy prices in the market, it has emerged.
Ministers are set to bring forward new laws under the Energy Security Bill to overhaul the UK's energy market in the face of the current cost-of-living crisis.
They have promised to provide greater protection for Britons against global fluctuations in energy prices, through a price cap on bills among other measures.
The current worldwide crisis has been exacerbated by the Ukraine war, which has sent gas prices spiralling higher.
Under the current make-up of Britain's energy market, soaring natural gas prices have had a knock-on effect on electricity costs.
But it has now been reported the new legislation will seek to prevent future shocks in the global gas market having a similar impact on electricity prices.
Yet the overhaul might not come in time to ease high winter energy costs for households ahead of this winter.
According to The Times, Business Secretary Kwasi Kwarteng will outline proposals for reforms in the coming weeks.
These will then form part of the Energy Security Bill to be introduced in the autumn, with officials anticipating a decrease in energy bills by April.
The newspaper said the plans will end the current system under which the wholesale cost of gas effectively determines the price of electricity for households.
Although more than a quarter of Britain's electricity comes from renewable sources, under current market rules it is the most expensive megawatt needed to meet demand that determines the price for all electricity generation.
This means that soaring gas prices have driven up all electricity costs in recent months, even though only around 40% of UK electricity comes from gas power stations.
Energy experts have compared the current market to train passengers having to pay the peak-period price for every journey they make.
One Government source told The Times: 'In the past it didn’t really matter because the price of gas was reasonably stable.
'Now it seems completely crazy that the price of electricity is based on the price of gas when a large amount of our generation is from renewables.'
It was also claimed ministers hope the reforms will make the market more transparent and emphasise to consumers the benefits of decarbonisation, amid an ongoing industry debate over free electricity for consumers.
A Government spokesperson said: 'The high global gas prices and linked high electricity prices that we are currently facing have given added urgency to the need to consider electricity market reform.
BC Energy Debate: Nuclear Power and LNG divides British Columbia, as a new survey weighs zero-emission clean energy, hydroelectric capacity, the Site C dam, EV mandates, energy security, rising costs, and blackout risks.
Key Points
A BC-wide debate on power choices balancing nuclear, LNG, hydro, costs, climate goals, EVs, and grid reliability.
✅ Survey: 43% support nuclear, 40% oppose in BC
✅ 55% back LNG expansion, led by Southern BC
✅ Hydro at 90%; Site C adds 1,100 MW by 2025
There is a long-term need to produce more electricity to meet population and economic growth needs and, in particular, create new clean energy sources, with two new BC generating stations recently commissioned contributing to capacity.
Increasingly, in the worldwide discourse on climate change, nuclear power plants are being touted as a zero-emission clean energy source, with Ontario exploring large-scale nuclear to expand capacity, and a key solution towards meeting reduced emissions goals. New technological advancements could make nuclear power far safer than existing plant designs.
When queried on whether British Columbia should support nuclear power for electricity generation, respondents in a new province-wide survey by Research Co. were split, with 43% in favour and 40% against.
Levels of support reached 46% in Metro Vancouver, 41% in the Fraser Valley, 44% in Southern BC, 39% in Northern BC, and 36% on Vancouver Island.
The closest nuclear power plant to BC is the Columbia Generating Station, located in southern Washington State.
The safe use of nuclear power came to the forefront following the 2011 Fukushima nuclear disaster when the most powerful earthquake ever recorded in Japan triggered a large tsunami that damaged the plant’s emergency generators. Japan subsequently shut off many of its nuclear power plants and increased its reliance on fossil fuel imports, but in recent years there has been a policy reversal to restart shuttered nuclear plants to provide the nation with improved energy security.
Over the past decade, Germany has also been undergoing a transition away from nuclear power. But in an effort to replace Russian natural gas, Germany is now using more coal for power generation than ever before in decades, while Ontario’s electricity outlook suggests a shift to a dirtier mix, and it is looking to expand its use of liquefied natural gas (LNG).
Last summer, German chancellor Olaf Scholz told the CBC he wants Canada to increase its shipments of LNG gas to Europe. LNG, which is greener compared to coal and oil, is generally seen as a transitionary fuel source for parts of the world that currently depend on heavy polluting fuels for power generation.
When the Research Co. survey asked BC residents whether they support the further development of the province’s LNG industry, including LNG electricity demand that BC Hydro says justifies Site C, 55% of respondents were supportive, while 29% were opposed and 17% undecided.
Support for the expansion of the LNG is highest in Southern BC (67%), followed by the Fraser Valley (56%), Metro Vancouver (also 56%), Northern BC (55%), and Vancouver Island (41%).
A larger proportion of BC residents are against any idea of the provincial government moving to ban the use of natural gas for stoves and heating in new buildings, with 45% opposed and 39% in support.
Significant majorities of BC residents are concerned that energy costs could become too expensive, and a report on coal phase-outs underscores potential cost and effectiveness concerns, with 84% expressing concern for residents and 66% for businesses. As well, 70% are concerned that energy shortages could lead to measures such as rationing and rolling blackouts.
Currently, about 90% of BC’s electricity is produced by hydroelectric dams, but this fluctuates throughout the year — at times, BC imports coal- and gas-generated power from the United States when hydro output is low.
According to BC Hydro’s five-year electrification plan released in September 2021, it is estimated BC has a sufficient supply of clean electricity only by 2030, including the capacity of the Site C dam, which is slated to open in 2025. The $16 billion dam will have an output capacity of 1,100 megawatts or enough power for the equivalent of 450,000 homes.
The provincial government’s strategy for pushing vehicles towards becoming dependent on the electrical grid also necessitates a reliable supply of power, prompting BC Hydro’s first call for power in 15 years to prepare for electrification. Most BC residents support the provincial government’s requirement for all new car and passenger truck sales to be zero-emission by 2035, with 75% supporting the goal and 21% opposed.
Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.
Key Points
An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.
✅ VFSGs start engines, then generate 235Vac variable-frequency power
✅ Bleedless pressurization, electric anti-ice improve fuel efficiency
✅ Electric brakes cut hydraulic weight and simplify maintenance
The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.
When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.
What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.
Power sources
The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.
Engine starter/generators
The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.
The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.
APU starter/generators
In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.
The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.
The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.
Battery power
The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.
The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.
Ram air turbine (RAT) generator
When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.
Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.
External power
Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.
The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.
The aft external power is only used when the ground power is required for engine start.
Circuit breakers
Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.
Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.
Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.
A normal flight
While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.
On the ground
When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.
Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.
APU start
As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.
The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.
If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.
Engine start
Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is below 5°C.
On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.
Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.
After start
Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.
As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.
By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.
In-flight
Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.
Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.
Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.
Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.
Shutdown
With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.
However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.
Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.
Bottom line
Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.
The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.
The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.
IAEA Nuclear Reactor Simulators enable virtual nuclear power plant training on IPWR/PWR systems, load-following operations, baseload dynamics, and turbine coupling, supporting advanced reactor education, flexible grid integration, and low-carbon electricity skills development during remote learning.
Key Points
IAEA Nuclear Reactor Simulators are tools for training on reactor operations, safety, and flexible power management.
✅ Simulates IPWR/PWR systems with real-time parameter visualization.
✅ Practices load-following, baseload, and grid flexibility scenarios.
✅ Supports remote training on safety, controls, and turbine coupling.
Students and professionals in the nuclear field are making use of learning opportunities during lockdown made necessary by the Covid-19 pandemic, drawing on IAEA low-carbon electricity lessons for the future.
Requests to use the International Atomic Energy Agency’s (IAEA’s) basic principle nuclear reactor simulators have risen sharply in recent weeks, IAEA said on 1 May, as India takes steps to get nuclear back on track. New users will have the opportunity to learn more about operating them.
“This suite of nuclear power plant simulators is part of the IAEA education and training programmes on technology development of advanced reactors worldwide. [It] can be accessed upon request by interested parties from around the world,” said Stefano Monti, head of the IAEA’s Nuclear Power Technology Development Section.
Simulators include several features to help users understand fundamental concepts behind the behaviour of nuclear plants and their reactors. They also provide an overview of how various plant systems and components work to power turbines and produce low-carbon electricity, while illustrating roles beyond electricity as well.
In the integral pressurised water reactor (IPWR) simulator, for instance, a type of advanced nuclear power design, users can navigate through several screens, each containing information allowing them to adjust certain variables. One provides a summary of reactor parameters such as primary pressure, flow and temperature. Another view lays out the status of the reactor core.
The “Systems” screen provides a visual overview of how the plant’s main systems, including the reactor and turbines, work together. On the “Controls” screen, users can adjust values which affect reactor performance and power output.
This simulator provides insight into how the IPWR works, and also allows users to see how the changes they make to plant variables alter the plant’s operation. Operators can also perform manoeuvres similar to those that would take place in the course of real plant operations e.g. in load following mode.
“Currently, most nuclear plants operate in ‘baseload’ mode, continually generating electricity at their maximum capacity. However, there is a trend of countries, aligned with green industrial revolution strategies, moving toward hybrid energy systems which incorporate nuclear together with a diverse mix of renewable energy sources. A greater need for flexible operations is emerging, and many advanced power plants offer standard features for load following,” said Gerardo Martinez-Guridi, an IAEA nuclear engineer who specialises in water-cooled reactor technology.
Prospective nuclear engineers need to understand the dynamics of the consequences of reducing a reactor’s power output, for example, especially in the context of next-generation nuclear systems and emerging grids, and simulators can help students visualise these processes, he noted.
“Many reactor variables change when the power output is adjusted, and it is useful to see how this occurs in real-time,” said Chirayu Batra, an IAEA nuclear engineer, who will lead the webinar on 12 May.
“Users will know that the operation is complete once the various parameters have stabilised at their new values.”
Observing and comparing the parameter changes helps users know what to expect during a real power manoeuvre, he added.
Ontario Utility Scam Alert: protect against phishing, spoofed calls, texts, and emails, disconnection threats, and demands for prepaid cards or bitcoin. Tips from Alectra, Elexicon, Hydro One, Hydro Ottawa, and Toronto Hydro.
Key Points
A joint warning by Ontario utilities on tactics and steps to prevent customer fraud, phishing, and spoofed contacts.
✅ Verify bills; call your utility using the official number.
✅ Ignore links; do not accept unexpected e-transfers.
✅ Never pay with gift cards, prepaid cards, or bitcoin.
Five of Ontario's largest utilities have joined forces to raise awareness about ongoing sophisticated utility scams targeting utility customers.
Some common tactics fraudsters use to target Ontarians include impersonation of the local utility or its employees; sending threatening phone calls, texts and emails; or showing up in-person at a customer's home or business and requesting personal information or payment. The requests can include pressure for immediate payment, threats to disconnect service the same day, and demands to purchase prepaid debit cards, gift cards or bitcoin.
The utilities are encouraging all customers to protect themselves and are providing them with the following tips to stay safe, noting that customers want more choice and flexibility in how they manage accounts:
Never make a payment for a charge that isn't listed on your most recent bill
Ignore text messages or emails with suspicious links promising refunds
Don't call the number provided to you — instead, call your utility directly to check the status of your account
Only provide personal information or details about your account when you have initiated the contact with the utility representative
Utility companies will never threaten immediate disconnection for non-payment, and many offer relief programs during hardship
If you feel threatened in any way, contact your local police
Steps you can take to protect yourself against fraud:
Take five minutes to ask additional questions and listen to your instincts — if something doesn't seem right, ask someone about it, and look for news of official utility support efforts that confirm legitimate outreach
Immediately hang up on suspicious phone calls
Don't click any links in emails/text messages asking you to accept electronic transfers
Avoid sharing personal information
Always compare bills to previous ones, including the dollar amount and account number, and stay informed about any official rate changes from your utility
Reporting suspicious behaviour, including suspected electricity theft, helps authorities
If you believe you may be a victim of fraud, please contact the Canadian Anti-Fraud Centre at 1-888-495-8501 and your local utility.