What big solar wants and doesnÂ’t want

By Reuters


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Ordinarily, when an industry comes to Washington to seek special favors from the government, it hires a lobbyist or two, meets with members of Congress, perhaps quietly donates some money to the right committee chair — but rarely does it hold a press conference to talk about why it wants to be given a leg up over the competition.

That's what made a solar-industry breakfast, hosted by Dow Corning, so interesting. Dow Corning, a major supplier to the solar industry, and its allies, including Abengoa Solar, BP Solar, Kyocera, Sanyo and Schott, put forth a long list of federal policies that they would like to see enacted to give solar power a jump-start and bring it to scale.

What do they want? A permanent manufacturing tax credit. Renewable Electricity Standards, with set-asides for solar, which would require utilities to buy a fixed percentage of their electricity from solar plants. So-called feed-in tariffs, which require utility companies to buy "clean energy" at prices higher than average wholesale prices. Federal support for training workers and educating the public about solar. Loan guarantees. Requirements that federal agencies buy more renewable power for their own operations. Treasury grants of some sort.

All this, of course, on top of either a carbon tax or a cap-and-trade system to regulate greenhouse gases and put a price on carbon emissions — a policy that makes good sense, because it will capture the external costs of burning fossil fuels. Of course, a cap-and-trade scheme would also benefit low-carbon energy sources like solar.

Well, at least the industry is transparent. Not to mention brazen.

"Solar energy is a clean, efficient and readily available technology that with the right support could help transform America's energy, environmental and economic future," says Stephanie Burns, the chairman, president and CEO of Dow Corning, a $5.5 billion (revenues) company based in Midland, Michigan, that's is jointly owned by Dow Chemical and Corning.

Please don't misunderstand me. I would love to see the solar industry thrive. And Dow Corning deserves enormous credit for investing about $5 billion in manufacturing plants in Michigan — which sorely needs new jobs — as well as Tennessee and South Korea. "We think solar is ready to go to scale," Burns says. "We're right at the cusp for that to happen."

The question is, at what cost? If solar is, indeed, a practical solution to the climate crisis, and if Dow Corning has already shown itself willing to put up $5 billion of its own money, why does solar need so many special favors?

More to the point, why should the government favor solar over wind energy, or geothermal power, or low-carbon electricity from nuclear (gasp!) or from kites or from retrofitting buildings and homes to make them more efficient?

When I asked that question, Burns and others argued that, well, solar is different. For one thing, rooftop solar PV is distributed (as opposed to centralized) energy and therefore it takes stresses off the electricity grid, providing a broad public benefit. For another, solar works best during the daytime when demands for peak power are high, again saving the costs of developing more big power plants, which are borne broadly. "Those are two reasons why it makes sense to have a set-aside for solar, particularly," Burns said.

Dow Corning also argues that the U.S. should underwrite solar for competitive reasons. China and Germany have established aggressive subsidies to attract clean-technology manufacturing facilities, while the U.S. government has not, the company said. As a result, over the last 12 years, the U.S. global market share of solar manufacturing has dropped from 45 percent of the world total to only 7 percent.

Others said solar is more labor-intensive, and therefore a good investment of taxpayer money. "The federal government is spending a lot of money trying to generate jobs," said Paul D'Arcy, senior vice president of Sanyo. "This industry, to a larger degree than alternatives, is a likely candidate for creating many more jobs throughout the United States." True enough — installing solar panels takes lots of people but that's one reason it's so expensive.

And the loan guarantees? "Banks don't want to lend because it's a new area," said John Bucher, chief operations officer of Solar Power Industries, a solar cell manufacturer based near Pittsburgh. Again, that may well be true — or perhaps they worry that alternatives will come along, like offshore wind or small-scale nukes or even cleaner coal, that turn out to be better.

I don't know which technology will prove to be the best option. Neither does the solar industry. Or anyone else. Probably, we'll need all or most of them. I believe in distributed solar power. But I believe even more strongly in the power of distributed knowledge, which is best expressed by markets.

So: By all means, let's cap carbon emissions. Or enact a revenue-neutral tax on fossil fuels to limit the damage done by burning coal, oil and natural gas. Tom Friedman proposed that again today, in a great column on America's green revolution is tied to Iran's.

But let's not ask Washington to decide who wins and loses in the world of clean tech. That's a job best left to big and small companies, entrepreneurs, inventors, investors, lenders and customers. Business people, of all people, should understand that, even if politicians don't.

Related News

BMW boss says hydrogen, not electric, will be "hippest thing" to drive

BMW Hydrogen Fuel Cell Strategy positions iX5 and eDrive for zero-emission mobility, leveraging fuel cells, fast refueling, and hydrogen infrastructure as an alternative to BEVs, diversifying drivetrains across premium segments globally, rapidly.

 

Key Points

BMW's plan to commercialize hydrogen fuel-cell drivetrains like iX5 eDrive for scalable, zero-emission mobility.

✅ Fuel cells enable fast refueling and long range with water vapor only.

✅ Reduces reliance on lithium and cobalt via recyclable materials.

✅ Targets premium SUV iX5; limited pilots before broader rollout.

 

BMW is hanging in there with hydrogen, a stance mirrored in power companies' hydrogen outlook today. That’s what Oliver Zipse, the chairperson of BMW, reiterated during an interview last week in Goodwood, England. 

“After the electric car, which has been going on for about 10 years and scaling up rapidly, the next trend will be hydrogen,” he says. “When it’s more scalable, hydrogen will be the hippest thing to drive.”

BMW has dabbled with the idea of using hydrogen for power for years, even though it is obscure and niche compared to the current enthusiasm surrounding vehicles powered by electricity. In 2005, BMW built 100 “Hydrogen 7” vehicles that used the fuel to power their V12 engines. It unveiled the fuel cell iX5 Hydrogen concept car at the International Motor Show Germany in 2021. 

In August, the company started producing fuel-cell systems for a production version of its hydrogen-powered iX5 sport-utility vehicle. Zipse indicated it would be sold in the United States within the next five years, although in a follow-up phone call a spokesperson declined to confirm that point. Bloomberg previously reported that BMW will start delivering fewer than 100 of the iX5 hydrogen vehicles to select partners in Europe, the U.S., and Asia, where Asia leads on hydrogen fuel cells today, from the end of this year.

All told, BMW will eventually offer five different drivetrains to help diversify alternative-fuel options within the group, as hybrids gain renewed momentum in the U.S., Zipse says.

“To say in the U.K. about 2030 or the U.K. and in Europe in 2035, there’s only one drivetrain, that is a dangerous thing,” he says. “For the customers, for the industry, for employment, for the climate, from every angle you look at, that is a dangerous path to go to.” 

Zipse’s hydrogen dreams could even extend to the group’s crown jewel, Rolls-Royce, which BMW has owned since 1998. The “magic carpet ride” driving style that has become Rolls-Royce’s signature selling point is flexible enough to be powered by alternatives to electricity, says Rolls-Royce CEO Torsten Müller-Ötvös. 

“To house, let’s say, fuel cell batteries: Why not? I would not rule that out,” Müller-Ötvös told reporters during a roundtable conversation in Goodwood on the eve of the debut of the company’s first-ever electric vehicle, Spectre. “There is a belief in the group that this is maybe the long-term future.”

Such a vehicle would contain a hydrogen fuel-cell drivetrain combined with BMW’s electric “eDrive” system. It works by converting hydrogen into electricity to reach an electrical output of up to 125 kW/170 horsepower and total system output of nearly 375hp, with water vapor as the only emission, according to the brand.

Hydrogen’s big advantage over electric power, as EVs versus fuel cells debates note, is that it can supply fuel cells stored in carbon-fiber-reinforced plastic tanks. “There will [soon] be markets where you must drive emission-free, but you do not have access to public charging infrastructure,” Zipse says. “You could argue, well you also don’t have access to hydrogen infrastructure, but this is very simple to do: It’s a tank which you put in there like an old [gas] tank, and you recharge it every six months or 12 months.”

Fuel cells at BMW would also help reduce its dependency on raw materials like lithium and cobalt, because the hydrogen-based system uses recyclable components made of aluminum, steel, and platinum. 

Zipse’s continued commitment to prioritizing hydrogen has become an increasingly outlier position in the automotive world. In the last five years, electric-only vehicles have become the dominant alternative fuel — as the age of electric cars dawns ahead of schedule — if not yet on the road, where fewer than 3% of new cars have plugs, at least at car shows and new-car launches.

Rivals Mercedes-Benz and Audi scrapped their own plans to develop fuel cell vehicles and instead have poured tens of billions of dollars into developing pure-electric vehicle, including Daimler's electrification plan initiatives. Porsche went public to finance its own electric aspirations. 

BMW will make half of all new-car sales electric by 2030 across the group, with many expecting most drivers to go electric within a decade, which includes MINI and Rolls-Royce. 
 

 

Related News

View more

Renewables are not making electricity any more expensive

Renewables' Impact on US Wholesale Electricity Prices is clear: DOE analysis shows wind and solar, capacity gains, and natural gas lowering rates, shifting daily patterns, and triggering occasional negative pricing in PJM and ERCOT.

 

Key Points

DOE data show wind and solar lower wholesale prices, reshape price curves, and cause negative pricing in markets.

✅ Natural gas price declines remain the largest driver of cheaper power

✅ Wind and solar shift seasonal and time-of-day price patterns

✅ Negative wholesale prices appear near high wind and solar output

 

One of the arguments that's consistently been raised against doing anything about climate change is that it will be expensive. On the more extreme end of the spectrum, there have been dire warnings about plunging standards of living due to skyrocketing electricity prices. The plunging cost of renewables like solar cheaper than gas has largely silenced these warnings, but a new report from the Department of Energy suggests that, even earlier, renewables were actually lowering the price of electricity in the United States.

 

Plunging prices
The report focuses on wholesale electricity prices in the US. Note that these are distinct from the prices consumers actually pay, which includes taxes, fees, payments to support the grid that delivers the electricity, and so on. It's entirely possible for wholesale electricity prices to drop even as consumers end up paying more, and market reforms determine how those changes are passed through. That said, large changes in the wholesale price should ultimately be passed on to consumers to one degree or another.

The Department of Energy analysis focuses on the decade between 2008 and 2017, and it includes an overall analysis of the US market, as well as large individual grids like PJM and ERCOT and, finally, local prices. The decade saw a couple of important trends: low natural gas prices that fostered a rapid expansion of gas-fired generators and the rapid expansion of renewable generation that occurred concurrently with a tremendous drop in price of wind and solar power.

Much of the electricity generated by renewables in this time period would be more expensive than that generated by wind and solar installed today. Not only have prices for the hardware dropped, but the hardware has improved in ways that provide higher capacity factors, meaning that they generate a greater percentage of the maximum capacity. (These changes include things like larger blades on wind turbines and tracking systems for solar panels.) At the same time, operating wind and solar is essentially free once they're installed, so they can always offer a lower price than competing fossil fuel plants.

With those caveats laid out, what does the analysis show? Almost all of the factors influencing the wholesale electricity price considered in this analysis are essentially neutral. Only three factors have pushed the prices higher: the retirement of some plants, the rising price of coal, and prices put on carbon, which only affect some of the regional grids.

In contrast, the drop in the price of natural gas has had a very large effect on the wholesale power price. Depending on the regional grid, it's driven a drop of anywhere from $7 to $53 per megawatt-hour. It's far and away the largest influence on prices over the past decade.

 

Regional variation and negative prices
But renewables have had an influence as well. That influence has ranged from roughly neutral to a cost reduction of $2.2 per MWh in California, largely driven by solar. While the impact of renewables was relatively minor, it is the second-largest influence after natural gas prices, and the data shows that wind and solar are reducing prices rather than increasing them.

The reports note that renewables are influencing wholesale prices in other ways, however. The growth of wind and solar caused the pattern of seasonal price changes to shift in areas of high wind and solar, as seen with solar reshaping prices in Northern Europe as daylight hours and wind patterns shift with the seasons. Similarly, renewables have a time-of-day effect for similar reasons, helping explain why the grid isn't 100% renewable today, which also influences the daily timing price changes, something that's not an issue with fossil fuel power.

A map showing the areas where wholesale electricity prices have gone negative, with darker colors indicating increased frequency.
Enlarge / A map showing the areas where wholesale electricity prices have gone negative, with darker colors indicating increased frequency.

US DOE
One striking feature of areas where renewable power is prevalent is that there are occasional cases in which an oversupply of renewable energy produces negative electricity prices in the wholesale market. (In the least-surprising statement in the report, it concludes that "negative prices in high-wind and high-solar regions occurred most frequently in hours with high wind and solar output.") In most areas, these negative prices are rare enough that they don't have a significant influence on the wholesale price.

That's not true everywhere, however. Areas on the Great Plains see fairly frequent negative prices, and they're growing in prevalence in areas like California, the Southwest, and the northern areas of New York and New England, while negative prices in France have been observed in similar conditions. In these areas, negative wholesale prices near solar plants have dropped the overall price by 3%. Near wind plants, that figure is 6%.

None of this is meant to indicate that there are no scenarios where expanded renewable energy could eventually cause wholesale prices to rise. At sufficient levels, the need for storage, backup plants, and grid management could potentially offset their low costs, a dynamic sometimes referred to as clean energy's dirty secret by analysts. But it's clear we have not yet reached that point. And if the prices of renewables continue to drop, then that point could potentially recede fast enough not to matter.

 

Related News

View more

NRC Makes Available Turkey Point Renewal Application

Turkey Point Subsequent License Renewal seeks NRC approval for FP&L to extend Units 3 and 4, three-loop pressurized water reactors near Homestead, Miami; public review, docketing, and an Atomic Safety and Licensing Board hearing.

 

Key Points

The NRC is reviewing FP&L's request to extend Turkey Point Units 3 and 4 operating licenses by 20 years.

✅ NRC will docket if application is complete

✅ Public review and opportunity for adjudicatory hearing

✅ Units commissioned in 1972 and 1973, near Miami

 

The U.S. Nuclear Regulatory Commission said Thursday that it had made available the first-ever "subsequent license renewal application," amid milestones at nuclear power projects worldwide, which came from Florida Power and Light and applies to the company's Turkey Point Nuclear Generating Station's Units 3 and 4.

The Nuclear Regulatory Commission recently made available for public review the first-ever subsequent license renewal application, which Florida Power & Light Company submitted on Jan. 1.

In the application, FP&L requests an additional 20 years for the operating licenses of Turkey Point Nuclear Generating Units 3 and 4, three-loop, pressurized water reactors located in Homestead, Florida, where the Florida PSC recently approved a municipal solid waste energy purchase, approximately 40 miles south of Miami.

The NRC approved the initial license renewal in June 2002, as new reactors at Georgia's Vogtle plant continue to take shape nationwide. Unit 3 is currently licensed to operate through July 19, 2032. Unit 4 is licensed to operate through April 10, 2033.

#google#

NRC staff is currently reviewing the application, while a new U.S. reactor has recently started up, underscoring broader industry momentum. If the staff determines the application is complete, they will docket it and publish a notice of opportunity to request an adjudicatory hearing before the NRC’s Atomic Safety and Licensing Board.

The first-ever subsequent license renewal application, submitted by Florida Power & Light Company asks for an additional 20 years for the already-renewed operating licenses of Turkey Point, even as India moves to revive its nuclear program internationally, which are currently set to expire in July of 2032 and April of 2033. The two thee-loop, pressurized water reactors, located about 40 miles south of Miami, were commissioned in July 1972 and April 1973.

If the application is determined to be complete, the staff will docket it and publish a notice of opportunity to request an adjudicatory hearing before the NRC’s Atomic Safety and Licensing Board, the agency said.

The application is available for public review on the NRC website. Copies of the application will be available at the Homestead Branch Library in Homestead, the Naraja Branch Library in Homestead and the South Dade Regional Library in Miami.

 

 

Related News

View more

Cheap oil contagion is clear and present danger to Canada

Canada Oil Recession Outlook analyzes the Russia-Saudi price war, OPEC discord, COVID-19 demand shock, WTI and WCS collapse, Alberta oilsands exposure, U.S. shale stress, and GDP risks from blockades and fiscal responses.

 

Key Points

An outlook on how the oil price war and COVID-19 demand shock could tip Canada into recession and strain producers.

✅ WTI and WCS prices plunge on OPEC-Russia discord

✅ Alberta oilsands face break-even pressure near 30 USD WTI

✅ RBC flags global recession; GDP hit from blockades, virus

 

A war between Russia and Saudi Arabia for market share for oil may have been triggered by the COVID-19 pandemic in China, but the oil price crash contagion that it will spread could have impacts that last longer than the virus.

The prospects for Canada are not good.

Plunging oil prices, reduced economic activity from virus containment, and the fallout from weeks of railway blockades over the Coastal GasLink pipeline all add up to “a one-two-three punch that I think is almost inevitably going to put Canada in a position where its growth has to be negative,” said Dan McTeague, a former Liberal MP and current president of Canadians for Affordable Energy. The situation “certainly has the makings” of a recession, said Ken Peacock, chief economist for the Business Council of British Columbia.

“At a minimum, it’s going to be very disruptive and we’re going to have maybe one negative quarter,” Peacock said. “Whether there’s a second one, where it gets labeled a recession, is a different question. But it’s going to generate some turmoil and challenges over the next two quarters – there’s no doubt about that.”

RBC Economics on March 13 announced it now predicts a global recession and cut its growth projections for Canada's economy in 2020 by half a per cent.

Oil price futures plunged 30% last week, dragging stock markets and currencies, including the Canadian dollar, down with them, even as a deep freeze strained U.S. energy systems. That drop came on top of a 17% decline in February, due to falling demand for oil due to the virus.

The latest price plunge – the worst since the 1991 Gulf War – was the result of Russia and the Organization of Petroleum Exporting Countries (OPEC), led by Saudi Arabia, failing to agree on oil production cuts.

The COVID-19 outbreak in China – the world’s second-largest oil consumer – had resulted in a dramatic drop in oil demand in that country, and a sudden glut of oil, with the U.S. energy crisis affecting electricity, gas and EV markets.

OPEC has historically been able to moderate global oil prices by controlling output. But when Russia refused to co-operate with OPEC and agree to production cuts, Saudi Arabia’s state-owned company, Aramco, announced it plans to boost its oil output from 9.7 million barrels per day (bpd) to 12.3 million bpd in April.

In response to that announcement, West Texas Intermediate (WTI) prices dropped 18% to below US$34 per barrel while the Canadian Crude Index fell 24% to US$21. Western Canadian Select dropped 39% to US$15.73.

The effect on Alberta oilsands producers was severe and immediate. Cenovus Energy Inc. (TSX:CVE) saw roughly $2 billion in market cap erased on March 9, when its stock dropped by 52%, which came on top of a 12% drop March 6.

The company responded the very next day by announcing it would cut spending by 32% in 2020, suspend its oil-by-rail program and defer expansion projects.

MEG Energy Corp. (TSX:MEG), which suffered a 56% share price drop on March 9, also announced a 20% reduction in its 2020 capital spending plan.

Peter Tertzakian, chief economist for ARC Energy Research Institute, wrote last week that Russia’s plan is to try to hurt U.S. shale oil producers, who have more than doubled U.S. oil production over the past decade.

Anas Alhajji, a global oil analyst, expects that plan could work. Even before the oil price shock, he had predicted the great shale boom in the U.S. was coming to an end.

“Shale production will decline, and the myth of ‘explosive growth’ will end,” he told Business in Vancouver. “The impact is global and Canadian producers might suffer even more if the oil that Saudi Arabia sends to the U.S. is medium and heavy. This might last longer than what people think.”

The question for Alberta is how Canadian producers can continue to operate through a period of cheap oil. Alberta producers do not compete on the global market. They serve a niche market of U.S. heavy oil refiners, and Biden-era policy is seen as potentially more favourable for Canada’s energy sector than alternatives.

“On the positive side, the industry is battle-hardened,” Tertzakian wrote. “Over the past five years, innovative companies have already learned to endure some of the lowest prices in the world.”

But he added that they need WTI prices of US$30 per barrel just to break even.

“But that’s an average break-even threshold for an industry with a wide variation in costs. That means at that level about half the companies can’t pay their bills and half are treading water.”

Just prior to the oil price plunge, the International Energy Agency (IEA) updated its 2020 forecast for global oil consumption from an 825,000 bpd increase in oil consumption to a 90,000 bpd decrease, due to the COVID-19 virus and consequent economic contraction and reduction in travel.

The IEA predicts global oil demand won’t return to “normal” until the second half of 2020. But even if demand does return to pre-virus levels, that doesn’t mean oil prices will – not if Saudi Arabia can sustain increased oil production at low prices, and evolving clean grid priorities could influence the trajectory too.

The oil plunge was greeted in Alberta with alarm. Alberta Premier Jason Kenney warned Alberta is in “uncharted territory” as consumers are urged to lock in rates and said his government might have to review its balanced budget and resort to emergency deficit spending.

While British Columbians – who pay some of the highest gasoline prices in North America – will enjoy lower gasoline prices at a time when prices are usually starting a seasonal spike, B.C.’s economy could feel knock-on effects from a recession in Alberta.

“We sell a lot of inputs, do a lot of trade with Alberta, so it’s important for B.C., Alberta’s economic health,” Peacock said, “and recent tensions over electricity purchase talks underscore that.”

Last week, the Trudeau government announced $1 billion in emergency funding to cope with the virus and waived a one-week waiting period for unemployment insurance.

 

Related News

View more

Alberta Leads the Way in Agrivoltaics

Agrivoltaics in Alberta integrates solar energy with agriculture, boosting crop yields and water conservation. The Strathmore Solar project showcases dual land use, sheep grazing for vegetation control, and PPAs that expand renewable energy capacity.

 

Key Points

A dual-use model where solar arrays and farming co-exist, boosting yields, saving water, and diversifying revenue.

✅ Strathmore Solar: 41 MW on 320 acres with managed sheep grazing

✅ 25-year TELUS PPA secures power and renewable energy credits

✅ Panel shade cuts irrigation needs and protects crops from extremes

 

Alberta is emerging as a leader in agrivoltaics—the innovative practice of integrating solar energy production with agricultural activities, aligning with the province's red-hot solar growth in recent years. This approach not only generates renewable energy but also enhances crop yields, conserves water, and supports sustainable farming practices. A notable example of this synergy is the Strathmore Solar project, a 41-megawatt solar farm located on 320 acres of leased industrial land owned by the Town of Strathmore. Operational since March 2022, it exemplifies how solar energy and agriculture can coexist and thrive together.

The Strathmore Solar Initiative

Strathmore Solar is a collaborative venture between Capital Power and the Town of Strathmore, with a 25-year power purchase agreement in place with TELUS Corporation for all the energy and renewable energy credits generated by the facility. The project not only contributes significantly to Alberta's renewable energy capacity, as seen with new solar facilities contracted at lower cost across the province, but also serves as a model for agrivoltaic integration. In a unique partnership, 400 to 600 sheep from Whispering Cedars Ranch are brought in to graze the land beneath the solar panels. This arrangement helps manage vegetation, reduce fire hazards, and maintain the facility's upkeep, all while providing shade for the grazing animals. This mutually beneficial setup maximizes land use efficiency and supports local farming operations, illustrating how renewable power developers can strengthen outcomes with integrated designs today. 

Benefits of Agrivoltaics in Alberta

The integration of solar panels with agricultural practices offers several advantages for a province that is a powerhouse for both green energy and fossil fuels already across sectors:

  • Enhanced Crop Yields: Studies have shown that crops grown under solar panels can experience increased yields due to reduced water evaporation and protection from extreme weather conditions.

  • Water Conservation: The shade provided by solar panels helps retain soil moisture, leading to a decrease in irrigation needs.

  • Diversified Income Streams: Farmers can generate additional revenue by selling renewable energy produced by the solar panels back to the grid.

  • Sustainable Land Use: Agrivoltaics allows for dual land use, enabling the production of both food and energy without the need for additional land.

These benefits are evident in various agrivoltaic projects across Alberta, where farmers are successfully combining crop cultivation with solar energy production amid a renewable energy surge that is creating thousands of jobs.

Challenges and Considerations

While agrivoltaics presents numerous benefits, there are challenges to consider as Alberta navigates challenges with solar expansion today across Alberta:

  • Initial Investment: The setup costs for agrivoltaic systems can be high, requiring significant capital investment.

  • System Maintenance: Regular maintenance is essential to ensure the efficiency of both the solar panels and the agricultural operations.

  • Climate Adaptability: Not all crops may thrive under the conditions created by solar panels, necessitating careful selection of suitable crops.

Addressing these challenges requires careful planning, research, and collaboration between farmers, researchers, and energy providers.

Future Prospects

The success of projects like Strathmore Solar and other agrivoltaic initiatives in Alberta indicates a promising future for this dual-use approach. As technology advances and research continues, agrivoltaics could play a pivotal role in enhancing food security, promoting sustainable farming practices, and contributing to Alberta's renewable energy goals. Ongoing projects and partnerships aim to refine agrivoltaic systems, making them more efficient and accessible to farmers across the province.

The integration of solar energy production with agriculture in Alberta is not just a trend but a transformative approach to sustainable farming. The Strathmore Solar project serves as a testament to the potential of agrivoltaics, demonstrating how innovation can lead to mutually beneficial outcomes for both the agricultural and energy sectors.

 

 

Related News

View more

Duke Energy Florida to build its largest battery storage projects yet

Duke Energy Florida battery storage will add 22 MW across Trenton, Cape San Blas and Jennings, improving grid reliability, outage resilience, enabling peak shaving and deferring distribution upgrades to increase efficiency and customer value.

 

Key Points

Three lithium battery projects totaling 22 MW to improve Florida grid reliability, outage resilience and efficiency.

✅ 22 MW across Trenton, Cape San Blas and Jennings sites

✅ Enhances outage resilience and grid reliability

✅ Defers costly distribution upgrades and improves efficiency

 

Duke Energy Florida (DEF) has announced three battery energy storage projects, totaling 22 megawatts, that will improve overall reliability and support critical services during power outages.

Duke Energy, the nation's largest electric utility, unveils its new logo. (PRNewsFoto/Duke Energy) (PRNewsfoto/Duke Energy)

Collectively, the storage facilities will enhance grid operations, increase efficiencies and improve overall reliability for surrounding communities, with virtual power plant programs offering a model for coordinating distributed resources.

They will also provide important backup generation during power outages, a service that is becoming increasingly important with the number and intensity of storms that have recently impacted the state.

As the grid manager and operator, DEF can maximize the versatility of battery energy storage systems (BESS) to include multiple customer and electric system benefits such as balancing energy demand, managing intermittent resources, increasing energy security and deferring traditional power grid upgrades.

These benefits help reduce costs for customers and increase operational efficiencies.

The 11-megawatt (MW) Trenton lithium-based battery facility will be located 30 miles west of Gainesville in Gilchrist County. The energy storage project will continue to improve power reliability using newer technologies.

The 5.5-MW Cape San Blas lithium-based battery facility will be located approximately 40 miles southeast of Panama City in Gulf County. The project will provide additional power capacity to meet our customers' rising energy demand in the area. This project is an economical alternative to replacing distribution equipment necessary to accommodate local load growth.

The 5.5-MW Jennings lithium-based battery facility will be located 1.5 miles south of the Florida-Georgia border in Hamilton County. The project will continue to improve power reliability through energy storage as an alternative solution to installing new and more costly distribution equipment.

Currently the company plans to complete all three projects by the end of 2020.

"These battery projects provide electric system benefits that will help improve local reliability for our customers and provide significant energy services to the power grid," said Catherine Stempien, Duke Energy Florida state president. "Duke Energy Florida will continue to identify opportunities in battery storage technology which will deliver efficiency improvements to our customers."

 

Additional renewables projects

As part of DEF's commitment to renewables, the company is investing an estimated $1 billion to construct or acquire a total of 700 MW of cost-effective solar power facilities and 50 MW of battery storage through 2022.

Duke Energy is leading the industry deployment of battery technology, with SDG&E's Emerald Storage project underscoring broader adoption across the sector today. Last fall, the company and University of South Florida St. Petersburg unveiled a Tesla battery storage system that is connected to a 100-kilowatt (kW) solar array – the first of its kind in Florida.

This solar-battery microgrid system manages the energy captured by the solar array, situated on top of the university's parking garage, and similar low-income housing microgrid financing efforts are expanding access. The solar array was constructed three years ago through a $1 million grant from Duke Energy. The microgrid provides a backup power source during a power outage for the parking garage elevator, lights and electric vehicle charging stations. Click here to learn more.

In addition to expanding its battery storage technology and solar investments, DEF is investing in transportation electrification to support the growing U.S. adoption of electric vehicles (EV), including EV charging infrastructure, 530 EV charging stations and a modernized power grid to deliver the diverse and reliable energy solutions customers want and need.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.