Canada needs to shrink productivity gap: OECD

By Financial Post


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Canada hasn't gone nearly far enough in taking the needed steps to shrink the economic productivity gap with its largest trading partner, the Organization of Economic Co-operation and Development reported.

Canadian economic production on a per-person basis compared with the U.S. "has not narrowed in recent years and remains significant, reflecting weak labour productivity performance," reported the OECD, a Paris-based economic think-tank funded by 30 countries from Europe, North America and Asia.

"The federal and provincial governments have made some progress in dealing with the OECD's list of policies that are holding back potential growth, but the backlog remains heavy," spokesman Peter Jarrett told Canwest News Service in an e-mail interview.

The report follows up on 2007 recommendations offered to all member countries suggesting ways to improve productivity. In Canada, the proposals were intended to help narrow the 15% gap between the two countries' per capita gross domestic product.

The OECD had called on Canada to remove interprovincial trade barriers, reduce higher-than-average restrictions on foreign investment, liberalize provincial electricity markets, improve the tax system's efficiency, and reform the Employment Insurance (EI) system so it doesn't force some companies to effectively subsidize other firms engaged in seasonal work.

"Specifically, electricity markets still benefit rather little from competitive forces, EI benefits are still hindering labour mobility, and the taxation of capital remains burdensome particularly at the provincial level, thereby reducing investment," according to Mr. Jarrett.

The report did point out positive steps, such as the promise by provincial premiers last year to remove by 2009 all inter-provincial labour mobility barriers involving "regulated occupations" such as doctors, dentists, architects, engineers, and tradesmen like plumbers and electricians.

Related News

Quebec's electricity ambitions reopen old wounds in Newfoundland and Labrador

Quebec Churchill Falls power deal renewal spotlights Hydro-Que9bec's Labrador hydroelectricity, Churchill River contract extension, Gull Island prospects, and Innu Nation rights, as demand from EV battery manufacturing and the green economy outpaces provincial supply.

 

Key Points

Extending Quebec's low-price Churchill Falls contract to secure Labrador hydro and address Innu Nation rights.

✅ 1969 contract delivers ~30 TWh at very low fixed price.

✅ Newfoundland seeks higher rates, equity, and consultation.

✅ Innu Nation demands benefits, consent, and land remediation.

 

As Quebec prepares to ramp up electricity production to meet its ambitious economic goals, the government is trying to extend a power deal that has caused decades of resentment in Newfoundland and Labrador.

Around 15 per cent of Quebec's electricity comes from the Churchill Falls dam in Labrador, through a deal set to expire in 2041 that is widely seen as unfair. Quebec Premier François Legault not only wants to extend the agreement, he wants another dam on the Churchill River and, for now, has closed the door on nuclear power as an option to help make his province what he has called a "world leader for the green economy."

But renewing that contract "won't be easy," Normand Mousseau, scientific director of the Trottier Energy Institute at Polytechnique Montréal, said in a recent interview. Extending the Churchill Falls deal is not essential to meet Quebec's energy plans, but without it, Mousseau said, "we would have some problems."

The Legault government is enticing global companies, such as manufacturers of electric vehicle batteries, to set up shop in the province and access its hydroelectricity. But demand for Quebec's power has exceeded its supply, and Ontario has chosen not to renew a power-purchase deal with Quebec, limiting the government's vision.

Last month, Quebec's hydro utility released its strategic plan calling for a production increase of 60 terawatt hours by 2035, which represents the installed capacity of three of Hydro-Québec's largest facilities. Churchill Falls produces roughly 30 terawatt hours, and Quebec would need to replace that power if it can't strike a deal to extend the contract, Mousseau said.

If Quebec wants to keep buying power from Churchill Falls, the government is going to have to pay more, said Mousseau, who is also a physics professor at Université de Montréal. "We're paying one-fifth of a cent a kilowatt hour — that's not much," he said.

Under the 1969 contract, Quebec assumed most of the financial risk of building the Churchill Falls dam in exchange for the right to buy power at a fixed price. The deal has generated more than $28 billion for Hydro-Québec; it has returned $2 billion to Newfoundland and Labrador.

That lopsided deal has stoked anti-Quebec sentiment in Newfoundland and Labrador and contributed to nationalist politics, including threats of separation from Canada around a decade and a half ago, when Danny Williams was premier, said Jerry Bannister, a history professor at Dalhousie University.

"We tend to forget what it was like during the Williams era — he hauled down the Canadian flag," Bannister said. "There was a type of angry, combative nationalism which defined energy development. And particularly Muskrat Falls, it was payback, it was revenge."

Power from the Muskrat Falls generating station, also on the Churchill River, would be sold to Nova Scotia instead of Quebec. But that project has suffered technical problems and cost overruns since, and as of June 29, the price of Muskrat Falls had reached $13.5 billion; the province had estimated the total cost would be $7.4 billion when it sanctioned the project in 2012.

Anti-Quebec feelings may have subsided, but Bannister said the Churchill Falls deal continues to influence Newfoundland politics.

In September, Premier Andrew Furey said Legault would have to show him the money(opens in a new tab) to extend th Legault's office said Tuesday that discussions are ongoing, while the Newfoundland and Labrador government said in an emailed statement Thursday that it wants to maximize the value of its "assets and future opportunities" along the Churchill River.

Whatever negotiations are happening, Grand Chief Simon Pokue of the Innu Nation of Labrador(opens in a new tab) said he has been left out of them.

Churchill Falls flooded 6,500 square kilometres of traditional Innu land, Pokue said, adding that in response, the Innu Nation filed a $4 billion lawsuit against Hydro-Québec in 2020, which is ongoing.

"A lot of damage has been done to our lands, our land is flooded and we'll never see it again," Pokue said in a recent interview. "Nobody will ever repair that."

As well, a portion of Muskrat Falls profits was supposed to go to the Innu Nation, but the cost overruns and a refinancing deal between the federal government and Newfoundland and Labrador have limited whatever money they will see.

If Legault wants another dam on the Churchill River, at Gull Island, the Innu Nation needs to be paid the kind of money it was expecting from Muskrat Falls, he said.

"You did it once, but you're not going to do it again," Pokue said. "It's not going to start until we are consulted and involved."

Meanwhile, Quebec may face competition for Churchill Falls power, Mousseau said, with at least one Labrador mining company expressing interest in buying a significant portion of its output — though he added that the dam's capacity could be increased. The low price paid by Quebec has meant there has been little incentive to upgrade the plant's turbines.

As demand for electricity rises across the country, Mousseau said he thinks it would be better for provinces to work together, sharing expertise and costs, for example through NB Power deals to import more Quebec electricity as they look across provincial borders to find the best locations for projects, rather than acting as rivals.

"We need to talk and work with other provinces, and some propose an independent planning body to guide this, but for this you need to build confidence, and there's no confidence from the Newfoundland side with respect to Quebec," he said. "So that's a challenge: how do you work on this relationship that has been broken for 50 years?"e contract, but the two premiers have said little since.

 

Related News

View more

Scientists generate 'electricity from thin air.' Humidity could be a boundless source of energy.

Air Humidity Energy Harvesting converts thin air into clean electricity using air-gen devices with nanopores, delivering continuous renewable energy from ambient moisture, as demonstrated by UMass Amherst researchers in Advanced Materials.

 

Key Points

A method using nanoporous air-gen devices to harvest continuous clean electricity from ambient atmospheric moisture.

✅ Nanopores drive charge separation from ambient water molecules

✅ Works across materials: silicon, wood, bacterial films

✅ Predictable, continuous power unlike intermittent solar or wind

 

Sure, we all complain about the humidity on a sweltering summer day. But it turns out that same humidity could be a source of clean, pollution-free energy, aligning with efforts toward cheap, abundant electricity worldwide, a new study shows.

"Air humidity is a vast, sustainable reservoir of energy that, unlike wind and solar power resources, is continuously available," said the study, which was published recently in the journal Advanced Materials.

While humidity harvesting promises constant output, advances like a new fuel cell could help fix renewable energy storage challenges, researchers suggest.

“This is very exciting,” said Xiaomeng Liu, a graduate student at the University of Massachusetts-Amherst, and the paper’s lead author. “We are opening up a wide door for harvesting clean electricity from thin air.”

In fact, researchers say, nearly any material can be turned into a device that continuously harvests electricity from humidity in the air, a concept echoed by raindrop electricity demonstrations in other contexts.

“The air contains an enormous amount of electricity,” said Jun Yao, assistant professor of electrical and computer engineering at the University of Massachusetts-Amherst and the paper’s senior author. “Think of a cloud, which is nothing more than a mass of water droplets. Each of those droplets contains a charge, and when conditions are right, the cloud can produce a lightning bolt – but we don’t know how to reliably capture electricity from lightning.

"What we’ve done is to create a human-built, small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”

The heart of the human-made cloud depends on what Yao and his colleagues refer to as an air-powered generator, or the "air-gen" effect, which relates to other atmospheric power concepts like night-sky electricity studies in the field.

In broader renewable systems, flexible resources such as West African hydropower can support variable wind and solar output, complementing atmospheric harvesting concepts as they mature.

The study builds on research from a study published in 2020. That year, scientists said this new technology "could have significant implications for the future of renewable energy, climate change and in the future of medicine." That study indicated that energy was able to be pulled from humidity by material that came from bacteria; related bio-inspired fuel cell design research explores better electricity generation, the new study finds that almost any material, such as silicon or wood, also could be used.

The device mentioned in the study is the size of a fingernail and thinner than a single hair. It is dotted with tiny holes known as nanopores, it was reported. "The holes have a diameter smaller than 100 nanometers, or less than a thousandth of the width of a strand of human hair."

 

Related News

View more

N.W.T. green energy advocate urges using more electricity for heat

Taltson Hydro Electric Heating directs surplus hydro power in the South Slave to space heat via discounted rates, displacing diesel and cutting greenhouse gas emissions, with rebates, separate metering, and backup systems shaping adoption.

 

Key Points

An initiative using Taltson's surplus hydro to heat buildings, discount rates replace diesel and cut emissions.

✅ 6.3 cents/kWh heating rate needs separate metering, backup heat

✅ 4-6 MW surplus hydro; outages require diesel; rebates available

✅ Program may be curtailed if new mines or mills demand power

 

A Northwest Territories green energy advocate says there's an obvious way to expand demand for electricity in the territory's South Slave region without relying on new mining developments — direct it toward heating.

One of the reasons the N.W.T. has always had some of the highest electricity rates in Canada is that a small number of people have to shoulder the huge costs of hydro facilities and power plants.

But some observers point out that residents consume as much energy for heat as they do for conventional uses of electricity, such as lighting and powering appliances. Right now almost all of that heat is generated by expensive oil imported from the United States.

The Northwest Territories Power Corporation says the 18-megawatt Taltson hydro system that serves the South Slave typically has four to six megawatts of excess generating capacity, even as record demand in Yukon is reported. It says using some of that to generate heat is a government priority.

But renewable energy advocate and former N.W.T. MP Dennis Bevington, who lives in the South Slave and heats his home using electricity, says the government is not making it easy for people to tap into that surplus to heat their homes and businesses, a debate that some say would benefit from independent planning at the national level.

Discount rate for heating, but there are catches
The power corporation offers hydro electricity from Taltson to use for heating at a much lower price than it charges for electricity generally. The discounted rate is not available to residential customers.

According to the corporation, consumers pay only 6.3 cents per kilowatt hour compared to the regular rate of just under 24 cents, while Manitoba Hydro financial pressures highlight the risks of expanding demand without new generation.

But to distinguish between the two, users are required to cover the cost of installing a separate power meter. Bevington, who developed the N.W.T.'s first energy strategy, says that is an unnecessary expense.

Taltson expansion key to reducing N.W.T.'s greenhouse gas emissions, says gov't
"The billing is how you control that," he said. "You establish an average electrical use in the winter months. That could be the base rate. Then, if you use power in the winter months above that, you get the discount."

Users are also required to have a back-up heating system. Taltson hydro power offers heating on the understanding that when the hydro system is down — such as during power outages or annual summer maintenance of the hydro system — electricity is not available for heating.
The president and CEO of the power corporation says there's a good reason for that. "The diesels are more expensive to run and they're actually greenhouse gas emitting," said Noel Voykin. "The whole idea of this [electric heat] program is to provide clean energy that is not otherwise being used."

According to the corporation, there have been huge savings for the few who have tapped into the hydro system to heat their buildings, and across Canada utilities are exploring novel generation such as NB Power's Belledune seawater project to diversify supply.

It's being used to heat Aurora College's Breynat Hall, and Joseph B. Tyrrell Elementary School and the transportation department garage in Fort Smith, N.W.T. Electricity is also used to heat the Jackfish power plant in the North Slave region.

The corporation says that during a four-year period, this saved more than 600,000 litres of diesel fuel and reduced greenhouse gas emissions by about 1,700 tonnes.

Bevington says the most obvious place to expand the use of electrical heat is to government housing.

"We have a hundred public housing units in Fort Smith," he said. "The government is putting diesel into those units [for heating] and they could be putting in their own electricity."

Heating a tiny part of energy market
The corporation says it sells only about 2.5 megawatts of electricity for heating each year, which is less than four per cent of the power it sells in the region. It says with some upgrades, another two megawatts of electricity could be made available for electrical heat.

Bevington says the corporation could do more to market electricity for heating. Voykin said that's the government's job. There are three programs that offer rebates to residents and businesses converting to electric heating.

If you build it, will they come? N.W.T. gov't hopes hydro expansion will attract investment
There are better options than billion dollar Taltson expansion, say energy leaders
There may be a reason why the government and the corporation are not more aggressively promoting using surplus electricity in the Taltson system for heating, as large hydro ambitions have reopened old wounds in places like Quebec and Newfoundland and Labrador during recent debates.

It is anticipating that new industrial customers may require that excess capacity in the coming years, and experiences elsewhere show that accommodating new energy-intensive customers can be challenging for utilities. Voykin said those potential new customers include a proposed mine at Pine Point and a pellet mill in Enterprise, N.W.T., even as biomass use faces environmental pushback in some regions.

The corporation says any surplus power in the system will be sold at standard rates to any new industrial customers instead of at discount rates for heating. If that requires cutting back on the heating program, it will be cut back.

 

Related News

View more

Power bill cut for 22m Thailand houses

Thailand Covid-19 Electricity Bill Relief offers energy subsidies, tariff cuts, and free power for small meters, helping work-from-home users as authorities waive charges and discount kWh rates via EGAT, MEA, PEA for three months.

 

Key Points

Program waiving or cutting household electricity bills for 22 million homes in March-May, easing work-from-home costs.

✅ Free power for meters <= 5 amps; up to 10M homes

✅ Up to 800 kWh: pay February rate; above, 50% discount

✅ >3,000 kWh: 30% discount; program valid March-May

 

The Thailand cabinet has formally approved energy authorities' decision to either waive or cut electricity charges, similar to B.C. electricity relief measures, for 22 million households where people are working at home because of the coronavirus disease.

Energy Minister Sontirat Sontijirawong said after the cabinet meeting on Tuesday that the ministers acknowledged the step taken by from the Energy Regulatory Commission, the Electricity Generating Authority of Thailand, the Metropolitan Electricity Authority and the Provincial Electricity Authority and noted parallels with Ontario's COVID-19 hydro plan rolled out to support ratepayers.

The measure would be valid for three months, from March to May, and cover 22 million households. It would cost the state 23.68 billion baht in lost revenue, he said, a pattern also seen with Ontario rate reductions affecting provincial revenues.


"The measure reduces the electricity charges burden on households. It is the cost of living of the people who are working from home to support the government's control of Covid-19," Mr Sontirat said.

The business sector also wants similar assistance, echoing sentiments from Ontario manufacturers during recent price reduction efforts. He said their requests were being considered.

Free electricity is extended to households with a power meter of no more than 5 amps. Up to 10 million households are expected to benefit, although issues like electricity payment challenges in India highlight different market contexts.

For households with a power meter over 5 amps, if their consumption does not exceed 800 units (kilowat hours), they will pay as much as they did in their February bill. The amount over 800 units will be subject to a 50 per cent discount, while elsewhere B.C. commercial consumption has fallen sharply.

Large houses that consume more than 3,000 units will get a 30 per cent discount, at a time when BC Hydro demand is down 10%.

 

Related News

View more

New president at Manitoba Hydro to navigate turmoil at Crown corporation

Jay Grewal Manitoba Hydro Appointment marks the first woman CEO at the Crown utility, amid debt, rate increase plans, privatization debate, and Metis legal challenge, following board turmoil and Premier Pallister's strained relations.

 

Key Points

The selection of Jay Grewal as Manitoba Hydro's first woman CEO amid debt, rate hikes, and legal disputes.

✅ First woman CEO of Manitoba Hydro

✅ Faces debt, rate hikes, and project overruns

✅ Amid privatization debate and Metis legal action

 

The Manitoba government has appointed a new president and chief executive officer at its Crown-owned energy utility.

Jay Grewal becomes the first woman to head Manitoba Hydro, and takes over the top spot as the utility faces mounting financial challenges, rising electricity demand and turmoil.

Grewal has previously held senior roles at Capstone Mining Corp and B.C. Hydro, and is currently president of the Northwest Territories Power Corporation.

She will replace outgoing president Kelvin Shepherd, who recently announced he is retiring, on Feb. 4.

The utility was hit by the sudden resignations of nine of its 10 board members in March, who said they had been unable to meet with Premier Brian Pallister to discuss pressing issues like servicing energy-intensive customers facing the utility.

Manitoba Hydro is also in the middle of a battle between the Progressive Conservative government and the Manitoba Metis Federation over the cancellation of two agreements that would have given the Metis $87 million.

The federation has launched a legal challenge over one deal and says its likely going to do the same over the second agreement.

Grewal also takes over the utility at a time when it has racked up billions of dollars in debt building new generating stations and transmission lines. Manitoba Hydro has told the provincial regulatory agency it needs rate increases of nearly eight per cent a year for the next few years to help pay for the projects.

The utility also exports electricity, with deals such as SaskPower's purchase agreement expanding sales to Saskatchewan.

"Ms. Grewal is a proven leader, with extensive senior leadership experience in the utility, resource and consulting sectors," Crown Services Minister Colleen Mayer said in a written statement Thursday.

The Opposition New Democrats said Grewal's appointment is a sign the government wants to privatize Manitoba Hydro. Grewal's time at B.C. Hydro coincided with the privatization of some parts of that Crown utility, the NDP said.

The B.C. premier at the time, Gordon Campbell, was recently hired by Manitoba to review two major projects that ran over-budget and have added to the provincial debt.

NDP Leader Wab Kinew asked Pallister in the legislature Thursday to promise not to privatize Manitoba Hydro. Pallister would only point to a law that requires a referendum to be held before a Crown entity can be sold off.

"We stand by that (law)," Pallister said. "We believe Manitobans are the proper decision-makers in respect of any of the future structuring of Manitoba Hydro."

 

Related News

View more

Rooftop Solar Grids

Rooftop solar grids transform urban infrastructure with distributed generation, photovoltaic panels, smart grid integration and energy storage, cutting greenhouse gas emissions, lowering utility costs, enabling net metering and community solar for low-carbon energy systems.

 

Key Points

Rooftop solar grids are PV systems on buildings that generate power, cut emissions, and enable smart grid integration.

✅ Lowers utility bills via net metering and demand offset

✅ Reduces greenhouse gases and urban air pollution

✅ Enables resiliency with storage, smart inverters, and microgrids

 

As urban areas expand and the climate crisis intensifies, cities are seeking innovative ways to integrate renewable energy sources into their infrastructure. One such solution gaining traction is the installation of rooftop solar grids. A recent CBC News article highlights the significant impact of these solar systems on urban environments, showcasing their benefits and the challenges they present.

Harnessing Unused Space for Sustainable Energy

Rooftop solar panels are revolutionizing how cities approach energy consumption and environmental sustainability. By utilizing the often-overlooked space on rooftops, these systems provide a practical solution for generating renewable energy in densely populated areas. The CBC article emphasizes that this approach not only makes efficient use of available space but also contributes to reducing a city's reliance on non-renewable energy sources.

The ability to generate clean energy directly from buildings helps decrease greenhouse gas emissions and, as scientists work to improve solar and wind power, promotes a shift towards a more sustainable energy model. Solar panels absorb sunlight and convert it into electricity, reducing the need for fossil fuels and lowering overall carbon footprints. This transition is crucial as cities grapple with rising temperatures and air pollution.

Economic and Environmental Advantages

The economic benefits of rooftop solar grids are considerable. For homeowners and businesses, installing solar panels can lead to substantial savings on electricity bills. The initial investment in solar technology is often balanced by long-term energy savings and financial incentives, such as tax credits or rebates, and evidence that solar is cheaper than grid electricity in Chinese cities further illustrates the trend toward affordability. According to the CBC report, these financial benefits make solar energy a compelling option for many urban residents and enterprises.

Environmentally, the advantages are equally compelling. Solar energy is a renewable and clean resource, and increasing the number of rooftop solar installations can play a pivotal role in meeting local and national renewable energy targets, as illustrated when New York met its solar goals early in a recent milestone. The reduction in greenhouse gas emissions from fossil fuel energy sources directly contributes to mitigating climate change and improving air quality.

Challenges in Widespread Adoption

Despite the clear benefits, the adoption of rooftop solar grids is not without its challenges. One of the primary hurdles is the upfront cost of installation. While prices for solar panels have decreased over time, the initial financial outlay remains a barrier for some property owners, and regions like Alberta have faced solar expansion challenges that highlight these constraints. Additionally, the effectiveness of solar panels can vary based on factors such as geographic location, roof orientation, and local weather patterns.

The CBC article also highlights the importance of supportive infrastructure and policies for the success of rooftop solar grids. Cities need to invest in modernizing their energy grids to accommodate the influx of solar-generated electricity, and, in the U.S., record clean energy purchases by Southeast cities have signaled growing institutional demand. Furthermore, policies and regulations must support solar adoption, including issues related to net metering, which allows solar panel owners to sell excess energy back to the grid.

Innovative Solutions and Future Prospects

The future of rooftop solar grids looks promising, thanks to ongoing technological advancements. Innovations in photovoltaic cells and energy storage solutions are expected to enhance the efficiency and affordability of solar systems. The development of smart grid technology and advanced energy management systems, including peer-to-peer energy sharing, will also play a critical role in integrating solar power into urban infrastructures.

The CBC report also mentions the rise of community solar projects as a significant development. These projects allow multiple households or businesses to share a single solar installation, making solar energy more accessible to those who may not have suitable rooftops for solar panels. This model expands the reach of solar technology and fosters greater community engagement in renewable energy initiatives.

Conclusion

Rooftop solar grids are emerging as a key element in the transition to sustainable urban energy systems. By leveraging unused rooftop space, cities can harness clean, renewable energy, reduce greenhouse gas emissions, and, as developers learn that more energy sources make better projects, achieve long-term economic savings. While there are challenges to overcome, such as initial costs and regulatory hurdles, the benefits of rooftop solar grids make them a crucial component of the future energy landscape. As technology advances and policies evolve, rooftop solar grids will play an increasingly vital role in shaping greener, more resilient urban environments.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified