Hydro Ottawa asks customers for feedback on five-year plan

By Hydro Ottawa


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
OTTAWA, ONTARIO – Hydro Ottawa has launched a website and online survey to seek input from its customers on a five-year distribution plan that will help determine the company’s priorities and rates between 2016 and 2020.

The customer consultation is designed to collect consumer feedback on the reliability of OttawaÂ’s electricity distribution system and the spending decisions Hydro Ottawa will make over the next five years.

The plan highlights major issues the utility is looking to address, including:

- Replacing aging infrastructure past the anticipated end-of-life, with some more than 50 years old

- Serving a growing city and population, including building infrastructure needed to serve new communities, intensification projects and the Light Rail Transit project

- Improving the power system with targeted investments that will restore outages more quickly and/or remotely and

- Refurbishing and replacing costly facilities and equipment.

All feedback collected will be included with the utilityÂ’s application to its regulator, the Ontario Energy Board, as part of the rate setting process. Focus groups and telephone surveys are also being conducted.

To learn more about Hydro OttawaÂ’s five-year plan and to complete the online survey, please visit hydroottawa.com/survey.

Quick Facts

- Hydro Ottawa bills customers and collects payments, but only keeps about 20 percent of what the customer pays. The other 80 percent is passed on, without mark-up, to other companies responsible for generating electricity, transmitting it, and to regulators and the provincial government.

- Hydro OttawaÂ’s distribution rates must be approved by the Ontario Energy Board based on applications by the utility. The rate setting process is open and transparent, with opportunities for public participation. - Hydro Ottawa must submit evidence to demonstrate the amount of funding it needs to safely and reliably distribute electricity to its customers.

Related News

Tornadoes and More: What Spring Can Bring to the Power Grid

Spring Storm Grid Risks highlight tornado outbreaks, flooding, power outages, and transmission disruptions, with NOAA flood outlooks, coal and barge delays, vulnerable nuclear sites, and distribution line damage demanding resilience, reliability, and emergency preparedness.

 

Key Points

Spring Storm Grid Risks show how tornadoes and floods disrupt power systems, fuel transport, and plants guide resilience.

✅ Tornado outbreaks and derechos damage distribution and transmission

✅ Flooding drives outages via treefall, substation and plant inundation

✅ Fuel logistics disrupted: rail coal, river barges, road access

 

The storm and tornado outbreak that recently barreled through the US Midwest, South and Mid-Atlantic was a devastating reminder of how much danger spring can deliver, despite it being the “milder” season compared to summer and winter.  

Danger season is approaching, and the country is starting to see the impacts. 

The event killed at least 32 people across seven states. The National Weather Service is still tallying up the number of confirmed tornadoes, which has already passed 100. Communities coping with tragedy are assessing the damage, which so far includes at least 72 destroyed homes in one Tennessee county alone, and dozens more homes elsewhere. 

On Saturday, April 1–the day after the storm struck–there were 1.1 million US utility customers without power, even as EIA reported a January power generation surge earlier in the year. On Monday morning, April 3, there were still more than 80,000 customers in the dark, according to PowerOutage.us. The storm system brought disruptions to both distribution grids–those networks of local power lines you generally see running overhead to buildings–as well as the larger transmission grid in the Midwest, which is far less common than distribution-level issues. 

While we don’t yet have a lot of granular details about this latest storm’s grid impacts, recent shifts in demand like New York City's pandemic power patterns show how operating conditions evolve, and it’s worth going through what else the country might be in for this spring, as well as in future springs. Moreover, there are steps policymakers can take to prepare for these spring weather phenomena and bolster the reliability and resilience of the US power system. 

Heightened flood risk 
The National Oceanic Atmospheric Administration (NOAA) said in a recent outlook that about 44 percent of the United States is at risk of floods this spring, equating to about 146 million people. This includes most of the eastern half of the country, the federal agency said. 

The agency also sees “major” flood risk potential in some parts of the Upper Mississippi River Basin, and relatively higher risk in the Sierra Nevada region, due in part to a historic snowpack in California.  

Multiple components of the power system can be affected by spring floods. 

Power lines – Floods can saturate soil and make trees more likely to uproot and fall onto power lines. This has been contributing to power outages during California’s recent heavy storms–called atmospheric rivers–that started over the winter. In other regions, soil moisture has even been used as a predictor of where power outages will occur due to hurricanes, so that utility companies are better prepared to send line repair crews to the right areas. Hurricanes are primarily a summer and fall phenomenon, and summer also brings grid stress from air conditioning demand in many states, so for now, during spring, they are less of a concern.  

Fuel transport – Spring floods can hinder the transportation of fuels like coal. While it is a heavily polluting fossil fuel that is set to continue declining as a fuel source for US electricity generation, with the EIA summer outlook for wind and solar pointing to further shifts, coal still accounted for roughly 20 percent of the country’s generation in 2022.   

About 70 percent of US coal is transported at least part of the way by trains. The rail infrastructure to transport coal from the Powder River Basin in Montana and Wyoming–the country’s primary coal source–was proven to be vulnerable to extreme floods in the spring of 2011, and even more extreme floods in the spring of 2019. The 2019 floods’ disruptions of coal shipments to power plants via rail persisted for months and into the summertime, also affecting river shipments of coal by barge. In June 2019, hundreds of barges were stalled in the Mississippi River, through which millions of tons of the fossil fuel are normally transported. 

Power plants – Power plants themselves can also be at risk of flooding, since most of them are sited near a source of water that is used to create steam to spin the plants’ turbines, and conversely, low water levels can constrain hydropower as seen in Western Canada hydropower drought during recent reservoir shortfalls. Most US fossil fuel generating capacity from sources like methane gas, which recently set natural gas power records across the grid, and coal utilizes steam to generate electricity. 

However, much of the attention paid to the flood risk of power plant sites has centered on nuclear plants, a key source of low-carbon electricity discussed in IAEA low-carbon electricity lessons that also require a water source for the creation of steam, as well as for keeping the plant cool in an emergency. To name a notable flood example here in the United States–both visually and substantively–in 2011, the Fort Calhoun nuclear plant in Nebraska was completely surrounded by water due to late-spring flooding along the Missouri River. This sparked a lot of concerns because it was just a few months after the March 2011 meltdown of the Fukushima Daiichi nuclear plant in Japan. The public was thankfully not harmed by the Nebraska incident, but this was unfortunately not an isolated incident in terms of flood risks posed to the US nuclear power fleet. 

 

Related News

View more

PG&E Wildfire Assistance Program Accepting Applications for Aid

PG&E Wildfire Assistance Program offers court-approved aid and emergency grants for Northern California wildfires and Camp Fire victims, covering unmet needs, housing, and essentials; apply online by November 15, 2019 under Chapter 11-funded eligibility.

 

Key Points

A $105M, court-approved aid fund offering unmet-needs payments and emergency support for 2017-2018 wildfire victims.

✅ $5,000 Basic Unmet Needs per household, self-certified

✅ Supplemental aid for extreme circumstances after basic grants

✅ Apply online; deadline November 15, 2019; identity required

 

Beginning today, August 15, 2019, those displaced by the 2017 Northern California wildfires and 2018 Camp fire can apply for aid through an independently administered Wildfire Assistance Program funded by Pacific Gas and Electric Company (PG&E). PG&E’s $105 million fund, approved by the judge in PG&E’s Chapter 11 cases and related bankruptcy plan, is intended to help those who are either uninsured or need assistance with alternative living expenses or other urgent needs. The court-approved independent administrator is set to file the eligibility criteria as required by the court and will open the application process.

“Our goal is to get the money to those who most need it as quickly as possible. We will prioritize wildfire victims who have urgent needs, including those who are currently without adequate shelter,” said Cathy Yanni, plan administrator. Yanni is partnering with local agencies and community organizations to administer the fund, and PG&E also supports local communities through property tax contributions to counties.

“We appreciate the diligent work of the fund administrator in quickly establishing a way to distribute these funds and ensuring the program supports those with the most immediate needs. PG&E is focused on helping those impacted by the devastating wildfires in recent years and strengthening our energy system to reduce wildfire risks and prevent utility-caused catastrophic fires. We feel strongly that helping these communities now is the right thing to do,” said Bill Johnson, CEO and President of PG&E Corporation.

Applicants can request a “Basic Unmet Needs” payment of $5,000 per household for victims who establish basic eligibility requirements and self-certify that they have at least $5,000 of unmet needs that have not been compensated by the Federal Emergency Management Agency (FEMA). Payments are to support needs such as water, food, prescriptions, medical supplies and equipment, infant formula and diapers, personal hygiene items, and transportation fuels beyond what FEMA covered in the days immediately following the declared disasters, aligning with broader health and safety actions the company has taken.

Those who receive basic payments may also qualify for a “Supplemental Unmet Needs” payment. These funds will be available only after “Basic Unmet Needs” payments have been issued. Supplemental payments will be available to individuals and families who currently face extreme or extraordinary circumstances as compared to others who were impacted by the 2017 and 2018 wildfires, including areas affected by power line-related fires across California.

To qualify for the payments, applicants’ primary residence must have been within the boundary of the 2017 Northern California wildfires or the 2018 Camp fire in Butte County. Applicants also must establish proof of identity and certify that they are not requesting payments for an expense already paid for by FEMA.

Applicants can find more information and apply for assistance at https://www.norcalwildfireassistanceprogram.com/. The deadline to file for aid is November 15, 2019.

The $105 million being provided by PG&E was made available from the company’s cash reserves. PG&E will not seek cost recovery from its customers, and its rates are set to stabilize in 2025 according to recent guidance.

 

Related News

View more

Electricity is civilization": Winter looms over Ukraine battlefront

Ukraine Power Grid Restoration accelerates across liberated Kharkiv, restoring electricity, heat, and water amid missile and drone strikes, demining operations, blackouts, and winterization efforts, showcasing resilience, emergency repairs, and critical infrastructure recovery.

 

Key Points

Ukraine's rapid push to repair war-damaged grids, restore heat and water, and stabilize key services before winter.

✅ Priority repairs restore electricity and water in liberated Kharkiv.

✅ Crews de-mine lines and work under shelling, drones, and missiles.

✅ Winterization adds generators, mobile stoves, and large firewood supplies.

 

On the freshly liberated battlefields of northeast Ukraine, a pile of smashed glass windows outside one Soviet-era block of apartments attests to the violence of six months of Russian occupation, and of Ukraine’s sweeping recent military advances.

Indoors, in cramped apartments, residents lived in the dark for weeks on end.

Now, with a hard winter looming, they marvel at the speed and urgency with which Ukrainian officials have restored another key ingredient to their survival: electric power, a critical effort to keep the lights on this winter across communities.

Among those things governments strive to provide are security, opportunity, and minimal comfort. With winter approaching, and Russia targeting Ukraine’s infrastructure, add to that list heat and light, even as Russia hammers power plants nationwide. It’s requiring a concerted effort.

“Thank God it works! Electricity is civilization – it is everything,” says Antonina Krasnokutska, a retired medical worker, looking affectionately at the lightbulb that came on the day before, and now burns again in her tiny spotless kitchen.

“Without electricity there is no TV, no news, no clothes washing, no charging the phone,” says Ms. Krasnokutska, her gray hair pulled back and a small crucifix around her neck.

“Before, it was like living in the Stone Age,” says her grown son, Serhii Krasnokutskyi, who is more than a head taller. “As soon as it got dark, everyone would go to sleep.”

He shows a picture on his phone from a few days earlier, of a tangle of phone and computer charging cables – including his – plugged in at a local shop with a generator.

“We are very grateful for the people who repaired this electricity, even with shelling continuing,” he says. “They have a very complicated job.”

Indeed, although a lack of power might have been a novel inconvenience during the warm summer season, it increasingly has become a matter of great urgency for Ukrainian citizens and officials.

Coping through Ukraine’s winter with dignity and any degree of security will require courage and perseverance, as the severity and suffering that the season can bring here are being weaponized by Russia, as it seeks to compensate for a string of battlefield losses.

In recent days, Russian attacks have specifically targeted Ukraine’s electrical and other civilian infrastructure – all with the apparent aim of making this winter as hard as possible for Ukrainians, even as Moscow employs other measures to spread the hardship across Europe, while Ukraine helps Spain amid blackouts through grid support.

Ukrainian President Volodymyr Zelenskyy said Monday that Russian barrages across the country with missiles and Iran-supplied kamikaze drones had destroyed 30% of Ukraine’s power stations in the previous eight days, including strikes on western Ukraine that caused outages. Thousands of towns have been left without electricity.

Kharkiv’s challenges
Emblematic of the national challenge is the one facing officials in the northeast Kharkiv region, where Ukraine recaptured more than 3,000 square miles in a September counteroffensive. Ukrainian forces are still making gains on that front, as well as in the south toward Kherson, where Wednesday Russia started evacuating civilians from the first major city it occupied, after launching its three-pronged invasion last February.

Across the Kharkiv region, Ukrainians are stockpiling as much wood, fuel, and food as possible while they still can, and adopting new energy solutions as they prepare, from sources as diverse as the floorboards of destroyed schools and the pine forests in Izium, which are pockmarked with abandoned Russian trenches adjacent to a mass burial site.

“Of course, we have this race against time,” says Serhii Mahdysyuk, the Kharkiv regional director in charge of housing, services, fuel, and energy. “Unfortunately, we probably stand in front of the biggest challenge in Ukraine.”

That is not only because of the scale of liberated territory, he says, but also because the Kharkiv region shares a long border with Russia, as well as with the Russian-controlled areas of the eastern Donbas.

“It’s a great mixture of all threats, and we are sure that shelling and bombings will continue, but we are ready for this,” says Mr. Mahdysyuk. “We know our weak spots that Russia can destroy, but we are prepared for what to do in these situations.”

Ukraine’s battlefield gains have meant a surging need to pick up the pieces after Russian occupation, even as electricity reserves are holding if no new strikes occur, to ensure habitable conditions as more and more surviving residents require services, and as others return to scenes of devastation.

Restoring electricity is the top priority, amid shifting international assistance such as the end of U.S. grid support, because that often restarts running water, too, says Mr. Mahdysyuk. But before that, the area beneath broken power lines must be de-mined.

Indeed, members of an electricity team reconnecting cables on the outskirts of Balakliia – one of the first towns to see power restored, at the end of September – say they lost two fellow workers in the previous two weeks. One died after stepping on an anti-personnel mine, another when his vehicle hit an anti-tank device.

Ukrainian electricity workers restore power lines damaged during six months of Russian military occupation in Balakliia, Ukraine, Sept. 29, 2022. Ukrainians in liberated territory say the restoration of the electrical grid, and with it often the water supply, is a return to civilization.
“For now, our biggest problem is mines,” says the team leader, who gave the name Andrii. “It’s fine within the cities, but in the fields it’s a disaster because it’s very difficult to see them. There is a lot of [them] around here – it will take years and years to get rid of.”

Yet officials only have a few weeks to execute plans to provide for hundreds of thousands of residents in this region, in their various states of need and distress. Some 50 field kitchens capable of feeding 200 to 300 people each have been ordered. Another 1,000 mobile stoves are on their way.

And authorities will provide nearly 200,000 cubic yards of firewood for those who have no access to it, and may have no other means of keeping warm – or where shelling continues to disrupt repairs, says Mr. Mahdysyuk.

“The level of opportunity and resources we have is not the same as the level of destruction,” he says. People in districts and buildings too destroyed to have services restored soon, such as in Saltivka in Kharkiv city, may be moved.

 

Related News

View more

EDF and France reach deal on electricity prices-source

EDF Nuclear Power Price Deal sets a 70 euros/MWh reference price, adds consumer protection if wholesale electricity prices exceed 110 euros/MWh, and outlines taxation mechanisms to shield bills while funding nuclear investment.

 

Key Points

A government-EDF deal setting 70 euros/MWh with safeguards above 110 euros/MWh to protect consumers.

✅ Reference price fixed at 70 euros/MWh, near EDF costs.

✅ Consumer shield above 110 euros/MWh; up to 90% extra-revenue tax.

✅ Review clauses maintain 70 euros/MWh through market swings.

 

State-controlled power group EDF and the French government have reached a tentative deal on future nuclear power prices, echoing a new electricity pricing scheme France has floated, a source close to the government said on Monday, ending months of tense negotiations.

The two sides agreed on 70 euros per megawatt hour (MWH) as a reference level for power prices, aligning with EU plans for more fixed-price contracts for consumers, the source said, cautioning that details of the deal are still being finalised.

The negotiations aimed to find a compromise between EDF, which is eager to maximise revenues to fund investments, and the government, keen to keep electricity bills for French households and businesses as low as possible, amid ongoing EU electricity reform debates across the bloc.

EDF declined to comment.

The preliminary deal sets out mechanisms that would protect consumers if power market prices rise above 110 euros/MWH, similar to potential emergency electricity measures being weighed in Europe, the source said, adding that the deal also includes clauses that would provide a price guarantee for EDF.

The 70 euros/MWH agreed reference price level is close to EDF's nuclear production costs, as Europe moves to revamp its electricity market more broadly. The nuclear power produced by the company provides 70% of France's electricity.

The agreement would allow the government to tax EDF's extra revenues at 90% if prices surpass 110 euros/MWH, in order to offset the impact on consumers. It would also enable a review of conditions in case of market fluctuations to safeguard the 70 euro level for EDF, reflecting how rolling back electricity prices is tougher than it appears, the source said.

French wholesale electricity prices are still above 100 euros/MWH, after climbing to 1,200 euros during last year's energy crisis, even as diesel prices have returned to pre-conflict levels.

A final agreement should be officially announced on Tuesday after a meeting between Finance Minister Bruno Le Maire, Energy Transition Minister Agnes Pannier-Runacher and EDF chief Luc Remont.

That meeting will work out the final details on price thresholds and tax rates between the reference level and the upper limit, the source said.

Negotiations between the two sides were so fraught that at one stage they raised questions about the future of EDF chief Luc Remont, who was appointed by President Emmanuel Macron a year ago to turn around EDF.

The group ended 2022 with a 18 billion-euro loss and almost 65 billion euros of net debt, hurt by a record number of reactor outages that coincided with soaring energy prices in the wake of Russia's invasion of Ukraine.

With its output at a 30-year low, EDF was forced to buy electricity on the market to supply customers. The government, meanwhile, imposed a cap on electricity prices, leaving EDF selling power at a discount.

 

Related News

View more

TCS Partners with Schneider Electric Marathon de Paris to Boost AI and Technology

TCS AI Partnership Paris Marathon integrates predictive analytics, digital twin simulations, real-time runner tracking, and sustainability solutions to elevate logistics, athlete performance, and immersive spectator engagement across the Schneider Electric Marathon de Paris ecosystem.

 

Key Points

AI-driven TCS partnership enhancing Paris logistics, performance, engagement, and sustainability for three years.

✅ Predictive analytics and digital twins optimize race-day ops

✅ Real-time runner tracking and health insights

✅ Sustainable resource management and waste reduction

 

Tata Consultancy Services (TCS) has officially become the AI & Technology Partner for the Schneider Electric Marathon de Paris, marking the start of a three-year collaboration with one of the world’s most prestigious running events. This partnership, announced on April 1, 2025, aims to revolutionize the marathon experience by integrating cutting-edge technology, artificial intelligence (AI), and data analytics, and modern AI data centers to power scalable capabilities, enhancing both the runner's journey and the spectator experience.

The Schneider Electric Marathon de Paris, which attracts over 55,000 runners from across the globe, is a renowned event that not only challenges athletes but also captivates a worldwide audience. As the Official AI & Technology Partner, TCS is set to bring its deep expertise in AI, digital innovation, and data-driven insights to this iconic event, drawing on adjacent domains such as substation automation training to strengthen operations. With more than 30 years of presence in France and its significant partnerships with French corporations, TCS is uniquely positioned to merge its global technology capabilities with local knowledge, thus adding immense value to this prestigious marathon.

The collaboration will primarily focus on enhancing the race logistics, improving athlete performance, and creating a personalized experience for both runners and spectators. Using advanced AI tools, predictive analytics, and digital twin technologies, TCS will streamline various aspects of the event. For example, AI-powered predictive models, reflecting progress recognized by European electricity prediction specialists in forecasting, will be used to track and monitor runners in real-time, providing insights into their performance and well-being during the race. Additionally, the implementation of digital twin technology will enable TCS to create accurate virtual models of the event, improving logistics and supporting better decision-making.

One of the key goals of the partnership is to improve the sustainability of the marathon. By utilizing advanced AI solutions, including AI for energy savings approaches, TCS will help optimize race-day operations, ensuring efficient management of resources, reducing waste, and minimizing environmental impact. This aligns with the growing trend of incorporating sustainability into large-scale events, ensuring that such iconic marathons not only provide an exceptional experience for participants but also contribute to global environmental goals.

TCS’s PacePort™ innovation hub in Paris will play a pivotal role in the collaboration. This innovation center will serve as the testing ground for new AI-powered solutions and tools aimed at improving runner performance and creating a more engaging race experience. Early priorities for the project include the development of personalized AI-based training programs for runners, real-time tracking systems for athlete health monitoring, and advanced analytics to support better training and recovery strategies, drawing on insights from EU smart meter analytics to inform personalization.

Additionally, TCS will introduce new technologies to enhance spectator engagement. Digital experiences, such as virtual race tracking and immersive content, will bring spectators closer to the event, even if they are not physically present at the marathon. This will allow fans worldwide to engage with the race in more interactive ways, enhancing the global reach and excitement surrounding the event.

TCS’s role in the Schneider Electric Marathon de Paris is part of its broader strategy to leverage technology in the realm of sports. The company already supports several major global marathons, including those in New York, London, where projects like the London electricity tunnel showcase infrastructure innovation, and Mumbai, contributing to their operational success and social impact. In fact, marathons supported by TCS raised nearly $280 million for charitable causes in 2024 alone, demonstrating the company’s commitment to blending innovation with social responsibility.

The strategic partnership with the Paris marathon also underscores TCS’s continued commitment to its French operations, and aligns with Schneider Electric’s Notre Dame restoration initiatives that highlight local impact, reinforcing its role as a leader in AI and digital technology. Through this collaboration, TCS aims to not only support the marathon’s logistical and technological needs but also to contribute to the broader development of digital sports experiences.

This partnership promises to deliver a more dynamic, sustainable, and engaging marathon experience, benefiting runners, spectators, and the broader event ecosystem. With TCS’s cutting-edge technology and commitment to enhancing the marathon, the Schneider Electric Marathon de Paris is poised to set new standards for global sports events, blending athletic performance with digital innovation in unprecedented ways.

 

Related News

View more

As New Zealand gets serious about climate change, can electricity replace fossil fuels in time?

New Zealand Energy Transition will electrify transport and industry with renewables, grid-scale solar, wind farms, geothermal, batteries, demand response, pumped hydro, and transmission upgrades to manage dry-year risk and winter peak loads.

 

Key Points

A shift to renewables and smart demand to decarbonise transport and industry while ensuring reliable, affordable power.

✅ Electrifies transport and industrial heat with renewables

✅ Uses demand response, batteries, and pumped hydro for resilience

✅ Targets 99%+ renewable supply, managing dry-year and peak loads

 

As fossil fuels are phased out over the coming decades, the Climate Change Commission (CCC) suggests electricity will take up much of the slack, aligning with the vision of a sustainable electric planet powering our vehicle fleet and replacing coal and gas in industrial processes.

But can the electricity system really provide for this increased load where and when it is needed? The answer is “yes”, with some caveats.

Our research examines climate change impacts on the New Zealand energy system. It shows we’ll need to pay close attention to demand as well as supply. And we’ll have to factor in the impacts of climate change when we plan for growth in the energy sector.

 

Demand for electricity to grow
While electricity use has not increased in NZ in the past decade, many agencies project steeply rising demand in coming years. This is partly due to both increasing population and gross domestic product, but mostly due to the anticipated electrification of transport and industry, which could result in a doubling of demand by mid-century.

It’s hard to get a sense of the scale of the new generation required, but if wind was the sole technology employed to meet demand by 2050, between 10 and 60 new wind farms would be needed nationwide.

Of course, we won’t only build wind farms, as renewables are coming on strong and grid-scale solar, rooftop solar, new geothermal, some new small hydro plant and possibly tidal and wave power will all have a part to play.

 

Managing the demand
As well as providing more electricity supply, demand management and batteries will also be important. Our modelling shows peak demand (which usually occurs when everyone turns on their heaters and ovens at 6pm in winter) could be up to 40% higher by 2050 than it is now.

But meeting this daily period of high demand could see expensive plant sitting idle for much of the time (with the last 25% of generation capacity only used about 10% of the time).

This is particularly a problem in a renewable electricity system when the hydro lakes are dry, as hydro is one of the few renewable electricity sources that can be stored during the day (as water behind the dam) and used over the evening peak (by generating with that stored water).

Demand response will therefore be needed. For example, this might involve an industrial plant turning off when there is too much load on the electricity grid.

 

But by 2050, a significant number of households will also need smart appliances and meters that automatically use cheaper electricity at non-peak times. For example, washing machines and electric car chargers could run automatically at 2am, rather than 6pm when demand is high.

Our modelling shows a well set up demand response system could mitigate dry-year risk (when hydro lakes are low on water) in coming decades, where currently gas and coal generation is often used.

Instead of (or as well as) having demand response and battery systems to combat dry-year risk, a pumped storage system could be built. This is where water is pumped uphill when hydro lake inflows are plentiful, and used to generate electricity during dry periods.

The NZ Battery project is currently considering the potential for this in New Zealand, and debates such as whether we would use Site C's electricity offer relevant lessons.

 

Almost (but not quite) 100% renewable
Dry-year risk would be greatly reduced and there would be “greater greenhouse gas emissions savings” if the Interim Climate Change Committee’s (ICCC) 2019 recommendation to aim for 99% renewable electricity was adopted, rather than aiming for 100%.

A small amount of gas-peaking plant would therefore be retained. The ICCC said going from 99% to 100% renewable electricity by overbuilding would only avoid a very small amount of carbon emissions, at a very high cost.

Our modelling supports this view. The CCC’s draft advice on the issue also makes the point that, although 100% renewable electricity is the “desired end point”, timing is important to enable a smooth transition.

Despite these views, Energy Minister Megan Woods has said the government will be keeping the target of a 100% renewable electricity sector by 2030.

 

Impacts of climate change
In future, the electricity system will have to respond to changing climate patterns as well, becoming resilient to climate risks over time.

The National Institute of Water and Atmospheric Research predicts winds will increase in the South Island and decrease in the far north in coming decades.

Inflows to the biggest hydro lakes will get wetter (more rain in their headwaters), and their seasonality will change due to changes in the amount of snow in these catchments.

Our modelling shows the electricity system can adapt to those changing conditions. One good news story (unless you’re a skier) is that warmer temperatures will mean less snow storage at lower elevations, and therefore higher lake inflows in the big hydro catchments in winter, leading to a better match between times of high electricity demand and higher inflows.

 

The price is right
The modelling also shows the cost of generating electricity is not likely to increase, because the price of building new sources of renewable energy continues to fall globally.

Because the cost of building new renewables is now cheaper than non-renewables (such as coal-fired plants), investing in carbon-free electricity is increasingly compelling, and renewables are more likely to be built to meet new demand in the near term.

While New Zealand’s electricity system can enable the rapid decarbonisation of (at least) our transport and industrial heat sectors, international efforts like cleaning up Canada's electricity underline the need for certainty so the electricity industry can start building to meet demand everywhere.

Bipartisan cooperation at government level will be important to encourage significant investment in generation and transmission projects with long lead times and life expectancies, as analyses of climate policy and grid implications underscore in comparable markets.

Infrastructure and markets are needed to support demand response uptake, as well as certainty around the Tiwai exit in 2024 and whether pumped storage is likely to be built.

Our electricity system can support the rapid decarbonisation needed if New Zealand is to do its fair share globally to tackle climate change.

But sound planning, firm decisions and a supportive and relatively stable regulatory framework are all required before shovels can hit the ground.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified