Duke to invest 100 million in solar

By Charlotte Business Journal


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Duke Energy Carolinas is ramping up plans to generate some of its own renewable energy, with the company primarily warming up to solar power.

That will include a $100 million investment in rooftop solar energy, a program that will involve working with commercial and even residential customers.

Duke has been considering its options on owning alternative energy capacity or buying it. Chief Executive Jim Rogers says the corporation has decided its utilities will do both.

"As a utility company, we build, operate and dispatch solar power," he says.

Rogers provided no timetable on when Duke would start building its own renewable-energy plants. North Carolina will require some renewable energy from utilities starting in 2012. The state's utilities are to provide 12.5% of the energy they sell in North Carolina from renewables or conservation by 2021.

But Duke will ask the N.C. Utilities Commission this summer for permission to invest the money in rooftop solar. Rogers has talked generally about this plan before. It will involve dipatching excess power generated by customer's solar panels as if it were power from another Duke plant.

Rogers says some of Duke's utilities will also own their own wind capacity. But he says wind energy is a less likely alternative in the Carolinas.

Duke may negotiate the purchase of wind energy here. But the only place wind farms would work in Duke's footprint is along the ridge lines in the western mountains and along the coast. "I'm not sure many environmentalists would salute that proposal," Rogers says.

A privately developed wind farm began selling electricity produced by wind turbines to Duke Energy Indiana in April. Duke also bought Tierra Energy last year, which is developing up to 1,000 megawatts of capacity. That company will build energy for Duke's commercial operation, not its utilities.

Rogers is also talking about Duke owning solar generation outright. "Solar is something that has the potential for its costs to come down over time," he says. "And clearly as it does, we want to blend solar in with our low-cost nuclear and coal here."

Related News

Power Demand Seen Holding Firm In Europe’s Latest Lockdown

European Power Demand During Second Lockdowns remains resilient as winter heating offsets commercial losses; electricity consumption tracks seasonal norms, with weather sensitivity, industrial activity, natural gas shielding, and coal decline shaping dynamics under COVID-19 restrictions.

 

Key Points

It is expected to remain near seasonal norms, driven by heating, industry activity, and weather sensitive consumption.

✅ Winter heating offsets retail and hospitality closures

✅ Demand sensitivity rises with colder weather in France

✅ Gas generation shielded; coal likely to curtail first

 

European power demand is likely to hold up in the second round of national lockdown restrictions, with fluctuations most likely driven by changes in the weather.

Traders and analysts expect normal consumption this time around as home heating during the chilly season replaces commercial demand.

Last week electricity consumption in France, Germany and the U.K. was close to business-as-usual levels for the time of year, according to BloombergNEF data. By contrast, power demand had dropped 16% in the first seven days of the springtime lockdown, as reflected by the U.K.’s 10% daily decline reported then.

How power demand performs has significance outside the sector. It’s often seen as a proxy for economic growth and during lockdowns earlier this year, electricity use slumped along with GDP, and stunted hydro and nuclear output could further hobble recovery. For Western Europe, annual demand is expected to be 5% lower than the previous year, a bigger decline than after the global financial crisis in 2008, according to S&P Global Platts.

The Covid-19 limits are lighter than those from earlier in the year “with an explicit drive to preserve economic activity, particularly at the more energy-intensive industrial end of the spectrum,” said Glenn Rickson, head of European power analysis at S&P Global Platts.

Higher levels of working from home will offset some of the losses from shop and hospitality closures, “but also increase the temperature sensitivity of overall gas and power demand, as heat-driven demand records have shown in recent summers,” he said.

The latest wave of national lockdowns began in France, Germany, Spain, Italy and Britain, with Spain having seen April demand plummet earlier in the year, as coronavirus cases surged and officials struggled to keep the spread of the virus under control.

Much of the manufacturing industry remains working for now despite additional restrictions to contain the coronavirus. With the peak of the second wave yet to be reached, “it seems almost inevitable that the fourth quarter will prove economically challenging,” analysts at Alfa Energy said.

There will initially be significantly less of an impact on demand compared with this spring when global daily demand dipped about 15% and electricity consumption in Europe was down 30%, Johan Sigvardsson, power price analyst at Swedish utility Bixia AB said.

The prevalence of electric heating systems in France means that power demand is particularly sensitive to cold weather. A cold spell would significantly boost demand and drive record electricity prices in tight markets.

Similar to the last round of shutdowns, it’s use of coal that will probably be hit first if power demand sags, as transition-focused responses gather pace, leaving natural gas mostly shielded from fluctuations in the market.

“We expect that another drop in power demand would again impact coal-fired generation and shield gas power to some extent,” said Carlos Torres Diaz, an analyst at Rystad Energy.

 

Related News

View more

Net-Zero Emissions Might Not Be Possible Without Nuclear Power

Nuclear Power for Net-Zero Grids anchors reliable baseload, integrating renewables with grid stability as solar, wind, and battery storage scale. Advanced reactors complement hydropower, curb natural gas reliance, and accelerate deep decarbonization of electricity systems.

 

Key Points

Uses nuclear baseload and advanced reactors to stabilize power grids and integrate higher shares of variable renewables.

✅ Provides firm, zero-carbon baseload for renewable-heavy grids

✅ Reduces natural gas dependence and peaker emissions

✅ Advanced reactors enhance safety, flexibility, and cost

 

Declining solar, wind, and battery technology costs are helping to grow the share of renewables in the world’s power mix to the point that governments are pledging net-zero emission electricity generation in two to three decades to fight global warming.

Yet, electricity grids will continue to require stable baseload to incorporate growing shares of renewable energy sources and ensure lights are on even when the sun doesn’t shine, or the wind doesn’t blow. Until battery technology evolves enough—and costs fall far enough—to allow massive storage and deployment of net-zero electricity to the grid, the systems will continue to need power from sources other than solar and wind.

And these will be natural gas and nuclear power, regardless of concerns about emissions from the fossil fuel natural gas and potential disasters at nuclear power facilities such as the ones in Chernobyl or Fukushima.

As natural gas is increasingly considered as just another fossil fuel, nuclear power generation provides carbon-free electricity to the countries that have it, even as debates over nuclear power’s outlook continue worldwide, and could be the key to ensuring a stable power grid capable of taking in growing shares of solar and wind power generation.

The United States, where nuclear energy currently provides more than half of the carbon-free electricity, is supporting the development of advanced nuclear reactors as part of the clean energy strategy.

But Europe, which has set a goal to reach carbon neutrality by 2050, could find itself with growing emissions from the power sector in a decade, as many nuclear reactors are slated for decommissioning and questions remain over whether its aging reactors can bridge the gap. The gap left by lost nuclear power is most easily filled by natural gas-powered electricity generation—and this, if it happens, could undermine the net-zero goals of the European Union (EU) and the bloc’s ambition to be a world leader in the fight against climate change.

 

U.S. Power Grid Will Need Nuclear For Net-Zero Emissions

A 2020 report from the University of California, Berkeley, said that rapidly declining solar, wind, and storage prices make it entirely feasible for the U.S. to meet 90 percent of its power needs from zero-emission energy sources by 2035 with zero increases in customer costs from today’s levels.

Still, natural gas-fired generation will be needed for 10 percent of America’s power needs. According to the report, in 2035 it would be possible that “during normal periods of generation and demand, wind, solar, and batteries provide 70% of annual generation, while hydropower and nuclear provide 20%.” Even with an exponential rise in renewable power generation, the U.S. grid will need nuclear power and hydropower to be stable with such a large share of solar and wind.

The U.S. Backs Advanced Nuclear Reactor Technology

The U.S. Department of Energy is funding programs of private companies under DOE’s new Advanced Reactor Demonstration Program (ARDP) to showcase next-gen nuclear designs for U.S. deployment.

“Taking leadership in advanced technology is so important to the country’s future because nuclear energy plays such a key role in our clean energy strategy,” U.S. Secretary of Energy Dan Brouillette said at the end of December when DOE announced it was financially backing five teams to develop and demonstrate advanced nuclear reactors in the United States.

“All of these projects will put the U.S. on an accelerated timeline to domestically and globally deploy advanced nuclear reactors that will enhance safety and be affordable to construct and operate,” Secretary Brouillette said.

According to Washington DC-based Nuclear Energy Institute (NEI), a policy organization of the nuclear technologies industry, nuclear energy provides nearly 55 percent of America’s carbon-free electricity. That is more than 2.5 times the amount generated by hydropower, nearly 3 times the amount generated by wind, and more than 12 times the amount generated by solar. Nuclear energy can help the United States to get to the deep carbonization needed to hit climate goals.

 

Europe Could See Rising Emissions Without Nuclear Power

While the United States is doubling down on efforts to develop advanced and cheaper nuclear reactors, including microreactors and such with new types of technology, Europe could be headed to growing emissions from the electricity sector as nuclear power facilities are scheduled to be decommissioned over the next decade and Europe is losing nuclear power just when it really needs energy, according to a Reuters analysis from last month.

In many cases, it will be natural gas that will come to the rescue to power grids to ensure grid stability and enough capacity during peak demand because solar and wind generation is variable and dependent on the weather.

For example, Germany, the biggest economy in Europe, is boosting its renewables targets, but it is also phasing out nuclear by next year, amid a nuclear option debate over climate strategy, while its deadline to phase out coal-fired generation is 2038—more than a decade later compared to phase-out plans in the UK and Italy, for example, where the deadline is the mid-2020s.

The UK, which left the EU last year, included support for nuclear power generation as one of the ten pillars in ‘The Ten Point Plan for a Green Industrial Revolution’ unveiled in November.

The UK’s National Grid has issued several warnings about tight supply since the fall of 2020, due to low renewable output amid high demand.

“National Grid’s announcement underscores the urgency of investing in new nuclear capacity, to secure reliable, always-on, emissions-free power, alongside other zero-carbon sources. Otherwise, we will continue to burn gas and coal as a fallback and fall short of our net zero ambitions,” Tom Greatrex, Chief Executive of the Nuclear Industry Association, said in response to one of those warnings.

But it’s in the UK that one major nuclear power plant project has notoriously seen a delay of nearly a decade—Hinkley Point C, originally planned in 2007 to help UK households to “cook their 2017 Christmas turkeys”, is now set for start-up in the middle of the 2020s.

Nuclear power development and plant construction is expensive, but it could save the plans for low-carbon emission power generation in many developed economies, including in the United States.

 

Related News

View more

Modular nuclear reactors a 'long shot' worth studying, says Yukon gov't

Yukon SMR Feasibility Study examines small modular reactors as low-emissions nuclear power for Yukon's grid and remote communities, comparing costs, safety, waste, and reliability with diesel generation, renewables, and energy efficiency.

 

Key Points

An official assessment of small modular reactors as low-emission power options for Yukon's grid and remote sites.

✅ Compares SMR costs vs diesel, hydro, wind, and solar

✅ Evaluates safety, waste, fuel logistics, decommissioning

✅ Considers remote community loads and grid integration

 

The Yukon government is looking for ways to reduce the territory's emissions, and wondering if nuclear power is one way to go.

The territory is undertaking a feasibility study, and, as some developers note, combining multiple energy sources can make better projects, to determine whether there's a future for SMRs — small modular reactors — as a low-emissions alternative to things such as diesel power.

The idea, said John Streicker, Yukon's minister of energy, mines and resources, is to bring the SMRs into the Yukon to generate electricity.

"Even the micro ones, you could consider in our remote communities or wherever you've got a point load of energy demand," Streicker said. "Especially electricity demand."

For remote coastal communities elsewhere in Canada, tidal energy is being explored as a low-emissions option as well.

SMRs are nuclear reactors that use fission to produce energy, similar to existing large reactors, but with a smaller power capacity. The International Atomic Energy Agency (IAEA) defines reactors as "small" if their output is under 300 MW. A traditional nuclear power plant produces about three times as much power or more.

They're "modular" because they're designed to be factory-assembled, and then installed where needed. 

Several provinces have already signed an agreement supporting the development of SMRs, and in Alberta's energy mix that conversation spans both green and fossil power, and Canada's first grid-scale SMRs could be in place in Ontario by 2028 and Saskatchewan by 2032.

A year ago, the government of Yukon endorsed Canada's SMR action plan, at a time when analysts argue that zero-emission electricity by 2035 is practical and profitable, agreeing to "monitor the progress of SMR technologies throughout Canada with the goal of identifying potential for applicability in our northern jurisdiction."

The territory is now following through by hiring someone to look at whether SMRs could make sense as a cleaner-energy alternative in Yukon. 

The territorial government has set a goal of reducing emissions by 45 per cent by 2030, excluding mining emissions, even as some analyses argue that zero-emissions electricity by 2035 is possible, and "future emissions actions for post-2030 have not yet been identified," reads the government's request for proposals to do the SMR study. 

Streicker acknowledges the potential for nuclear power in Yukon is a bit of "long shot" — but says it's one that can't be ignored.

"We need to look at all possible solutions," he said, as countries such as New Zealand's electricity sector debate their future pathways.

"I don't want to give the sense like we're putting all of our emphasis and energy towards nuclear power. We're not."

According to Streicker, it's nothing more than a study at this point.

Don't bother, researcher says
Still, M.V. Ramana, a professor at the School of Public Policy and Global Affairs at the University of British Columbia, said it's a study that's likely a waste of time and money. He says there's been plenty of research already, and to him, SMRs are just not a realistic option for Yukon or anywhere in Canada.

"I would say that, you know, that study can be done in two weeks by a graduate student, essentially, all right? They just have to go look at the literature on SMRs and look at the critical literature on this," Ramana said.

Ramana co-authored a research paper last year, looking at the potential for SMRs in remote communities or mine sites. The conclusion was that SMRs will be too expensive and there won't be enough demand to justify investing in them.

He said nuclear reactors are expensive, which is why their construction has "dried up" in much of the world.

"They generate electricity at very high prices," he said.

'They just have to go look at the literature,' said M.V. Ramana, a professor at the School of Public Policy and Global Affairs at the University of British Columbia. (Paul Joseph)
"[For] smaller reactors, the overall costs go down. But the amount of electricity that they will generate goes down even further."

The environmental case is also shaky, according to a statement signed last year by dozens of Canadian environmental and community groups, including the Sierra Club, Greenpeace, the Council of Canadians and the Canadian Environmental Law Associaton (CELA). The statement calls SMRs a "dirty, dangerous distraction" from tackling climate change and criticized the federal government for investing in the technology.

"We have to remember that the majority of the rhetoric we hear is from nuclear advocates. And so they are promoting what I would call, and other legal scholars and academics have called, a nuclear fantasy," said Kerrie Blaise of CELA.

Blaise describes the nuclear industry as facing an unknown future, with some of North America's larger reactors set to be decommissioned in the coming years. SMRs are therefore touted as the future.

"They're looking for a solution. And so that I would say climate change presents that timely solution for them."

Blaise argues the same safety and environmental questions exist for SMRs as for any nuclear reactors — such as how to produce and transport fuel safely, what to do with waste, and how to decommission them — and those can't be glossed over in a single-minded pursuit of lower carbon emissions.  

Main focus is still renewables, minister says
Yukon's energy minister agrees, and he's eager to emphasize that the territory is not committed to anything right now beyond a study.

"Every government has a responsibility to do diligence around this," Streicker said.

A solar farm in Old Crow, Yukon. The territory's energy minister says Yukon is still primarily focussed on renewables, and energy efficiency. (Caleb Charlie)
He also dismisses the idea that studying nuclear power is any sort of distraction from his government's response to climate change right now. Yukon's main focus is still renewable energy such as solar and wind power, though Canada's solar progress is often criticized as lagging, increasing efficiency, and connecting Yukon's grid to the hydro project in Atlin, B.C., he said.

Streicker has been open to nuclear energy in the past. As a federal Green Party candidate in 2008, Streicker broke with the party line to suggest that nuclear could be a viable energy alternative. 

He acknowledges that nuclear power is always a hot-button issue, and Yukoners will have strong feelings about it. A lot will depend on how any future regulatory process works, he says.

In taking action on climate, this Arctic community wants to be a beacon to the world
Cameco signs agreement with nuclear reactor company
"There's some people that think it's the 'Hail Mary,' and some people that think it's evil incarnate," he said. 

"Buried deep within Our Clean Future [Yukon's climate change strategy], there's a line in there that says we should keep an eye on other technologies, for example, nuclear. That's what this [study] is — it's to keep an eye on it."

 

Related News

View more

U.S. Electricity and natural gas prices explained

Energy Pricing Factors span electricity generation, transmission, and distribution costs, plus natural gas supply-demand, renewables, seasonal peaks, and wholesale pricing effects across residential, commercial, and industrial customers, usage patterns, weather, and grid constraints.

 

Key Points

They are the costs and market forces driving electricity and natural gas prices, from generation to delivery and demand.

✅ Generation, transmission, distribution shape electricity rates

✅ Gas prices hinge on supply, storage, imports/exports

✅ Demand shifts: weather, economy, and fuel alternatives

 

There are a lot of factors that affect energy prices globally. What’s included in the price to heat homes and supply them with electricity may be a lot more than some people may think.

Electricity
Generating electricity is the largest component of its price, according to the U.S. Energy Information Administration (EIA). Generation accounts for 56% of the price of electricity, while distribution and transmission account for 31% and 13% respectively.

Homeowners and businesses pay more for electricity than industrial companies, and U.S. electricity prices have recently surged, highlighting broader inflationary pressures. This is because industrial companies can take electricity at higher voltages, reducing transmission costs for energy companies.

“Industrial consumers use more electricity and can receive it at higher voltages, so supplying electricity to these customers is more efficient and less expensive. The price of electricity to industrial customers is generally close to the wholesale price of electricity,” EIA explains.

NYSEG said based on the average use of 600 kilowatt-hours per month, its customers spent the most money on delivery and transition charges in 2020, 57% or about $42, and residential electricity bills increased 5% in 2022 after inflation, according to national data. They also spent on average 35% (~$26) on supply charges and 8% (~$6) on surcharges.

Electricity prices are usually higher in the summer. Why? Because energy companies use sources of electricity that cost more money. It used to be that renewable sources, like solar and wind, were the most expensive sources of energy but increased technological advances have changed this, according to the International Energy Agency’s 2021 World Energy Outlook.

“In most markets, solar PV or wind now represents the cheapest available source of new electricity generation. Clean energy technology is becoming a major new area for investment and employment – and a dynamic arena for international collaboration and competition,” the report said.

Natural gas
The price of natural gas is driven by supply and demand. If there is more supply, prices are generally lower. If there is not as much supply, prices are generally higher the EIA explains. On the other side of the equation, more demand can also increase the price and less demand can decrease the price.

High natural gas prices mean people turn their home thermostats down a few degrees to save money, so the EIA said reduced demand can encourage companies to produce more natural gas, which would in turn help lower the cost. Lower prices will sometimes cause companies to reduce their production, therefore causing the price to rise.

The three major supply factors that affect prices: the amount of natural gas produced, how much is stored, and the volume of gas imported and exported. The three major demand factors that affect price are: changes in winter/summer weather, economic growth, and the broader energy crisis dynamics, as well as how much other fuels are available and their price, said EIA.

To think the price of natural gas is higher when the economy is thriving may sound counterintuitive but that’s exactly what happens. The EIA said this is because of increases in demand.

 

Related News

View more

Germany launches second wind-solar tender

Germany's Joint Onshore Wind and Solar Tender invites 200 MW bids in an EEG auction, with PV and onshore wind competing on price per MWh, including grid integration costs and network fees under BNA rules.

 

Key Points

A BNA-run 200 MW EEG auction where PV and onshore wind compete on price per MWh, including grid integration costs.

✅ 200 MW cap; minimum project size 750 kW

✅ Max subsidy 87.50 per MWh; bids include network costs

✅ Solar capped at 10-20 MW; wind requires prior approval

 

Germany's Federal Network Agency (BNA) has launched its second joint onshore wind and solar photovoltaic (PV) tender, with a total capacity of 200 MW.

A maximum guaranteed subsidy payment has been set at 87.50 per MWh for both energy sources, which BNA says will have to compete against each other for the lowest price of electricity. According to auction rules, all projects must have a minimum of 750 kW.

The auction is due to be completed on 2 November.

The network regulator has capped solar projects at 10 MW, though this has been extended to 20 MW in some districts, amid calls to remove barriers to PV at the federal level. Onshore wind projects did not receive any such restrictions, though they require approval from Federal Immission Control three weeks prior to the bid date of 11 Octobe

Bids also require network and system integration costs to be included, and similar solicitations have been heavily subscribed, as an over-subscribed Duke Energy solar solicitation in the US market illustrates.

According to Germanys Renewable Energy Act (EEG), two joint onshore wind and solar auctions must take place each year between 2018 and 2021. After this, the government will review the scheme and decide whether to continue it beyond 2021.

The first tender, conducted in April, saw the entire 200 MW capacity given to solar PV projects, reflecting a broader solar power boost in Germany during the energy crisis. Of the 32 contracts awarded, value varied from 39.60 per MWh to 57.60 per MWh. Among the winning bids were five projects in agricultural and grassland sites in Bavaria, totalling 31 MW, and three in Baden-Wrttemberg at 17 MW.

According to the Agency, the joint tender scheme was initiated in an attempt to determine the financial support requirements for wind and solar in technology-specific auctions, however, solar powers sole win in the April auction meant it was met with criticism, even as clean energy accounts for 50% of Germany's electricity today.

The heads of the Federal Solar Industry Association (BSW-Solar) and German Wind Energy Association (BWE) saying the joint tender scheme is unsuitable for the build-out of the two technologies.

A BWE spokesman previously stressed the companys rejection of competition between wind and solar, saying: It is not clear how this could contribute to an economically meaningful balanced energy mix,

Technologies that are in various stages of development must not enter into direct competition with each other. Otherwise, innovation and development potential will be compromised.

Similarly, BSW-Solar president Carsten Krnig said: We are happy for the many solar winners, but consider the experiment a failure. The auction results prove the excellent price-performance ratio of new solar power plants, as solar-plus-storage is cheaper than conventional power in Germany, but not the suitability of joint tenders.

 

Related News

View more

Hydro-Québec to Invest $750 Million in Carillon Generating Station

Hydro-Québec Carillon Refurbishment delivers a $750M hydropower modernization, replacing six turbines and upgrading civil works, water passageways, and grid equipment to extend run-of-river, renewable energy output for peak demand near Montréal.

 

Key Points

A $750M project replacing six units and upgrading civil, water and electrical systems to supply power for 50 years.

✅ Replaces six generating units with Andritz turbines.

✅ Upgrades civil works, water passageways, and electrical gear.

✅ Extends run-of-river output for 50 years; boosts peak supply.

 

Hydro-Québec will invest $750 million to refurbish its Carillon generating station with a major powerhouse upgrade that will mainly replace six generating units. The investment also covers the cost of civil engineering work, including making adjustments to water passageways, upgrading electrical equipment and replacing the station roof. Work will start in 2021, aligning with Hydro-Québec's capacity expansion plans for 2021, and continue until 2027.

Carillon generating station is a run-of-river power plant consisting of 14 generating units with a total installed capacity of 753 MW. Built in the early 1960s, it is a key part of Hydro-Québec's hydroelectric generating fleet, which includes the La Romaine complex as well. The station is close to the greater Montréal area and feeds power into the grid to support industrial demand growth during peak consumption periods.

The selected supplier, turbine manufacturer Andritz, has been asked to maximize the project's economic spinoffs in Québec, as Canada continues investing in new turbines across the country to modernize assets. Once the work is completed, the new generating units will be able to provide clean, renewable energy, supporting Hydro-Québec's strategy to reduce fossil fuel reliance for the next 50 years.

"Carillon generating station is a symbol of our hydroelectric development and plays a strategic role in our production fleet. However, most of the generating units' main components date back to the station's original construction from 1959 to 1962. Hydropower generating stations have long service lives - with this refurbishment, Carillon will be producing clean renewable energy for decades to come." said David Murray, Chief Innovation Officer and President, Hydro-Québec Production.

"In light of today's economic situation, this is an important announcement that clearly reaffirms Hydro-Québec's role in relaunching Québec's economy and strengthening interprovincial electricity partnerships that open new markets. Over 600,000 hours of work will be required for everything from the engineering work to component assembly, creating many new high-quality skilled jobs for Québec industries."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.