Report says wind can power 20 per cent of U.S.

By Business Wire


Arc Flash Training - CSA Z462 Electrical Safety

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Wind power is capable of becoming a major contributor to AmericaÂ’s electricity supply over the next three decades, according to a report released by the U.S. Department of Energy.

The groundbreaking report, 20% Wind Energy by 2030: Increasing Wind EnergyÂ’s Contribution to U.S. Electricity Supply, looks closely at one scenario for reaching 20% wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

"DOE's wind report is a thorough look at America's wind resource, its industrial capabilities, and future energy prices, and confirms the viability and commercial maturity of wind as a major contributor to America's energy needs, now and in the future," DOE Assistant Secretary of Energy Efficiency and Renewable Energy for the U.S. Department of Energy Andy Karsner, said.

"To dramatically reduce greenhouse gas emissions and enhance our energy security, clean power generation at the gigawatt-scale will be necessary, and will require us to take a comprehensive approach to scaling renewable wind power, streamlining siting and permitting processes, and expanding the domestic wind manufacturing base."

Included in the report are an examination of AmericaÂ’s technological and manufacturing capabilities, the future costs of energy sources, U.S. wind energy resources, and the environmental and economic impacts of wind development. Under the 20% wind scenario, installations of new wind power capacity would increase to more than 16,000 megawatts per year by 2018, and continue at that rate through 2030.

“The report shows that wind power can provide 20% of the nation’s electricity by 2030, and be a critical part of the solution to global warming,” said AWEA Executive Director Randall Swisher. “This level of wind power is the equivalent of taking 140 million cars off the road,” he said. “The report identifies the central constraints to achieving 20% - transmission, siting, manufacturing and technology - and demonstrates how each can be overcome. As an inexhaustible domestic resource, wind strengthens our energy security, improves the quality of the air we breathe, slows climate change, and revitalizes rural communities.”

The report finds that achieving a 20 percent wind contribution to U.S. electricity supply would:

• Reduce carbon dioxide emissions from electricity generation by 25 percent in 2030;

• Reduce natural gas use by 11%;

• Reduce water consumption associated with electricity generation by 4 trillion gallons by 2030;

• Increase annual revenues to local communities to more than $1.5 billion by 2030; and

• Support roughly 500,000 jobs in the U.S., with an average of more than 150,000 workers directly employed by the wind industry.

At 20% of electric power generation, significant growth in the manufacturing supply chain would create jobs and remedy the current shortage in parts for wind turbines.

Reducing the use of natural gas could save money for consumers due to the resulting downward pressure on the price of natural gas, according to AWEA.

"The report correctly highlights that greater penetration of renewable sources of energy - such as wind - into our electric grid will have to be paired with not only advanced integration technologies but also new transmission," DOE's Assistant Secretary for Electricity Delivery and Energy Reliability Kevin Kolevar said. "In many cases, the most robust sources of renewable resources are located in remote areas, and if we want to be able to deliver these new clean and abundant sources of energy to population centers, we will need additional transmission."

“We must look at meeting future electric demands in a cost-effective way,” said Suedeen Kelly, FERC Commissioner. “The 20% wind scenario would only cost 2 percent more than the cost of the baseline scenario without wind. At 50 cents per month for the average ratepayer, that is a small price to pay for the climate, water, natural gas, and energy security benefits it would buy - and it does not even count the stability provided to consumers by eliminating fuel price risk.”

“Though economic and other factors will ultimately determine our energy future, we believe the 20 percent wind scenario is feasible, but only with a major national transmission highway system. Delivering power from the best windy regions to the growing urban supply requires a bigger, stronger transmission system. Strong regional and interregional planning as well as broad allocation of costs will allow the United States to rely on a broader diversity of generation resources," said Mike Heyeck, Senior VP of AEP Transmission.

The report comes at an important time in wind development. In 2007, wind was one of the fastest growing sources of electricity in the nation, second only to natural gas for the third consecutive year. According to an AWEA report released last week, the U.S. wind energy industry continued new installations at a breakneck pace in the first quarter of 2008, putting 1,400 megawatts (MW) or approximately $3 billion worth of new generating capacity in place - enough to serve the equivalent of 400,000 homes - coupled with investment in 17 new manufacturing facilities over the past year.

“Wind is an important part of BP Alternative Energy’s business and of BP’s diverse energy portfolio. Siting and wildlife issues will be a challenge, but AWEA and industry leaders are committed to working with stakeholders to make wind the environmental electricity choice,” said Bob Lukefahr, President, Power Americas, BP Alternative Energy North America. “This report underscores the benefits of diversifying our electricity sources. Growing to 20% wind requires investment in new manufacturing and capital projects, an estimated 500,000 jobs, and brings rural economic development across the country.”

In 2006, President Bush articulated a national imperative for greater energy efficiency and a more diversified energy portfolio. Citing wind energy as part of the solution, he noted that areas of the nation with good wind resources could satisfy up to 20 percent of AmericaÂ’s total electricity demand.

Subsequently, government and industry came together to thoroughly explore the feasibility of generating 20 percent of U.S. electricity from wind by 2030 and produced this joint report to aid policy-makers and the public in better understanding the issues, investments, and likely outcomes associated with pursuing this objective.

Related News

CT leads New England charge to overhaul electricity market structure

New England Grid Reform Initiative aligns governors with ISO New England to reshape market design, boost grid reliability, accelerate renewable energy and offshore wind, explore carbon pricing and forward clean energy markets, and bolster accountability.

 

Key Points

Five states aim to reform ISO New England markets, prioritize renewables and reliability, and test carbon pricing.

✅ Governors seek market design aligned with clean energy mandates

✅ ISO-NE accountability and stakeholder engagement prioritized

✅ Explore carbon pricing and forward clean energy market options

 

Weeks after initiating a broad overhaul of utility regulation within its borders, Connecticut has recruited four New England states, as Maine debates a 145-mile transmission line project to rework the regional grid that is overseen by ISO New England, the independent system operator charged with ensuring a reliable supply of electricity from power plants.

In a written statement Thursday morning, Gov. Ned Lamont said the current structure “has actively hindered” states’ efforts to phase out polluting power plants in favor of renewable sources like wind turbines and solar panels, while increasing costs “to fix market design failures” in his words. Lamont’s energy policy chief Katie Dykes has emerged as a vocal critic of ISO New England’s structure and priorities, in her role as commissioner of the Connecticut Department of Energy and Environmental Protection.

“When Connecticut opted to deregulate our electricity market, we wanted the benefits of competition — to achieve lower-cost energy, compatible with meeting our clean-energy goals,” Dykes said in a telephone interview Thursday afternoon. “We have a partner [in] ISO New England, to manage this grid and design a market that is not thwarting our clean-energy goals, but achieving them; and not ignoring consumers’ concerns. ... That’s really what we are looking to do — reclaim the benefits of competition and regional cooperation.”

Lamont and his counterparts in Massachusetts, Rhode Island, Vermont and Maine plan to release a “vision document” in their words on Friday through the New England States Committee on Electricity, after New Hampshire rejected a Quebec-Massachusetts transmission proposal that sought to import Canadian hydropower.

The initial documents made no mention of New Hampshire, which likewise obtains electricity through the wholesale markets managed by ISO New England and has seen clashes over the Northern Pass hydropower project in recent years; and whose Seabrook Station is one two nuclear power plants in New England alongside Dominion Energy’s Millstone Power Station in Waterford. Gov. Chris Sununu’s office did not respond immediately to a query on why New Hampshire is not participating.

Connecticut and the four other states outlined a few broad goals that they will hone over the coming months. Those include creating a better market structure and planning process supporting the conversion to renewables; improving grid reliability, with measures such as an emergency fuel stock program considered; and increasing the accountability of ISO New England to the states and by extension their ratepayer households and businesses.

ISO New England spokesperson Matt Kakley indicated the Holyoke, Mass.-based nonprofit will “engage with the states and our stakeholders” on the governors’ proposal, in an email response to a query. He did not elaborate on any immediate opportunities or challenges inherent in the governors’ proposal.

“Maintaining reliable, competitively-priced electricity through the clean energy transition will require broad collaboration,” Kakley stated. “The common vision of the New England governors will play an important role in the discussions currently underway on the future of the grid.”

 

Renewable revolution
ISO New England launched operations in 1999, running auctions through which power plant operators bid to supply electricity, including against long-term projections for future needs that can only be met through the construction or installation of new generation capacity.

ISO New England falls under the jurisdiction of the Federal Energy Regulatory Commission rather than the states whose electricity supplies it is tasked with ensuring. That has led to pointed criticism from Dykes and Connecticut legislators that ISO New England is out of touch with the state’s push to switch to renewable sources of electricity.

Entering October, ISO New England published an updated outlook that revealed 60 percent of proposed power generators in the region’s future “queue” are wind farms, primarily offshore installations like the proposed Park City Wind project of Avangrid and Revolution Wind from Eversource. But Dykes recently criticized as unnecessary an NTE Energy plant approved already by ISO New England for eastern Connecticut, which will be fueled by natural gas if all other regulatory approvals are granted.

The six New England states participate in the Regional Greenhouse Gas Initiative that caps carbon emissions by individual power plants, while allowing them to purchase unused allowances from each other with that revenue funneled to the states to support renewable energy and conservation programs. FERC is now considering the concept of carbon pricing, which would levy a tax on power plants based on their emissions, and it also faces pressure to act on aggregated DERs from lawmakers.

ISO New England is investigating the concepts of net carbon pricing and a “forward clean energy market” that would borrow elements of the existing forward capacity market, but designed to meet individual state objectives for the percentage of renewable power they want generated while ensuring adequate electricity is in place when weather does not cooperate.

The Connecticut Public Utilities Regulatory Authority is collecting on its own initiative industry input on modernization proposals, as New York regulators open a formal review of retail energy markets for comparison, that would add up to hundreds of millions of dollars, including utility-scale batteries to store power generated by offshore wind farms and solar arrays; and “smart” meters in homes and businesses to help electricity customers better manage their power use.

The New England Power Pool serves as a central forum for plant operators, commercial users and others like the Connecticut Office of Consumer Counsel, amid Massachusetts solar demand charge debates that affect distributed generation policy, with NEPOOL’s chair stating Thursday morning the group was still reviewing the governors’ announcement.

“NEPOOL has been engaged this year in meetings ... exploring the transition to a future grid in New England and potential pathways forward to support that transition,” stated Nancy Chafetz, chair of NEPOOL, in an email.

Connecticut’s issues with ISO New England boiled over this summer on the heels of a power-purchase agreement between Millstone owner Dominion and transmission grid operators Eversource and United Illuminating, which contributed to a sharp increase in customer bills.

A few weeks ago, Lamont signed into law a “Take Back the Grid” act that allows the Connecticut Public Utilities Regulatory Authority to factor in Eversource’s and Avangrid subsidiary United Illuminating’s past performance in maintaining electric reliability, in addition to any future needs for revenue based on needed upgrades. The law included an element for Connecticut to initiate a study of ISO New England’s role.

Eversource and Avangrid have voiced support for the switch to “performance-based” regulation in Connecticut. Eversource spokesperson Mitch Gross on Thursday cited the company’s view that any changes to the operation of New England’s wholesale power markets should occur within the existing ISO New England structure.

“We also recommend any examination of potential alternatives includes a thorough evaluation that ensures unfair costs would not be imposed on customers,” Gross stated in an email.

In a statement forwarded by Avangrid spokesperson Ed Crowder, the United Illuminating parent indicated it intends to have “a voice in this process” with the goal of continued grid reliability amid increased adoption of clean energy sources.

 

Related News

View more

Canadian gold mine cleans up its act with electricity

Electric mining equipment enables zero-emission, diesel-free operations at Goldcorp's Borden mine, using Sandvik battery-electric drills and LHD trucks to cut ventilation costs, noise, and maintenance while improving underground air quality.

 

Key Points

Battery-powered mining equipment replaces diesel, cutting emissions and ventilation costs in underground operations.

✅ Cuts diesel use, heat load, and noise in underground headings.

✅ Reduces ventilation infrastructure and operating expense.

✅ Improves air quality, worker health, and equipment uptime.

 

Mining operations get a lot of flack for creating environmental problems around the world. Yet they provide much of the basic material that keeps the global economy humming. Some mining companies are drilling down in their efforts to clean up their acts, exploring solutions such as recovering mine heat for power to reduce environmental impact.

As the world’s fourth-largest gold mining company Goldcorp has received its share of criticism about the impact it has on the environment.

In 2016, the Canadian company decided to do something about it. It partnered with mining-equipment company Sandvik and began to convert one of its mines into an all-electric operation, a process that is expected to take until 2021.

The efforts to build an all-electric mine began with the Sandvik DD422iE in Goldcorp’s Borden mine in Ontario, Canada.

Goldcorp's Borden mine in Borden, Ontario, CanadaGoldcorp's Borden mine in Borden, Ontario, Canada

The machine weighs 60,000 pounds and runs non-stop on a giant cord. It has a 75-kwh sodium nickel chloride battery to buffer power demands, a crucial consideration as power-hungry Bitcoin facilities can trigger curtailments during heat waves, and to move the drill from one part of the mine to another.

This electric rock-chewing machine removes the need for the immense ventilation systems needed to clean the emissions that diesel engines normally spew beneath the surface in a conventional mining operation, though the overall footprint depends on electricity sources, as regions with Clean B.C. power imports illustrate in practice.

These electric devices improve air quality, dramatically reduce noise pollution, and remove costly maintenance of internal combustion engines, Goldcorp says.

More importantly, when these electric boring machines are used across the board, it will eliminate the negative health effects those diesel drills have on miners.

“It would be a challenge to go back,” says big drill operator Adam Ladouceur.

Mining with electric equipment also removes second- or third-highest expenditure in mining, the diesel fuel used to power the drills, said Goldcorp spokesman Pierre Noel, even as industries pursue dedicated energy deals like Bitcoin mining in Medicine Hat to manage power costs. (The biggest expense is the cost of labor.)

Electric load, haul, dump machine at Goldcorp Borden mine in OntarioElectric load, haul, dump machine at Goldcorp Borden mine in Ontario

Aside from initial cost, the electric Borden mine will save approximately $7 million ($9 million Canadian) annually just on diesel, propane and electricity.

Along with various sizes of electric drills and excavating tools, Goldcorp has started using electric powered LHD (load, haul, dump) trucks to crush and remove the ore it extracts, and Sandvik is working to increase the charging speed for battery packs in the 40-ton electric trucks which transport the ore out of the mines, while utilities add capacity with new BC generating stations coming online.

 

Related News

View more

Canada Faces Critical Crunch in Electrical Supply

Canada Electricity Supply Crunch underscores grid reliability risks, aging infrastructure, and rising demand, pushing upgrades in transmission, energy storage, smart grid technology, and renewable energy integration to protect industry, consumers, and climate goals.

 

Key Points

A nationwide power capacity shortfall stressing the grid, raising outage risks and slowing the renewable transition.

✅ Demand growth and aging infrastructure strain transmission capacity

✅ Smart grid, storage, and interties improve reliability and flexibility

✅ Accelerated renewables and efficiency reduce fossil fuel reliance

 

Canada, known for its vast natural resources and robust energy sector, is now confronting a significant challenge: a crunch in electrical supply. A recent report from EnergyNow.ca highlights the growing concerns over Canada’s electricity infrastructure, revealing that the country is facing a critical shortage that could impact both consumers and industries alike. This development raises pressing questions about the future of Canada’s energy landscape and its implications for the nation’s economy and environmental goals.

The Current Electrical Supply Dilemma

According to EnergyNow.ca, Canada’s electrical supply is under unprecedented strain due to several converging factors. One major issue is the rapid pace of economic and population growth, particularly in urban centers. This expansion has increased demand for electricity, putting additional pressure on an already strained grid. Compounding this issue are aging infrastructure and a lack of sufficient investment in modernizing the electrical grid to meet current and future needs, with interprovincial frictions such as the B.C. challenge to Alberta's export restrictions further complicating coordination.

The report also points out that Canada’s reliance on certain types of energy sources, including fossil fuels, exacerbates the problem. While the country has made strides in renewable energy, including developments in clean grids and batteries across provinces, the transition has not kept pace with the rising demand for electricity. This imbalance highlights a crucial gap in Canada’s energy strategy that needs urgent attention.

Economic and Social Implications

The shortage in electrical supply has significant economic and social implications. For businesses, particularly those in energy-intensive sectors such as manufacturing and technology, the risk of power outages or unreliable service can lead to operational disruptions and financial losses. Increased energy costs due to supply constraints could also affect profit margins and competitiveness on both domestic and international fronts, with electricity exports at risk amid trade tensions.

Consumers are not immune to the impact of this electrical supply crunch. The potential for rolling blackouts or increased energy prices, as debates over electricity rates and innovation continue nationwide, can strain household budgets and affect overall quality of life. Additionally, inconsistent power supply can affect essential services, including healthcare facilities and emergency services, highlighting the critical nature of reliable electricity for public safety and well-being.

Investment and Infrastructure Upgrades

Addressing the electrical supply crunch requires significant investment in infrastructure and technology, and recent tariff threats have boosted support for Canadian energy projects that could accelerate these efforts. The EnergyNow.ca report underscores the need for modernizing the electrical grid to enhance capacity and resilience. This includes upgrading transmission lines, improving energy storage solutions, and expanding the integration of renewable energy sources such as wind and solar power.

Investing in smart grid technology is also essential. Smart grids use digital communication and advanced analytics to optimize electricity distribution, detect outages, and manage demand more effectively. By adopting these technologies, Canada can better balance supply and demand, reduce the risk of blackouts, and improve overall efficiency in energy use.

Renewable Energy Transition

Transitioning to renewable energy sources is a critical component of addressing the electrical supply crunch. While Canada has made progress in this area, the pace of change needs to accelerate under the new Clean Electricity Regulations for 2050 that set long-term targets. Expanding the deployment of wind, solar, and hydroelectric power can help diversify the energy mix and reduce reliance on fossil fuels. Additionally, supporting innovations in energy storage and grid management will enhance the reliability and sustainability of renewable energy.

The EnergyNow.ca report highlights several ongoing initiatives and projects aimed at increasing renewable energy capacity. However, these efforts must be scaled up and supported by both public policy and private investment to ensure that Canada can meet its energy needs and climate goals.

Policy and Strategic Planning

Effective policy and strategic planning are crucial for addressing the electrical supply challenges, with an anticipated electricity market reshuffle in at least one province signaling change ahead. Government action is needed to support infrastructure investment, incentivize renewable energy adoption, and promote energy efficiency measures. Collaborative efforts between federal, provincial, and municipal governments, along with private sector stakeholders, will be key to developing a comprehensive strategy for managing Canada’s electrical supply.

Public awareness and engagement are also important. Educating consumers about energy conservation practices and encouraging the adoption of energy-efficient technologies can contribute to reducing overall demand and alleviating some of the pressure on the electrical grid.

Conclusion

Canada’s electrical supply crunch is a pressing issue that demands immediate and sustained action. The growing demand for electricity, coupled with aging infrastructure and a lagging transition to renewable energy, poses significant challenges for the country’s economy and daily life. Addressing this issue will require substantial investment in infrastructure, advancements in technology, and effective policy measures. By taking a proactive and collaborative approach, Canada can navigate this crisis and build a more resilient and sustainable energy future.

 

Related News

View more

Severe heat: 5 electricity blackout risks facing the entire U.S., not just Texas

Texas power grid highlights ERCOT reliability strains from extreme heat, climate change, and low wind, as natural gas and renewables balance tight capacity amid EV charging growth, heat pumps, and blackout risk across the U.S.

 

Key Points

Texas power grid is ERCOT-run and isolated, balancing natural gas and wind amid extreme weather and electrification.

✅ Isolated from other U.S. grids, limited import support

✅ Vulnerable to extreme heat, winter storms, low wind

✅ Demand growth from EVs and heat pumps stresses capacity

 

Texas has a unique state-run power grid facing a Texas grid crisis that has raised concerns, but its issues with extreme weather, and balancing natural gas and wind, hold lessons for an entire U.S. at risk for power outages from climate change.

Grid operator the Electric Reliability Council of Texas, or ERCOT, which has drawn criticism from Elon Musk recently, called on consumers to voluntarily reduce power use on Monday when dangerous heat gripped America’s second-most populous state.

The action paid off as the Texas grid avoided blackouts — and a repeat of its winter crisis — despite record or near-record temperatures that depleted electric supplies amid a broader supply-chain crisis affecting utilities this summer, and risked lost power to more than 26 million customers. ERCOT later on Monday lifted the call for conservation.

For sure, it’s a unique situation, as the state-run power grid system runs outside the main U.S. grids. Still, all Americans can learn from Texas about the fragility of a national power grid that is expected to be challenged more frequently by hot and cold weather extremes brought on by climate change, including potential reliability improvements policymakers are weighing.

The grid will also be tested by increased demand to power electric vehicles (EVs) and conversions to electric heat pumps — all as part of a transition to a “greener” future.

 

Why is Texas different?
ERCOT, the main, but not only, Texas grid, is unique in its state-run, and not regional, format used by the rest of the country. Because it’s an energy-rich state, Texas has been able to set power prices below those seen in other parts of the country, and its independence gives it more pricing authority, while lawmakers consider market reforms to avoid blackouts. But during unusual strain on the system, such as more people blasting their air conditioners longer to combat a record heat wave, it also has no where else to turn.

A lethal winter power shortage in February 2021, during a Texas winter storm that left many without power and water, notoriously put the state and its independent utility in the spotlight when ERCOT failed to keep residents warm and pipes from bursting. Texas’s 2021 outage left more than 200 people dead and rang up $20 billion in damage. Fossil-fuel CL00, 0.80% backers pointed to the rising use of intermittent wind power, which generates 23% of Texas’s electricity. Others said natural-gas equipment was frozen under the extreme conditions.

This week, ERCOT is asking for voluntary conservation between 2 p.m. and 8 p.m. local time daily due to record high electricity demand from the projected heat wave, and also because of low wind. ERCOT said current projections show wind generation coming in at less than 10% of capacity. ERCOT stressed that no systemwide outages are expected, and Gov. Greg Abbott has touted grid readiness heading into fall, but it was acting preemptively.

A report late last year from the North American Electric Reliability Corp. (NERC) said the Texas system without upgrades could see a power shortfall of 37% in extreme winter conditions. NERC’s outlook suggested the state and ERCOT isn’t prepared for a repeat of weather extremes.

 

Related News

View more

U.S. Announces $28 Million To Advance And Deploy Hydropower Technology

DOE Hydropower Funding advances clean energy R&D, pumped storage hydropower, retrofits for non-powered dams, and fleet modernization under the Bipartisan Infrastructure Law and Inflation Reduction Act, boosting long-duration energy storage, licensing studies, and sustainability engagement.

 

Key Points

A $28M DOE initiative supporting hydropower R&D, pumped storage, retrofits, and stakeholder sustainability efforts.

✅ Funds retrofits for non-powered dams, expanding low-impact supply

✅ Backs studies to license new pumped storage facilities

✅ Engages stakeholders on modernization and environmental impacts

 

The U.S. Department of Energy (DOE) today announced more than $28 million across three funding opportunities to support research and development projects that will advance and preserve hydropower as a critical source of clean energy. Funded through President Biden’s Bipartisan Infrastructure Law, this funding will support the expansion of low-impact hydropower (such as retrofits for dams that do not produce power) and pumped storage hydropower, the development of new pumped storage hydropower facilities, and engagement with key voices on issues like hydropower fleet modernization, sustainability, and environmental impacts. President Biden’s Inflation Reduction Act also includes a standalone tax credit for energy storage, which will further enhance the economic attractiveness of pumped storage hydropower. Hydropower will be a key clean energy source in transitioning away from fossil fuels and meeting President Biden’s goals of 100% carbon pollution free electricity by 2035 through a clean electricity standard policy pathway and a net-zero carbon economy by 2050.

“Hydropower has long provided Americans with significant, reliable energy, which will now play a crucial role in achieving energy independence and protecting the climate,” said U.S. Secretary of Energy Jennifer M. Granholm. “President Biden’s Agenda is funding critical innovations to capitalize on the promise of hydropower and ensure communities have a say in building America’s clean energy future, including efforts to revitalize coal communities through clean projects.” 

Hydropower accounts for 31.5% of U.S. renewable electricity generation and about 6.3% of total U.S. electricity generation, with complementary programs to bolster energy security for rural communities supporting grid resilience, while pumped storage hydropower accounts for 93% of U.S. utility-scale energy storage, ensuring power is available when homes and businesses need it, even as the aging U.S. power grid poses challenges to renewable integration.  

The funding opportunities include, as part of broader clean energy funding initiatives, the following: 

  • Advancing the sustainable development of hydropower and pumped storage hydropower by encouraging innovative solutions to retrofit non-powered dams, the development and testing of technologies that mitigate challenges to pumped storage hydropower deployment, as well as opportunities for organizations not extensively engaged with DOE’s Water Power Technologies Office to support hydropower research and development. (Funding amount: $14.5 million) 
  • Supporting studies that facilitate the FERC licensing process and eventual construction and commissioning of new pumped storage hydropower facilities to facilitate the long-duration storage of intermittent renewable electricity. (Funding amount: $10 million)
  • Uplifting the efforts of diverse hydropower stakeholders to discuss and find paths forward on topics that include U.S. hydropower fleet modernization, hydropower system sustainability, and hydropower facilities’ environmental impact. (Funding amount: $4 million) 

 

Related News

View more

Cancelling Ontario's wind project could cost over $100M, company warns

White Pines Project cancellation highlights Ontario's wind farm contract dispute in Prince Edward County, involving IESO approvals, Progressive Conservatives' legislation, potential court action, and costs to ratepayers amid green energy policy shifts.

 

Key Points

The termination effort for Ontario's White Pines wind farm contract, triggering legal, legislative, and cost disputes.

✅ Contract with IESO dates to 2009; final approval during election

✅ PCs seek legislation insulating taxpayers from litigation

✅ Cancellation could exceed $100M; cost impact on ratepayers

 

Cancelling an eastern Ontario green energy project that has been under development for nearly a decade could cost more than $100 million, the president of the company said Wednesday, warning that the dispute could be headed to the courts.

Ontario's governing Progressive Conservatives said this week that one of their first priorities during the legislature's summer sitting would be to cancel the contract for the White Pines Project in Prince Edward County.

Ian MacRae, president of WPD Canada, the company behind the project, said he was stunned by the news given that the project is weeks away from completion.

"What our lawyers are telling us is we have a completely valid contract that we've had since 2009 with the (Independent Electricity System Operator). ... There's no good reason for the government to breach that contract," he said.

The government has also not reached out to discuss the cancellation, he said. Meanwhile, construction on the site is in full swing, he said.

"Over the last couple weeks we've had an average of 100 people on site every day," he said. "The footprint of the project is 100 per cent in. So, all the access roads, the concrete for the base foundations, much of the electrical infrastructure. The sub-station is nearing completion."

The project includes nine wind turbines meant to produce enough electricity to power just over 3,000 homes annually, even as Ontario looks to build on an electricity deal with Quebec for additional supply. All of the turbines are expected to be installed over the next three weeks, with testing scheduled for the following month.

MacRae couldn't say for certain who would have to pay for the cancellation, electricity ratepayers or taxpayers.

"Somehow that money would come from IESO and it would be my assumption that would end up somehow on the ratepayers, despite legislation to lower electricity rates now in place," he said. "We just need to see what the government has in mind and who will foot the bill."

Progressive Conservative house leader Todd Smith, who represents the riding where the project is being built, said the legislation to cancel the project will also insulate taxpayers from domestic litigation over the dismantling of green energy projects.

"This is something that the people of Prince Edward County have been fighting ... for seven years," he said. "This shouldn't have come as a surprise to anybody that this was at the top of the agenda for the incoming government, which has also eyed energy independence in recent decisions."

Smith questioned why Ontario's Independent Electricity System Operator gave the final approval for the project during the spring election campaign.

"There's a lot of questions about how this ever got greenlighted in the first place," he said. "This project was granted its notice to proceed two days into the election campaign ... when (the IESO) should have been in the caretaker mode."

Terry Young, the IESO's vice president of policy, engagement and innovation, said the agency could not comment because of the pending introduction of legislation to cancel the deal, following a recent auditor-regulator dispute that drew attention to oversight.

NDP Leader Andrea Horwath said the new Tory government is behaving like the previous Liberal government by cancelling energy projects and tearing up contracts amid ongoing debates over Ontario's hydro mess and affordability. She likened the Tory plan to the Liberal gas plant scandal that saw the government relocate two plants at a substantial cost to taxpayers.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified