GE calls for accelerated smart grid standards

By Business Wire


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
GE announced that Bob Gilligan, vice president of transmission and distribution for GE Energy, will be one of the select few industry executives participating in the Smart Grid Leadership Meeting in Washington, D.C., led by U.S. Energy Secretary Steven Chu and Commerce Secretary Gary Locke.

Gilligan will discuss how GE is leveraging its global experience in the energy industry to help lead the development of smart grid standards in the United States.

“Standardizing technology is vital to ensure cyber-security, interoperability, reliability and safety for consumers and utilities as the nation begins implementation of a smarter electrical infrastructure,” said Gilligan. “Unambiguous standards will help speed up innovation as engineers follow a clear direction for product development and technology advances.”

Gilligan continued, “No company, government body or organization alone can bring about this standardization. We, therefore, must join together to apply our knowledge and combined experience in achieving this objective — one of the most important initiatives in the industry.”

Sixty executives from utilities, technology providers, trade associations and standards development organizations will attend and share their visions for turning the challenge of standards development into a roadmap for successful smart grid implementation.

As with the Internet, technology and performance standards are vital to a successful smarter grid, which will enable increased energy efficiency, provide new jobs, allow for easier integration of renewable power sources and help consumers and businesses better manage energy costs.

“A smart electricity grid will revolutionize the way we use energy, but we need standards in place to ensure that all this new technology is compatible and operating at the highest cyber-security standards to protect the smart grid from hackers and natural disasters,” Locke said during an April 16 press conference.

The Leadership Meeting is one of many standards initiatives GE is actively participating in. The National Institute of Standards and Technology (NIST) has chosen GE to work alongside the Electric Power Research Institute, Inc. to develop an interim roadmap for determining smart grid architecture and key standards for the smart grid, with a focus on cyber-security.

The Leadership Conference is a precursor to the NIST Interim Smart Grid Standards Interoperability Roadmap Summit on May 19-20. The summit will focus on identifying all standards needed for the smart grid, standards priorities, responsibilities and a timeline. GEÂ’s world-renowned subject matter experts will be actively leading and/or participating in all of these standards projects.

GE had nine industry experts participate in the first summit held April 28-29, covering each of the seven parallel tracks, with objectives around architecture, evaluating existing standards, consensus on standards to be endorsed now and identification of issues to be addressed in the future.

Related News

Ontario to Rely on Battery Storage to Meet Rising Energy Demand

Ontario Battery Energy Storage anchors IESO strategy, easing peak demand and boosting grid reliability. Projects like Oneida BESS (250MW) and nearly 3GW procurements integrate renewables, wind and solar, enabling flexible, decarbonized power.

 

Key Points

Provincewide grid batteries help IESO manage peaks, integrate renewables, and strengthen reliability across Ontario.

✅ IESO forecasts 1,000MW peak growth by 2026

✅ Oneida BESS adds 250MW with 20-year contract

✅ Nearly 3GW storage procured via LT1 and other RFPs

 

Ontario’s electricity grid is facing increasing demand amid a looming supply crunch, prompting the province to invest heavily in battery energy storage systems (BESS) as a key solution. The Ontario Independent Electricity System Operator (IESO) has highlighted that these storage technologies will be crucial for managing peak demand in the coming years.

Ontario's energy demands have been on the rise, driven by factors such as population growth, electric vehicle manufacturing, data center expansions, and heavy industrial activity. The IESO's latest assessment, and its work on enabling storage, covering the period from April 2025 to September 2026, indicates that peak demand will increase by approximately 1,000MW between the summer of 2025 and 2026. This forecasted rise in energy use is attributed to the acceleration of various sectors within the province, underscoring the need for reliable, scalable energy solutions.

A significant portion of this solution will be met by large-scale energy storage projects. Among the most prominent is the Oneida BESS, a flagship project that will contribute 250MW of storage capacity. This project, developed by a consortium including Northland Power and NRStor, will be located on land owned by the Six Nations of the Grand River. Expected to be operational soon, it will play a pivotal role in ensuring grid stability during high-demand periods. The project benefits from a 20-year contract with the IESO, guaranteeing payments that will support its financial viability, alongside additional revenue from participating in the wholesale energy market.

In addition to Oneida, Ontario has committed to acquiring nearly 3GW of energy storage capacity through various procurement programs. The 2023 Expedited Long-Term 1 (LT1) request for proposals (RfP) alone secured 881MW of storage, with additional projects in the pipeline. A notable example is the Hagersville Battery Energy Storage Park, which, upon completion, will be the largest such project in Canada. The success of these procurement efforts highlights the growing importance of BESS in Ontario's energy strategy.

The IESO’s proactive approach to energy storage is not only a response to rising demand but also a step toward decarbonizing the province’s energy system. As Ontario transitions away from traditional fossil fuels, BESS will provide the necessary flexibility to accommodate increasing renewable energy generation, a clean energy solution widely recognized in jurisdictions like New York, particularly from intermittent sources like wind and solar. By storing excess energy during periods of low demand and dispatching it when needed, these systems will help maintain grid stability, and as many utilities see benefits even without mandates, reduce reliance on fossil fuel-based power plants.

Looking ahead, Ontario's energy storage capacity is expected to grow significantly, complemented by initiatives such as the Hydrogen Innovation Fund, with projects from the 2023 LT1 RfP expected to come online by 2027. As more storage resources are integrated into the grid, the province is positioning itself to meet its rising energy needs while also advancing its environmental goals.

Ontario’s increasing reliance on battery energy storage is a clear indication of the province’s commitment to a sustainable and resilient energy future, aligning with perspectives from Sudbury sustainability advocates on the grid's future. With substantial investments in storage technology, Ontario is not only addressing current energy challenges but also paving the way for a cleaner, more reliable energy system in the years to come.

 

Related News

View more

BC Hydro: 2021 was a record-breaking year for electricity demand

BC Hydro 2021 Peak Load Records highlight record-breaking electricity demand, peak load spikes, heat dome impacts, extreme cold, and shifting work-from-home patterns managed by a flexible hydroelectric system and climate-driven load trends.

 

Key Points

Record-breaking electricity demand peaks from extreme heat and cold that reshaped daily load patterns across BC in 2021.

✅ Heat dome and deep freeze drove sustained peak electricity demand

✅ Peak load built gradually, reflecting work-from-home behavior

✅ Flexible hydroelectric system adapts quickly to demand spikes

 

From June’s heat dome to December’s extreme cold, 2021 was a record-setting year, according to BC Hydro, and similar spikes were noted as Calgary's electricity use surged in frigid weather.

On Friday, the energy company released a new report on electricity demand, and how extreme temperatures over extended periods of time, along with growing scrutiny of crypto mining electricity use, led to record peak loads.

“We use peak loads to describe the electricity demand in the province during the highest load hour of each day,” Kyle Donaldson, BC Hydro spokesperson, said in a media release.

“With the heat dome in the summer and the sustained cold temperatures in December, we saw more record-breaking hours on more days last year than any other single year.”

According to BC Hydro, during summer, the Crown corporation recorded 19 of its top 25 all-time summer daily peak records — including breaking its all-time summer peak hourly demand record.

In December, which saw extremely cold temperatures and heavy snowfall, BC Hydro said its system experienced the highest and longest sustained load levels ever, as it activated its winter payment plan to assist customers.

Overall, BC Hydro says it has experienced 11 of its top 25 all-time daily peak records this winter, adding that Dec. 27 broke its all-time high peak hourly demand record.

“BC Hydro’s hydroelectric system is directly impacted by variations in weather, including drought conditions that require adaptation, and in 2021 more electricity demand records were broken than any other year prior, largely because of the back-to-back extreme temperatures lasting for days and weeks on end,” reads the report.

The energy company expects this trend to continue, noting that it has broken the peak record five times in the past five years, and other jurisdictions such as Quebec consumption record have also shattered consumption records.

It also noted that peak demand patterns have also changed since the first year of the COVID-19 pandemic, with trends seen during Earth Hour usage offering context.

“When the previous peak hourly load record was broken in January 2020, load displayed sharper increases and decreases throughout the day, suggesting more typical weather and behaviour,” said the report.

“In contrast, the 2021 peak load built up more gradually throughout the day, suggesting more British Columbians were likely working from home, or home for the holidays – waking up later and home earlier in the evening – as well as colder weather than average.”

BC Hydro also said “current climate models suggest a warming trend continuing in years to come which could increase demand year-round,” but noted that its flexible hydroelectric system can meet changes in demand quickly.

 

Related News

View more

35 arrested in India for stealing electricity

BEST vigilance raid on Wadala electricity theft uncovered a Mumbai power theft racket in Antop Hill and Sangam Nagar, with operators, illegal connections, sub-stations, meter cabins, FIRs, and Rs 72 lakh losses flagged by BEST.

 

Key Points

A BEST operation that nabbed operators stealing power via illegal connections in Wadala, exposing a Rs 72 lakh loss.

✅ 35 suspects booked; key operator identified as David Anthony.

✅ Illegal taps from sub-stations and meter cabins in shanties.

✅ BEST filed FIRs; Session court granted bail to accused.

 

In a raid conducted at Antop Hill in Wadala on Saturday, a total of 35 people were nabbed by the vigilance department for stealing electricity to the tune of Rs 72 lakh, in a case similar to a Montreal power-theft ring bust covered internationally.

It was the second such raid conducted in the past one week, where operators have been nabbed.The cash-strapped BEST is now tightening it's grasp on `operators' who steal electricity from BEST sources and provide it to their own customers on a meagre monthly rent, even as Ontario utilities warn about scams affecting customers elsewhere.

After receiving a tip-off about the theft of electricity in the Sangam Nagar area of Wadala, about 90 personnel of the BEST conducted a raid. After visiting the spots, it was found that illegal connections were made from the sub-station and other electricity boxes of the BEST in the area, underscoring how fragile networks can be amid disruptions such as major outages in London that affected thousands.

According to BEST officials, the residents from the area would come up to the accused, identified as David Anthony, and would pay a fixed amount at the end of every month for unlimited supply of power, a dynamic reminiscent of shutoff-threat scams flagged by Manitoba Hydro, though the circumstances differ. Anthony would with draw power directly from meter cabins and electricity boxes in the area. The wires he connected to these were in turn connected to households who made the arrangement with him. An official from BEST also explained that as soon they reach a location to conduct raids and vehicles of BEST officials are spotted by residents, most of the connections are cut off, which makes it difficult for them to prove the theft case However, on Saturday, BEST officials managed to conduct the raid swiftly and nab 35 people.

All who had illegal connections were named in the complaint and an FIR was registered against them, including Anthony, who himself had illegal connections in his house. They were produced in Session court and given bail, while utilities in other regions resort to hydro disconnections during arrears season. Chief Vigilance Officer of BEST, RJ Singh said, "Most of these are commercial establishments in these shanties, which steal electricity. It is very important to catch hold of the operators as they are the providers and we need to break their backbone."

 

Related News

View more

UK net zero policies: What do changes mean?

UK Net Zero Policy Delay shifts EV sales ban to 2035, eases boiler phase-outs, keeps ZEV mandate, backs North Sea oil and gas, accelerates onshore wind and grid upgrades while targeting 2050 emissions goals.

 

Key Points

Delay moves EV and heating targets to 2035, tweaks mandates, and shifts energy policy, keeping the 2050 net zero goal.

✅ EV sales ban shifts to 2035; ZEV mandate trajectory unchanged

✅ Heat pump grants rise to £7,500; boiler phase-out eased

✅ North Sea oil, onshore wind, grid and nuclear plans advance

 

British Prime Minister Rishi Sunak has said he would delay targets for changing cars and domestic heating to maintain the consent of the British people in the switch to net zero as part of the global energy transition under way.

Sunak said Britain was still committed to achieving net zero emissions by 2050, similar to Canada's race to net zero goals, and denied watering down its climate targets.

Here are some of the current emissions targets for Britain's top polluting sectors and how the announcement impacts them.


TRANSPORTATION
Transport accounts for more than a third (34%) of Britain's total carbon dioxide (CO2) emissions, the most of any sector.

Sunak announced a delay to introducing a ban on new petrol and diesel cars and vans. It will now come into force in 2035 rather than in 2030.

There were more than 1.1 million electric cars in use on UK roads as of April - up by more than half from the previous year to account for roughly one in every 32 cars, according to the country's auto industry trade body.

The current 2030 target was introduced in November 2020 as a central part of then-Prime Minister Boris Johnson's plans for a "green revolution". As recently as Monday, transport minister Mark Harper restated government support for the policy.

Britain’s independent climate advisers, the Climate Change Committee, estimated a 2030 phase out of petrol, diesel and hybrid vehicles could save up to 110 million tons of carbon dioxide equivalent emissions compared with a 2035 phase out.

ohnson's policy already allowed for the continued sale of hybrid cars and vans that can drive long stretches without emitting carbon until 2035.

The transition is governed by a zero-emission vehicle (ZEV) mandate, a shift echoed by New Zealand's electricity transition debates, which means manufacturers must ensure an increasing proportion of the vehicles they sell in the UK are electric.

The current proposal is for 22% of a car manufacturer's sales to be electric in 2024, rising incrementally each year to 100% in 2035.

The government said on Wednesday that all sales of new cars from 2035 would still be zero emission.

Sunak said that proposals that would govern how many passengers people should have in a car, or proposals for new taxes to discourage flying, would be scrapped.


RESIDENTIAL
Residential emissions, the bulk of which come from heating, make up around 17% of the country's CO2 emissions.

The government has a target to reduce Britain's energy consumption from buildings and industry by 15% by 2030, and had set a target to phase out installing new and replacement gas boilers from 2035, as the UK moves towards heat pumps, amid an IEA report on Canada's power needs noting more electricity will be required.

Sunak said people would have more time to transition, and the government said that off-gas-grid homes could continue to install oil and liquefied petroleum gas boilers until 2035, rather than being phased out from 2026.

However, his announcements that the government would not force anyone to rip out an existing boiler and that people would only have to make the switch when replacing one from 2035 restated existing policy.

He also said there would be an exemption so some households would never have to switch, but the government would increase an upgrade scheme that gives people cash to replace their boilers by 50% to 7,500 pounds ($9,296.25).

Currently almost 80% of British homes are heated by gas boilers. In 2022, 72,000 heat pumps were installed. The government had set a target of 600,000 heat pump installations per year by 2028.

A study for Scottish Power and WWF UK in June found that 6 million homes would need to be better insulated by 2030 to meet the government's target to reduce household energy consumption, but current policies are only expected to deliver 1.1 million.

The study, conducted by Frontier Economics, added that 1.5 million new homes would still need heat pumps installed by 2030.

Sunak said that the government would subsidise people who wanted to make their homes energy efficient but never force a household to do it.

The government also said it was scrapping policies that would force landlords to upgrade the energy efficiency of their properties.


ENERGY
The energy sector itself is a big emitter of greenhouse gases, contributing around a quarter of Britain's emissions, though the UK carbon tax on coal has driven substantial cuts in coal-fired electricity in recent years.

In July, Britain committed to granting hundreds of licences for North Sea oil and gas extraction as part of efforts to become more energy independent.

Sunak said he would not ban new oil and gas in the North Sea, and that future carbon budgets for governments would have to be considered alongside the plans to meet them.

He said the government would shortly bring forward new plans for energy infrastructure to improve Britain's grid, including the UK energy plan, while speeding up planning.

Offshore wind power developers warned earlier this month that Britain's climate goals could be at risk, even as efforts like cleaning up Canada's electricity highlight the importance of power-sector decarbonization, after a subsidy auction for new renewable energy projects did not attract any investment in those planned off British coasts.

Britain is aiming to develop 50 gigawatts (GW) of offshore wind capacity by 2030, up from around 14 GW now.

Sunak highlighted that Britain is lifting a ban on onshore wind, investing in carbon capture and building new nuclear power stations.

 

Related News

View more

Substation Maintenance Training

Substation Maintenance Training delivers live online instruction on testing switchgear, circuit breakers, transformers, protective relays, batteries, and SCADA systems, covering safety procedures, condition assessment, predictive maintenance, and compliance for utility substations.

 

Key Points

A live online course on testing and maintaining substation switchgear, breakers, transformers, relays, and batteries.

✅ Live instructor-led, 12-hour web-based training

✅ Covers testing: insulation resistance, contact resistance, TLI

✅ Includes 7 days of post-course email mentoring

 

Our Substation Maintenance Training course is a 12-Hour Live online instruction-led course that will cover the maintenance and testing requirements for common substation facilities, and complements VFD drive training for professionals managing motor control systems.

Electrical Transformer Maintenance Training

Substation Maintenance Training

Request a Free Training Quotation

Electrical Substation maintenance is a key component of any substation owner's electrical maintenance program. It has been well documented that failures in key procedures such as racking mechanisms, meters, relays and busses are among the most common source of unplanned outages. Electrical transmission, distribution and switching substations, as seen in BC Hydro's Site C transmission line work milestone, generally have switching, protection and control equipment and one or more transformers.Our electrical substation maintenance course focuses on maintenance and testing of switchgear, circuit breakers, batteries and protective relays.

This Substation Maintenance Training course will cover the maintenance and testing requirements for common substation devices, including power transformers, oil, air and vacuum circuit breakers, switchgear, ground grid systems aligned with NEC 250 grounding and bonding guidance, batteries, chargers and insulating liquids. This course focuses on what to do, when to do it and how to interpret the results from testing and maintenance. This Substation Maintenance course will deal with all of these important issues.

You Can Access The Live Online Training Through Our Web-Based Platform From Your Own Computer. You Can See And Hear The Instructor And See His Screen Live.

You Can Interact And Ask Questions, similar to our motor testing training sessions delivered online. The Cost Of The Training Also Includes 7 Days Of Email Mentoring With The Instructor.

 

LEARNING OBJECTIVES

  • Substation Types, Applications, Components And lightning protection systems safety procedures
  • Maintenance And Testing Methods For Medium-Voltage Circuit Breakers
  • How To Perform Insulation Resistance, Contact Resistance On Air, Oil And Vacuum Breakers, And Tank Loss Index On Oil Circuit Breaker And Vacuum Bottle Integrity Tests On Vacuum Breaker
  • Switchgear Arrangement, Torque Requirements, Insulation Systems, grounding guidelines And Maintenance Intervals
  • How To Perform Switchgear Inspection And Maintenance

 

WHO SHOULD ATTEND

This course is designed for engineering project managers, engineers, and technicians from utilities who have built or are considering building or retrofitting substations or distribution systems with SCADA and substation integration and automation equipment, and for teams focused on electrical storm safety in the field.

Complete Course Details Here:

https://electricityforum.com/electrical-training/substation-maintenance-training

 

Related News

View more

Electricity Regulation With Equity & Justice For All

Energy equity in utility regulation prioritizes fair rates, clean energy access, and DERs, addressing fixed charges and energy burdens on low-income households through stakeholder engagement and public utility commission reforms.

 

Key Points

Fairly allocates clean energy benefits and rate burdens, ensuring access and protections for low-income households.

✅ Reduces fixed charges that burden low-income households

✅ Funds community participation in utility proceedings

✅ Prioritizes DERs, energy efficiency, and solar in impacted areas

 

By Kiran Julin

Pouring over the line items on your monthly electricity bill may not sound like an enticing way to spend an afternoon, but the way electricity bills are structured has a significant impact on equitable energy access and distribution. For example, fixed fees can have a disproportionate impact on low-income households. And combined with other factors, low-income households and households of color are far more likely to report losing home heating service, with evidence from pandemic power shut-offs highlighting these disparities, according to recent federal data.

Advancing Equity in Utility Regulation, a new report published by the U.S. Department of Energy’s (DOE’s) Lawrence Berkeley National Laboratory (Berkeley Lab), makes a unifying case that utilities, regulators, and stakeholders need to prioritize energy equity in the deployment of clean energy technologies and resources, aligning with a people-and-planet electricity future envisioned by advocacy groups. Equity in this context is the fair distribution of the benefits and burdens of energy production and consumption. The report outlines systemic changes needed to advance equity in electric utility regulation by providing perspectives from four organizations — Portland General Electric, a utility company; the National Consumer Law Center, a consumer advocacy organization; and the Partnership for Southern Equity and the Center for Biological Diversity, social justice and environmental organizations.
 
“While government and ratepayer-funded energy efficiency programs have made strides towards equity by enabling low-income households to access energy-efficiency measures, that has not yet extended in a major way to other clean-energy technologies,” said Lisa Schwartz, a manager and strategic advisor at Berkeley Lab and technical editor of the report. “States and utilities can take the lead to make sure the clean-energy transition does not leave behind low-income households and communities of color. Decarbonization and energy equity goals are not mutually exclusive, and in fact, they need to go hand-in-hand.”

Energy bills and electricity rates are governed by state laws and utility regulators, whose mission is to ensure that utility services are reliable, safe, and fairly priced. Public utility commissions also are increasingly recognizing equity as an important goal, tool, and metric, and some customers face major changes to electric bills as reforms advance. While states can use existing authorities to advance equity in their decision-making, several, including Illinois, Maine, Oregon, and Washington, have enacted legislation over the last couple of years to more explicitly require utility regulators to consider equity.

“The infrastructure investments that utility companies make today, and regulator decisions about what goes into electricity bills, including new rate design steps that shape customer costs, will have significant impacts for decades to come,” Schwartz said.

Solutions recommended in the report include considering energy justice goals when determining the “public interest” in regulatory decisions, allocating funding for energy justice organizations to participate in utility proceedings, supporting utility programs that increase deployment of energy efficiency and solar for low-income households, and accounting for energy inequities and access in designing electricity rates, while examining future utility revenue models as technologies evolve.

The report is part of the Future of Electric Utility Regulation series that started in 2015, led by Berkeley Lab and funded by DOE, to encourage informed discussion and debate on utility trends and tackling the toughest issues related to state electric utility regulation. An advisory group of utilities, public utility commissioners, consumer advocates, environmental and social justice organizations, and other experts provides guidance.

 

Taking stock of past and current energy inequities

One focus of the report is electricity bills. In addition to charges based on usage, electricity bills usually also have a fixed basic customer charge, which is the minimum amount a household has to pay every month to access electricity. The fixed charge varies widely, from $5 to more than $20. In recent years, utility companies have sought sizable increases in this charge to cover more costs, amid rising electricity prices in some markets.

This fixed charge means that no matter what a household does to use energy more efficiently or to conserve energy, there is always a minimum cost. Moreover, low-income households often live in older, poorly insulated housing. Current levels of public and utility funding for energy-efficiency programs fall far short of the need. The combined result is that the energy burden – or percent of income needed to keep the lights on and their homes at a healthy temperature – is far greater for lower-income households.

“While all households require basic lighting, heating, cooling, and refrigeration, low-income households must devote a greater proportion of income to maintain basic service,” explained John Howat and Jenifer Bosco from the National Consumer Law Center and co-authors of Berkeley Lab’s report. Their analysis of data from the most recent U.S. Energy Information Administration’s Residential Energy Consumption Survey shows households with income less than $20,000 reported losing home heating service at a pace more than five times higher than households with income over $80,000. Households of color were far more likely than those with a white householder to report loss of heating service. In addition, low-income households and households of color are more likely to have to choose between paying their energy bill or paying for other necessities, such as healthcare or food.

Based on the most recent data (2015) from the U.S. Energy Information Administration (EIA), households with income less than $20,000 reported losing home heating service at a rate more than five times higher than households with income over $80,000. Households of color were far more likely than those with a white householder to report loss of heating service. Click on chart for larger view. (Credit: John Howat/National Consumer Law Center, using EIA data)

Moreover, while many of the infrastructure investment decisions that utilities make, such as whether and where to build a new power plant, often have long-term environmental and health consequences, impacted communities often are not at the table. “Despite bearing an inequitable proportion of the negative impacts of environmental injustices related to fossil fuel-based energy production and climate change, marginalized communities remain virtually unrepresented in the energy planning and decision-making processes that drive energy production, distribution, and regulation,” wrote Chandra Farley, CEO of ReSolve and a co-author of the report.


Engaging impacted communities
Each of the perspectives in the report identify a need for meaningful engagement of underrepresented and disadvantaged communities in energy planning and utility decision-making. “Connecting the dots between energy, racial injustice, economic disinvestment, health disparities, and other associated equity challenges becomes a clarion call for communities that are being completely left out of the clean energy economy,” wrote Farley, who previously served as the Just Energy Director at Partnership for Southern Equity. “We must prioritize the voices and lived experiences of residents if we are to have more equity in utility regulation and equitably transform the energy sector.”

In another essay in the report, Nidhi Thaker and Jake Wise from Portland General Electric identify the importance of collaborating directly with the communities they serve. In 2021, the Oregon Legislature passed Oregon HB 2475, which allows the Oregon Public Utility Commission to allocate ratepayer funding for organizations representing people most affected by a high energy burden, enabling them to participate in utility regulatory processes.

The report explains why energy equity requires correcting inequities resulting from past and present failures as well as rethinking how we achieve future energy and decarbonization goals. “Equity in energy requires adopting an expansive definition of the ‘public interest’ that encompasses energy, climate, and environmental justice. Energy equity also means prioritizing the deployment of distributed energy resources and clean energy technologies in areas that have been hit first and worst by the existing fossil fuel economy,” wrote Jean Su, energy justice director and senior attorney at the Center for Biological Diversity.

This report was supported by DOE’s Grid Modernization Laboratory Consortium, with funding from the Office of Energy Efficiency and Renewable Energy and the Office of Electricity.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified